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ROUGH MODELING—A BOTTOM-UP APPROACH

TO MODEL CONSTRUCTION

Terje LØKEN∗, Jan KOMOROWSKI∗∗

Traditional data mining methods based on rough set theory focus on extracting
models which are good at classifying unseen objects. If one wants to uncover
new knowledge from the data, the model must have a high descriptive quality—
it must describe the data set in a clear and concise manner, without sacrificing
classification performance. Rough modeling, introduced by Kowalczyk (1998),
is an approach which aims at providing models with good predictive and de-
scriptive qualities, in addition to being computationally simple enough to handle
large data sets. As rough models are flexible in nature and simple to generate,
it is possible to generate a large number of models and search through them
for the best model. Initial experiments confirm that the drop in performance of
rough models compared to models induced using traditional rough set methods
is slight at worst, and the gain in descriptive quality is very large.

Keywords: knowledge discovery, rough sets, rough modeling, descriptive

models

1. Introduction

Models in the form of propositional decision rules, extracted from data using methods
such as rough set theory (Pawlak, 1991), are used for two main purposes: prediction
and description. Prediction is concerned with predicting future or unknown values of
some attributes using available data, while description means to identify important
patterns in the data, and present them to the user in an understandable way.

When performing knowledge discovery from databases (KDD), we are interested
in finding as good a model as possible from a set of data. However, what constitutes
a good model may vary, depending on the goals of the particular KDD session. If
the goal is to build a model able to classify unseen objects as accurately as possible,
the predictive quality is all-important. If the goal of the KDD process is description,
we need to formalize what it means that a model displays good descriptive qualities.
This is a difficult task, but the size of the model is of fundamental importance.
A model consisting of thousands of rules, or utilizing several hundred attributes, is
incomprehensible, while a small model, containing in the neighborhood twenty rules
or fewer is easily read and comprehended.
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1.1. Compact Models

Very often we would like to find a model which has good descriptive quality and still
retains good predictive quality. Our starting assumption is that a good descriptive
model will be a compact model, meaning that it will contain a limited number of rules,
and each rule will use a manageable number of attributes. There are two fundamen-
tally different approaches to finding models displaying these characteristics. The first
approach starts out by generating as good a predictive model as possible, ignoring the
descriptive quality. It is then believed that within this model, there are some patterns
which are of fundamental importance, and others which are redundant or apply only
to a small number of objects in the data. Using various filtering strategies, one tries
to reduce the size of the model while retaining classifier performance. This process
is called rule pruning, and usually involves using some sort of rule quality measure,
which gives an estimate on the importance of each individual rule. A large number
of quality measures exist, and an overview of these, as well as an investigation of the
performance of heavily filtered rule sets, can be found in (Ågotnes et al., 1999a).

Another philosophy, and the one adopted here, is that one should try to locate
the important patterns directly. There are several reasons for doing this. If we use
traditional methods to find a good predictive rule-based model, the rule discovery
process is often computationally very intensive. As an example, most rough set-based
(Pawlak, 1991) methods involve the search for an optimal set of reducts, a problem
which is NP-hard (Skowron and Rauszer, 1991). Approximation algorithms exist, but
often even these approximations have a substantial complexity. In addition, algorithms
for filtering the resulting model may be complex, and the resulting total computational
demand may be very large. There is also the possibility that the best predictive model
with no restrictions on size may contain only very specific rules, and filtering will
therefore not uncover rules of a more general nature.

An alternative and very different approach is represented by discovery oriented
approaches such as the Explore algorithm (Mienko et al., 1996), which attempt to
extract common patterns and regularities, focusing solely on descriptive qualities and
not on the predictive quality.

2. Rough Models

Rough Data Modeling is a method introduced by Kowalczyk (1998), who attempts
to address two common problems found in traditional data mining methods: the
computation cost of model generation, and the inability to tailor the method to the
specific needs of each data mining session. Kowalczyk argues, as do many others, that
knowledge discovery should be looked upon as an iterative process. With the large
number of alternatives found at each stage in the knowledge discovery process (feature
selection, discretization, data mining, etc.), it is impossible to find general guidelines
which will always produce the best model. In the words of Klösgen (1996):

“. . . a KDD process cannot be specified in advance and automated
completely, because it depends on dynamic, result dependent goals and
intuitions of the analyst and emerges iteratively.”
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Thus viewed, a KDD process is a search for a model satisfying a set of criteria
which is unique for that particular session. In order to maximize the probability
of finding the best model, we would like to generate as large a number of models
as possible. However, the computational costs of many commonly used algorithms
prohibit the generation of numerous models, and in addition, most algorithms are
specifically designed to maximize (or minimize) a certain measure, or a predefined
combination of measures (accuracy, specificity, misclassification cost, etc.).

Searching through a large group of models is similar to the idea formalized in
the wrapper approach for feature subset selection (Kohavi and John, 1997), where one
uses the induction algorithm as a black box to search for the feature (attribute) subset
which generates the best classifier. In this scheme, a model is created and evaluated
at each point in the search space, using the selected induction algorithm. While the
algorithm is geared towards feature subset selection, it will work just as well for model
creation, since the optimal feature subset is the feature subset which results in the
best model. This approach works well for finding accurate models, but as expected,
it is very resource-consuming (Kohavi and John, 1997).

Recognizing this, rough data modeling (Kowalczyk, 1998) simplifies the model
generation process and makes it feasible to search through a large number of models.
In addition, it allows the user to tailor the data mining process, by specifying in detail
how to evaluate each model. As in traditional rough set theory, the starting point is a
decision system A = (U,A, {d}), where U is the universe of objects, A is the set of
condition attributes, and d is the decision attribute, with the set of possible decisions
denoted by Vd.

Given a decision system A = (U,A, {d}), a rough data model (RDM) of A is a
triple

M = 〈B, d̄B ,�〉, (1)

where B is an attribute subset of A which, using the indiscernibility relation
IND(B), induces a set of equivalence classes EB , where all elements in each class
EBi have the same values for the attributes in B. Here d̄B : E

B → Vd is a class
decision function for the equivalence classes EB , which assigns all the objects in each
class the same decision value, producing a deterministic decision system A′.

The linear ordering � of the classes EB is achieved using a combination of
different class characteristics, such as the size of the class, the number of elements
with a particular decision value, the number of correctly classified elements, etc. Note
that � is an equivalence1 relation, meaning that the set of classes EB is totally
ordered. Both the class decision function and the ordering on the classes are decided
on by the user. Further details can be found in (Kowalczyk, 1998).

Each equivalence class in a particular rough data model is uniquely identified by
the values of the attributes in B and is thus equivalent to a single rule of the form

(

a1(x) = v1
)

∧ · · · ∧
(

an(x) = vn
)

→
(

d(x) = d̄B([x]B)
)

, (2)

1 A reflexive, antisymmetric and transitive relation.
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where B = {a1, . . . , an} and {v1, . . . , vn} are the characteristic values of the equiva-
lence class of x, [x]B . Note that at no point in the process are reducts or any similar
concepts calculated, the selected subset of attributes directly forms the equivalent of
a reduct, and all the attributes in B are used to form the model, regardless of any
redundancies.

Example 1. (Rough Data Model) A simple decision system is shown in Table 1, with
simple numerical values for each attribute. A rough data model for this decision system

Table 1. Our example decision system, and a sample rough data model created using the
attributes X and Y .

X (a1) Y (a2) Z (a3) D (d)

x1 1 1 1 0

x2 1 1 1 0

x3 2 1 2 1

x4 1 3 1 1

x5 3 2 1 1

x6 2 3 2 0

x7 1 1 2 1

x8 4 3 2 1

x9 4 3 2 1

Rough Data Model

X = 1 ∧ Y = 1→D = 0

X = 4 ∧ Y = 3→D = 1

can be generated by setting B = {X,Y }. This results in a set of equivalence classes
EB
1
= {x1, x2, x7}, E

B
2
= {x3}, E

B
3
= {x4}, E

B
4
= {x5}, E

B
5
= {x6}, E

B
6
= {x8, x9}. If

we rank the classes according to size, we get the following ranking: EB2 � E
B
3 � E

B
4 �

EB
5
� EB

6
� EB

1
. The model in Table 1 is created by including only classes with more

than one member, and setting d̄B to return the dominating decision in each class.
As can be seen, the rough data model does not cover all the possible combinations of
attribute values, and we therefore need a fallback decision value2.

�

2.1. Rough Modeling as a Search Problem

The procedure of rough data modeling, that is, the search for a rough data model
that maximizes a certain performance measure, is an optimization problem which can
be summarized by the following steps:

1. Formulate a numerical measure for assessing the quality of each model. This
measure will be a reflection of the goal of the data mining session. The function
used to calculate the measure, qM :M→ � , will serve as the quality function
for the optimization problem.

2A default decision value assigned to all objects which match none of the patterns in the model.
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2. Determine the parameters of the search:

(a) Set the search space of the search S, a starting point s0, and a successor
function σ : S → S.

(b) Determine the nature of the goal test. Since this is an optimization problem,
no path-cost function is needed.

(c) Decide on a search strategy.

3. Find a decision function d̄, which maps all the objects in each equivalence class
to a decision value d ∈ Vd.

4. Define a ranking relation to be used to rank the equivalence classes, �.

5. Explore the search space, by generating a rough model at each node, and eval-
uate it using the qM function. Use the successor function to move between one
node and the next.

The search space S for a rough model search consists of a set of states S, where
each state s ∈ S corresponds to a model Ms. When evaluating the quality of a
state, q(s) = qM(Ms). As the characteristics used to rank each class are generated
using only the objects in the particular class (Kowalczyk, 1998), and it is possible to
find the equivalence classes EB by a single run through the data set, the complexity
of rough data modeling is linear with respect to the number of objects in the data
set. The size of the search space is decided on by the user-specified upper and lower
bounds on how many attributes to include in the model, and the worst-case expected
complexity is thus

T (n) =

max attribs
∑

m=min attribs

k!

m!(k −m)!
O(n). (3)

Since the search will find a model which optimizes the objective function, for-
mulating an objective function amounts to formulating the goal of the data mining
session. Depending on the objective function, a subset of the classes in a model may
be selected, or the whole set of classess may be used. Some examples of different
objective functions and model pruning schemes are found in (Kowalczyk, 1998).

Originally, rough data modeling employed only a simple exhaustive search
through all possible models, and a natural extension is to investigate the use of dif-
ferent search strategies in order to search more effectively (for an overview, see, e.g.
(Russell and Norvig, 1995)). However, the nature of the problem makes some strate-
gies better suited than others. Using algorithms which rely on heuristics to reduce
the size of the explored search space is difficult, for several reasons. First of all, it is
impossible to know how good the best model is until it is found, and although the
perfect model (no misclassifications) could be used as an approximation, this works
only when searching for predictive models, and will likely result in overfitting unless
additional steps are taken. At a given node in the search space, it is difficult to decide
how to increase the quality of the model (which attributes to include), and controlling
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the search is thus difficult. As illustrated in the study of attribute selection criteria
by Imam (1996), the attributes reported as relevant by the investigated criteria did
not turn out to be relevant in the learning system (a decision tree induced by the
C4.5 algorithm). Since the search space is non-continuous (a collection of points cor-
responding to different attribute subsets), iterative improvement strategies such as
hill-climbing and simulated annealing are ill-suited to the task.

Whilst ill-suited to conventional heuristics and iterative improvement algorithms,
our experience has shown that the problem of searching for a rough model is well-
suited to the mechanisms of a simple genetic algorithm. Genetic algorithms (Goldberg,
1989) solve optimization problems not by searching for a single optimal solution,
but by gradually improving from a large number of starting points, with random
elements, to ensure that the evolution does not get trapped in a dead end. This makes
the search more robust and less likely to get stuck in a local maximum when better
solutions exist. In our case, each individual corresponds to a specific rough model, and
each gene indicates the inclusion/non-inclusion of an attribute. Thus, each individual
has |A| genes, and the value of gene i indicates whether attribute number i is
included in the model or not. The fitness function is used to measure the quality of a
given individual. In our case, the quality of an individual corresponds to the quality
of the model which the individual represents. This can be done using any number
of quality functions (accuracy, AUC, model size, etc.), or weighted combinations of
several quality measures.

In a basic genetic algorithm, such as the one used in our experiments, the initial
population is randomly generated, and each subsequent generation is the result of
applying three basic genetic operations: reproduction, crossover and mutation. The
algorithm halts once the goal test is fulfilled. The criteria for this may vary, but they
usually involve tracking changes in a selected portion of the population (we used
average fitness of the 10 best individuals), and halting once there are no changes over
a set number of generations (10–15 generations).

As a genetic algorithm is indeterministic, it is impossible to give meaningful
estimates for the running time of the algorithm. It all depends on the nature of the
search problem, the formulation of the goal test, and the basic genetic parameters
(size of population, frequency of mutation, etc.). Our observed results are presented
in Section 4.1.

3. Other Rough Models

In earlier research (Ågotnes et al., 1999b), we have investigated various extensions to
the rough data modeling method introduced by Kowalczyk and presented above. In
order to increase flexibility, two of the restrictions of rough data modeling are relaxed:
the nature of the object decision function d̄B and the partitioning of the universe
into equivalence classes.

What we will refer to as a rough model consists of an attribute subset B ⊆ A
and a set of object classes EB (not necessarily equivalence classes) which cover the
universe U , with no restrictions on how these classes are found. In addition, we
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replace the class decision function d̄B : E
B → Vd with an object decision function,

d̂B : U → Vd, which operates on each object rather than on an entire object class.
This allows us the added flexibility of being able to assign different decision values to
objects which belong to the same decision class, if we so desire.

For a decision system A = (U,A, {d}), a rough model is a quadruple

M = 〈B, d̂B , E
B ,�〉, (4)

where B ⊆ A is a set of attributes, d̂B is an object decision function, E
B is a set

of object classes which cover the universe U , � is a linear ordering on the classes in
EB . The rule generation process will depend on the nature of the classes EB , and the
relation used to divide the universe of objects. Some examples will be given below.

3.1. Partitioning the Universe

Within the rough modeling framework, it is possible to define many kinds of models,
simply by varying the way in which we generate the object classes EB , and the
nature of the function d̂B . Rough data models are a kind of rough models where
EB = U/IND(B), using classical discernibility (inequality of attribute values), and

d̂B assigns the same value to all objects in each object class.

Equivalence classes are usually found using the notion of indiscernibility. The
notion of indiscernibility is tied to the discerns/3 predicate, which states which
objects are discernible from each other. The classical definition of this predicate uses
equality, an attribute ai discerns between two objects x1 and x2 if ai(x1) 6= ai(x2).
This creates a set of equivalence classes EB where the objects in each class have
identical values for each attribute in B. There are, however, different ways of defining
the discerns/3 predicate, and we can use similarity instead; two objects x1 and x2
are indiscernible from each other using attribute ai if ai(x1) is similar to ai(x2). The
semantics behind similarity may vary across different domains and attribute types,
but for a numerical attribute ai similarity usually means that |ai(x1)− ai(x2)| < ri.
Since the similarity relation is not transitive, it is not an equivalence relation, and the
resulting classes will overlap. The classes cover the universe U , but do not partition
it as the classical indiscernibility relation does. Each class EBi will yield a single rule
of the form

(x ∈ EB)→ d(x) = d̂B(xi), (5)

where xi is the object representing similarity region E
B
i . For example, d̂B could be

set to return the dominating decision on class EBi .

Another possible variation are rough dominance models, where the dominance
relation, introduced by (Greco et al., 1998), is used to order the value domains for
each attribute, including the decision attribute. While those authors use the relation
to perform multi-criteria decision analysis, we will simply use it as a different way to
partition our universe. The dominance relation allows the creation of a partial order
on the universe of objects, meaning that the objects can be organized in a lattice. If
an object is above another object in the lattice, it is said to dominate this object. The
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ordinal properties of the attribute value domains make it possible to generate rules of
the form a1(x) > v1 ∧ . . . ∧ an(x) > vn → d(x) = vd, which are both more compact
and more general than normal decision rules.

Generating a rough dominance model is done as follows: Select an attribute subset
B ⊆ A and use the dominance relation to partition the universe. The dominance
relation will create a lattice which is smaller than the lattice created using all the
attributes in A, but it is still possible to trace the region containing the objects with
a specific decision value.

When generating rules, we can do it directly from the rough dominance model,
in the same manner as one generates decision rules using the dominance relation, as
explained by Greco et al. (1998). There may be inconsistencies of the kind shown in
the following example, and these may be ignored (producing an inconsistent model).
Or, we may try to create a new, deterministic, decision system. This means finding a
set of classess within the lattice that do not overlap, and assigning them a decision.
How this is done is up to the user and the goals of the data mining session, and several
different decision functions, may be used in analogy with rough data modeling. If we
let ∆ji denote the interval for attribute j to be within, in order to belong to class i,
then each rule looks as follows:

a1(x) ∈ ∆
1

i ∧ . . . ∧ an(x) ∈ ∆
n
i → d(x) = d̄B(Ci). (6)

Example 2. In Fig. 1, two rough dominance models of the decision system presented
in Example 1 are shown. As can be seen, the dominance relation has been defined in
such a way that for ai ∈ A, ai(x1) dominates ai(x2) if ai(x1) < ai(x2).

As can also be seen, the lattice also says something about the ordering of all
the possible variations of attribute values, not only the known examples (represented
by black dots). If Vd is also ordered, this enables us to spot inconsistencies such as
the fact that d(x6) = 0, even when x6 is dominated by several objects with d = 1
(x3, x4).

If we want to create a consistent decision system, we may let d̂B(x6) = 1, and let
the remaining decision values stay untouched. This means that our rough dominance
model is

X(x) ∈ {1} ∧ Y (x) ∈ {1, 2} → d(x) = 0, (7)

X(x) ∈ {2, . . . , 4} ∧ Y (x) ∈ {1, . . . , 3} → d(x) = 1. (8)

It is evident that only attribute X is necessary to distinguish between the two object
classes introduced.

�

This simple example shows that when compared with simple equality-based dis-
cernibility, rough dominance models offer two main benefits: They are more compact
due to the increased expressive power of the syntax. They are also more general—
the dominance relation generates rules which also apply to objects not found in the
learning set, because of the partial ordering of the universe of objects. In addition,
the same ordering also allows the detection of inconsistencies in the learning set.



Rough modeling—A bottom-up approach to model construction 683

(1)

(2)

(3)

(4)

d = 0

d = 1

Ordering using attributes B = {X,Y} Using only B = {X}

(1,3)(2,2)

(2,1)

(3,1)

(3,3)

(3,2) (2,3)(4,1)

(1,2)

(4,2)

(4,3)

(1,1)

Fig. 1. Example rough dominance model. The black dots are objects which exist in the
decision table; the white dots are objects for which no decision is known.

3.2. Bottom-Up Model Construction

When generating decision rules using the concept of a reduct, the starting point is the
entire decision table. Redundant information (in the form of attributes) is removed
from the table, and once no more information can be discarded, the reduct(s) remain,
and rules are generated from these. In a rough modeling approach, one starts at
the bottom. The question here is: “How much information do I need in order to
reasonably represent the knowledge stored in this table?” What is meant by the
phrase “reasonably represent” may vary, but a good classifier score on unseen data
may be a good indication. Information (in the form of attributes) is added to the
model, and the best possible model using that information is found. As the model
reaches an acceptable quality, or the level of information approaches a predefined
limit, a model which represents the knowledge in the table to a reasonable degree has
been found.

As Fig. 2 illustrates, rough modeling represents a bottom-up approach to knowl-
edge discovery versus the top-down approach used in reduct computation. While the
rough model search is specifically limited to the lower part of the search tree (models
with few attributes), the search for reducts spans the entire tree. While some reducts
may indeed be within the rough model search area, practical experiments have shown
that they often contain more attributes than the rough model search space. Experi-
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Fig. 2. Rough modeling vs. reduct search. The search space for rough models is explicitly
limited to the models with few attributes.

ence has shown that models with large classess generalize better, and it is therefore
recommended that a relatively small subset of attributes (2–5 is an often-mentioned
figure) is used to generate the rough model.

This means that the rough modeling approach will not result in a perfectly fitting
model. However, models which represent their data very well will often be overfitted,
representing relationships found only in that particular data set, often due to chance.
Such models do not perform well when classifying new cases, as their specific and
detailed patterns are not found in the new data. The results reported among others
by Holte (1993), Kohavi and Frasca (1994), and Mollestad and Komorowski (1998)
suggest that simple rules formed using few attributes tend to perform better when
classifying unseen objects.

4. Evaluating Rough Modeling

Several variations of the rough modeling approach have been implemented in the
Rosetta system (hrn et al., 1998), which is a system for analyzing data using rough
set methods. It was developed as a joint effort of the Institute of Mathematics at the
University of Warsaw and the Knowledge Systems Group at the Norwegian University
of Science and Technology (NTNU). A public version is available from the Rosetta
home page, (hrn, 2001). Several data sets were analyzed using rough modeling, as
well as traditional rough set methods for comparison. All results shown below were
computed using a genetic algorithm for rough model search.
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When evaluating the results of the experiments, we have used Receiver Operating
Characteristics, ROC, as the quality measure instead of classification accuracy, as is
commonly used. For an in-depth explanation of why accuracy should be discarded as
a measure of classifier performance, see (Provost et al., 1998). In order to obtain a
simple numerical measure of a classifier’s performance, we have used the area under
the ROC curve (AUC).

4.1. Experiment Results

Rough models were generated from the Pima Indian diabetes data set (Blake et al.,
1998) and the acute appendicitis data set (Hallan et al., 1997b). The diabetes data,
being part of the UCI machine learning repository, have been used in a large number
of published studies. Kohavi and Sommerfield (1995) analyzed the data using a variety
of algorithms, and reported accuracies of between 0.68 and 0.76. No published AUC
values for the data are known. The acute appendicitis data set has been analyzed using
logistic regression (Hallan et al., 1997a; 1997b), obtaining AUC values of 0.920. Using
dynamic reduct computation (Bazan et al., 1994, Carlin et al., 1998) analyzed the
data set, and reported a mean AUC value of 0.923 (and standard deviation of 0.023).
Details, as well as a detailed description of the data set, including the discretization
used for the numerical attributes, can be found in (Carlin et al., 1998).

In order to investigate the effect of excluding the smallest equivalence classes
from the rough data models, the size threshold for inclusion into the rough model
was varied, and a rough model generated from 67% of the objects in the data set.
The resulting model was used to classify the test set, consisting of 33% of the objects,
and the AUC value was calculated using the trapezoidal method of approximating
integrals. The results on the acute appendicitis and diabetes data are shown in Table 2.

In addition to a decision function d̂B which sets the decision value for each object
to the dominating decision value for the equivalence class of that object, a decision
function which copies the original decision value for each object was implemented.
This produces a model which may contain indeterministic rules. The performance
of the models generated when keeping the original decision values is also shown in
Table 2. The same splits as for the dominating decision results were used.

No precise observations of the running time were recorded; we did, however,
observe that the search for rough models is faster than the rough set methods used
here (the difference varies for different parameters and different sessions). The genetic
algorithm consistently returned models of equal quality to the models returned from
an exhaustive search, in usually 20–30% of the time. The search time was further
improved by introducing a cut-off on the size of the classes Ei included in the model,
which had the added benefit of increasing model performance.

4.2. Analysis

The results on the appendicitis data set indicate that the performance of the rough
data models is somewhat poorer than that of the optimal model generated using
traditional rough set methods. In order to investigate this further, the Hanley-McNeil
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Table 2. Results from experiments carried out on the appendicitis and diabetes data. The
RS model is the best reduct-based model reported by Carlin et al. (1998).

Size AUC (SD)

Model / Data set limit Split 1 Split 2 Split 3 Mean

RS model N/A 0.923 (0.028) 0.891 (0.031) 0.908 (0.031) 0.907 (0.031)

0 0.804 (0.047) 0.768 (0.050) 0.776 (0.050) 0.783 (0.049)

RDM Dominating 5 0.856 (0.040) 0.807 (0.046) 0.842 (0.042) 0.835 (0.043)

Appendicitis 10 0.850 (0.041) 0.834 (0.043) 0.765 (0.051) 0.816 (0.045)

15 0.710 (0.056) 0.795 (0.048) 0.807 (0.046) 0.771 (0.050)

0 0.829 (0.044) 0.764 (0.051) 0.790 (0.048) 0.794 (0.048)

RDM Original 5 0.891 (0.034) 0.887 (0.035) 0.914 (0.030) 0.897 (0.033)

Appendicitis 10 0.914 (0.030) 0.792 (0.048) 0.866 (0.038) 0.857 (0.039)

15 0.813 (0.046) 0.806 (0.046) 0.799 (0.048) 0.806 (0.047)

0 0.678 (0.038) 0.708 (0.035) 0.691 (0.035) 0.692 (0.036)

RDM Dominating 5 0.666 (0.038) 0.728 (0.034) 0.689 (0.036) 0.694 (0.036)

Diabetes 10 0.702 (0.037) 0.784 (0.032) 0.712 (0.034) 0.732 (0.035)

15 0.690 (0.037) 0.733 (0.034) 0.721 (0.034) 0.715 (0.035)

0 0.726 (0.036) 0.741 (0.034) 0.778 (0.034) 0.748 (0.034)

RDM Original 5 0.754 (0.035) 0.774 (0.032) 0.664 (0.036) 0.730 (0.034)

Diabetes 10 0.768 (0.034) 0.762 (0.033) 0.760 (0.033) 0.763 (0.033)

15 0.771 (0.034) 0.779 (0.032) 0.750 (0.033) 0.767 (0.033)

test for comparing correlated AUC values (Hanley and McNeil, 1982) was used. This
was only done for the appendicitis data, as no known benchmark existed for the
diabetes data. The p-values from the Hanley-McNeil test are shown in Table 3.

On the whole, the results from the appendicitis data indicate that the difference
in performance is not significant if the correct threshold for class size is selected. In
order to briefly examine the increase in descriptiveness, Table 4 lists the size of the
different rough models for the appendicitis data set.

While it is certainly not impossible to systematically analyze and investigate a
model containing more than 800 rules, it is undoubtedly a daunting task. On the other
hand, a model containing 10–15 rules, where each rule uses 3–4 attributes (since the
search is explicitly limited to models of this size), is easily inspected. In addition, by
accepting the slight performance drop from using dominating decision functions, all
the rules in the rough model will be deterministic (have a consequent consisting of
a single indicated decision value). On all other data sets examined, the sizes of the
models found by a rough model search were comparable to the results reported for
the appendicitis set (between 5 and 20 rules, if a small cut-off on class size is used).
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Table 3. Statistical analysis of the results on the appendicitis data. The AUC values for
the models using the dominating and original decision function, listed in Table 2,
were compared with the AUC value of the best rule set induced using rough set
methods.

Size limit

Decision function 0 5 10 15

dominating 0.0180 0.0972 0.0775 0.0001
Split 1

original 0.0414 0.3584 0.7668 0.0065

dominating 0.0154 0.0899 0.1570 0.0528
Split 2

original 0.0156 0.9167 0.0375 0.0483

dominating 0.0100 0.0906 0.0112 0.0122
Split 3

original 0.0181 0.8677 0.2498 0.0122

Table 4. The number of rules in each RDM with varying size limit. The number of rules in
the best RS rule set for the particular split is included for comparison.

# of rules in the model

Size limit Split 1 Split 2 Split 3

RS model 893 872 851

0 107 70 77

5 17 18 17

10 9 10 8

15 5 5 5

5. Conclusions

The results obtained so far are not a foundation solid enough to make strong claims
about the performance of rough models versus models mined using traditional rough
set methods on. There is some indication that the performance of rough models falls
slightly short of the performance of larger rough set induced models, but the evidence
is not conclusive. However, there is overwhelming evidence supporting the conjecture
that rough data models of performance comparable to traditional RS models are far
more descriptive. No universally agreed upon measure of descriptiveness exists, but
a decrease in the size from thousands of rules to between five and twenty, the use of
few attributes, and the option of determinism add up to a very large improvement in
descriptive capability.

It is interesting to note that while we found that rough models performed no
better than the RS-based models, Kowalczyk (1998) reported that rough data models
performed better than models generated using other approaches, including rough set
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methods. There are a lot of possible reasons: Inherent differences in the data sets
examined, his use of accuracy versus our use of ROC, as well as a lack of established
well-documented benchmarks, all contribute to making comparisons between learning
algorithms and uncertain science.

While the ideas of rough dominance models look promising in their expressive
power, it is difficult to find domains which are well-suited to these kinds of models, and
comparing the results obtained to other results is also difficult, since using the dom-
inance relation will imply making several additional assumptions about the domain
and data. It should be observed that any rule set obtained from a rough dominance
model is easily transformed into an ordinary rough data model, with a single rule
for each combination of attribute values. This means that rough dominance models
mainly offer a more compact and thus more readable model, as well as the ability to
generate rules for value combinations not found in the learning data, and the ability
to detect inconsistencies in the learning data.

It is somewhat unfair to compare unfiltered models to rough models created
from reducts. Even very simple filtering strategies will reduce the number of rules
significantly without sacrificing performance. Ågotnes et al. (1999b) reported results
from heavily filtered rule sets which are comparable to the results achieved using
rough modeling, with rule sets containing 6–10 rules. While the results are similar,
the time used to first approximate reducts and then employ one or more filtering
strategies, is far greater than the time spent on searching for rough models.

The simplicity of rough model generation means that rough modeling is well-
suited to large databases, and as an initial analysis approach. Models which are of a
high descriptive and predictive quality may be generated quickly. The insight gained
from inspecting the rough models may then be used to guide a more complex KDD
process in order to achieve the desired results.
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