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ROUGH SETS METHODS IN FEATURE REDUCTION

AND CLASSIFICATION

Roman W. ŚWINIARSKI∗

The paper presents an application of rough sets and statistical methods to fea-
ture reduction and pattern recognition. The presented description of rough sets
theory emphasizes the role of rough sets reducts in feature selection and data
reduction in pattern recognition. The overview of methods of feature selection
emphasizes feature selection criteria, including rough set-based methods. The
paper also contains a description of the algorithm for feature selection and re-
duction based on the rough sets method proposed jointly with Principal Compo-
nent Analysis. Finally, the paper presents numerical results of face recognition
experiments using the learning vector quantization neural network, with feature
selection based on the proposed principal components analysis and rough sets
methods.
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1. Introduction

One of the fundamental steps in classifier design is reduction of pattern dimensional-
ity through feature extraction and feature selection (Cios et al., 1998; Kittler, 1986;
Langley and Sage, 1994; Liu and Motoda, 1999). Feature selection is often isolated as
a separate step in the processing of pattern sets.

Features may be irrelevant (having no effect on the processing performance)
or relevant (having an impact on the processing performance). A feature may have
a different discriminatory or predictive power. We present rough sets methods and
Principal Components Analysis in the context of feature selection in pattern classi-
fication. At the beginning, the paper presents an introduction to rough sets theory
(Pawlak, 1991; Skowron, 1990) and its role in feature selection. Then, we present
a short overview of the feature selection problem, including the open-loop and the
closed-loop feature selection methods (Cios et al., 1998). This section focuses the
discussion on feature selection criteria including rough set-based methods. The next
section presents a short description of the Principal Component Analysis (PCA) (Cios
et al., 1998) as a method of feature projection and reduction. It also contains a descrip-
tion of rough set-based methods, proposed jointly with PCA, for feature projection
and reduction. The following section describes results of numerical experiments of
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face recognition using the presented rough set-based method of feature selection and
Learning Vector Quantization neural networks. This section also contains a short de-
scription of feature extraction from facial images using Singular Value Decomposition
(SVD).

2. Rough Sets and Feature Selection

Rough sets theory has been proposed by Professor Pawlak for knowledge discovery in
databases and experimental data sets (Pawlak, 1982; 1991; Skowron, 1990). It is based
on the concept of an upper and a lower approximation of a set, the approximation space
and models of sets.

An information system can be represented as

S = 〈U, Q, V, f〉, (1)

where U is the universe, a finite set of N objects {x1, x2, . . . , xN} (a nonempty set),
Q is a finite set of attributes, V = ∪q∈QVq (where Vq is a domain of the attribute
q), f : U × Q → V is the total decision function (called the information function)
such that f(x, q) ∈ Vq for every q ∈ Q, x ∈ U . A subset of attributes A ⊆ Q defines
an equivalence relation (called an indiscernibility relation) on U

IND(A) =
{

(x, y) ∈ U : for all a ∈ A, f(x, a) = f(y, a)
}

, (2)

denoted also by Ã. The information system can also be defined as a decision table

DT = 〈U, C ∪D, V, f〉, (3)

where C is a set of condition attributes, D is a set of decision attributes, V =
⋃

q∈C∪D Vq , where Vq is the set of the domain of an attribute q ∈ Q, f : U×(C∪D)→
V is a total decision function (information function, decision rule in DT ) such that
f(x, q) ∈ Vq for every q ∈ Q and x ∈ V .
For a given S a subset of attributes A ⊆ Q determines the approximation space

AS = (U, IND(A)) in S. For given A ⊆ Q and X ⊆ U (a concept X), the A-lower
approximation AX of the set X in AS and the A-upper approximation ĀX of the
set X in AS are defined as follows:

AX = {x ∈ U : [x]A ⊆ X} =
⋃

{Y ∈ A∗ : Y ⊆ X} , (4)

ĀX = {x ∈ U : [x]A ∩X 6= ∅} =
⋃

{Y ∈ A∗ : Y ∩X 6= ∅} . (5)

Certain attributes in an information system may be redundant and can be elimi-
nated without losing essential classificatory information. One can consider feature
(attribute) reduction as the process of finding a smaller (than the original one) set
of attributes with the same or close classificatory power as the original set. Rough
sets provide a method to determine for a given information system the most impor-
tant attributes from a classificatory power point of view. The concept of the reduct
is fundamental for rough sets theory. A reduct is the essential part of an information
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system (related to a subset of attributes) which can discern all objects discernible
by the original set of attributes of an information system. Another important notion
relates to a core as a common part of all reducts. The core and reduct are impor-
tant concepts of rough sets theory that can be used for feature selection and data
reduction.

Rough sets theory determines a degree of attributes’ dependency and their sig-
nificance. For the information system S = 〈U, Q, V, f〉, with condition and decision
attributes Q = C ∪D, for a given set of condition attributes A ⊂ C, we can define
the A-positive region POSA(D) in the relation IND(D) as

POSA(D) =
⋃

{

AX : X ∈ IND(D)
}

. (6)

The positive region POSA(D) contains all the objects in U that can be classified
without an error into distinct classes defined by IND(D), based only on information in
the relation IND(A). One can form a positive region for any two subsets of attributes
A,B ∈ Q in the information system S. Since the subset of attributes B ∈ Q defines
the indiscernibility relation IND(B), it consequently defines the classification B∗

(U/IND(B)) with respect to the subset A. The A-positive region of B is defined as

POSA(B) =
⋃

X∈B∗

AX. (7)

The A-positive region of B contains all the objects that, by using attributes A, can
be certainly classified to one of distinct classes of the classification B∗.

The cardinality of the A-positive region of B can be used to define a measure
(a degree) γA(B) of dependency of the set of attributes B on A:

γA(B) =
card(POSA(B))
card(U)

. (8)

In the information system S a set of attributes B depends (is dependent) on a set
A in S, which is denoted by A → B, iff an equivalence relation satisfies IND(A) ⊆
IND(B). Two sets A and B are independent in S iff neither A → B nor B → A
holds. The dependency of set B to degree k to the set A in S is denoted as follows:

A
k→ B, 0 ≤ k ≤ 1, if k = γA(B), (9)

where γA(B) was described above.

Rough sets define a measure of significance (coefficient of significance) of the
attribute a ∈ A from the set A with respect to the classification B∗ (U/IND(B))
generated by a set B:

µA,B(a) =
card (POSA(B))− card (POSA−{a}(B))

cardU
. (10)

A significance of the attribute a in the set A ⊆ Q, computed with respect to the
original classification Q∗ (generated by the entire set of attributes Q from the infor-
mation system S), can be denoted by

µA(a) = µA,Q(a). (11)
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Reduct and Core

Some attributes of an information system may be redundant (superfluous) with re-
spect to a specific classification A∗ generated by attributes A ⊆ Q. By virtue
of the dependency properties of attributes, one can find a reduced set of the at-
tributes by removing superfluous attributes, without loss of the classification power
of the reduced information system. For a given information system S and a sub-
set of attributes A ⊆ Q, an attribute a ∈ A is called dispensable in the set A if
IND(A) = IND(A − {a}) (it means that indiscernibility relations generated by sets
A and A − {a} are identical). Otherwise the attribute a is indispensable in A. It
can be found that the dispensable attribute does not improve the classification of the
original information system S (the attribute is irrelevant). The set of all indispens-
able attributes in the set A ⊆ Q is called the core of A in S, and it is denoted by
CORE (A). The core contains all the attributes that cannot be removed from the set
A without changing the original classification A∗.

Let us consider two subsets of attributes A,B ⊆ Q in S. An attribute a is
called B-dispensable (indispensable with respect to B) in the set A if POSA(B) =
POSA−{a}(B). Otherwise the attribute a is B-indispensable. If every attribute of A
is B-indispensable, then A is indispensable with respect to B. In rough sets theory
the set of all B-indispensable attributes from the set A is called a B-relative core
(or B-core) of A, and it is denoted by COREB(A),

COREB(A) =
{

a ∈ A : POSA(B) 6= POSA−{a}(B)
}

. (12)

The set A ⊆ Q is called orthogonal if all its attributes are indispensable. A proper
subset E ⊂ A is defined as a reduct set of A in S if E is orthogonal and preserves
the classification generated by A. Hence a reduct set of A, denoted by RED(A), is
defined as

E = RED(A)⇐⇒
(

E ⊂ A, IND(E) = IND(A), E is orthogonal
)

, (13)

where E is a reduct of A (i.e. E = RED(A) if E is a minimal set of attributes which
discerns all the objects in S discernible by the whole set A, and which cannot be
further reduced. All the reducts (family of reducts) of A are denoted by REDF (A).
We see that the intersection of all the reducts of A is a core of A:

CORE (A) =
⋂

RED(A). (14)

Relative Reduct

Rough sets define also a relative reduct related to two sets of attributes A,B ⊆ Q in
S. The set A is called B-orthogonal if all the attributes of A are B-indispensable.
A B-orthogonal proper subset of A is called a B-reduct of A and it is denoted by
REDB(A):

E = REDB(A)⇐⇒ (E ⊂ A, POSE(B) = POSA(B), E is B-orthogonal) (15)

The subset E ⊂ A is called a B-reduct of A in S if E is independent of B and
POSE(B) = POSA(B). A B-reduct REDB(A) of A is a minimal set of attributes
in A which discern all the objects in S discernible by the entire set A, and which
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cannot be further reduced. All B-reducts (family) are denoted by REDFB(A). The
intersection of all B-reducts of A is the relative B-core of A,

COREB(A) =
⋂

REDB(A). (16)

3. Feature Selection

One can consider feature selection as the process of finding a subset of features, from
the original set of pattern features, optimally according to the defined criterion. Con-
sider a data set Tall (containing Nall cases), constituted with n-feature patterns
x (labeled or unlabeled by target values). Let all n features of a pattern form a
whole original feature set Xall = {x1, x2, . . . , xn}. An optimal feature selection is
the process of finding a subset Xopt = {x1,opt, x2,opt, . . . , xm,opt} containing m ≤ n
features from the set of all original features Xopt ⊆ Xall, which guarantees the accom-
plishment of a processing goal while minimizing a defined feature selection criterion
Jfeature(Xfeature subset).

3.1. Rough Sets and Relevance of Features

The feature relevance can be interpreted using rough sets theory (Pawlak, 1991; Pal
and Skowron, 1999, Cios et al., 1998). The probabilistic and deterministic definitions
of feature relevance were presented in (Almuallim and Dietterich, 1991; John et al.,
1994; Pawlak, 1991). Let us assume that we are given a class-labeled data set T
with N cases (x, target), containing n-feature patterns x and associated targets.
Let us introduce a vector of features vi = (x1, x2, . . . , xi−1, xi+1, . . . , xn)T (with its
values denoted by avi) obtained from an original feature vector x by removing the
xi feature (John et al., 1994).

A feature xi is relevant if there exists some value of that feature axi and a
predictor output value ay (generally a vector) for which P (xi = axi) > 0 such that

P
(

y = ay,vi = avi | xi = axi
)

6= P (y = ay, vi = avi). (17)

A feature xi is strongly relevant if there exists some value of that feature axi , a
predictor output value ay and a value avi of a vector vi for which P (xi = axi ,vi =
avi) > 0 such that

P
(

y = ay | vi = avi , xi = axi
)

6= P (y = ay | vi = avi). (18)

Strong relevance implies that a feature is indispensable.

A feature xi is weakly relevant if it is not strongly relevant, and there exists some
subset of features (forming a vector zi) from the set of the features forming a pattern
vi, for which there exist: some value of that feature axi , a predictor output value ay,
and a value azi of a vector zi, for which P (xi = axi , zi = azi ) > 0 such that

P
(

y = ay | zi = azi , xi = axi
)

6= P
(

y = ay | zi = azi
)

. (19)

A weak relevance indicates that a feature might be dispensable.
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A feature is relevant if it is either strongly relevant or weakly relevant, otherwise it
is irrelevant. We can see that irrelevant features can be removed. Rough sets (Pawlak,
1991; Skowron, 1990) define strong and weak relevance for discrete features and dis-
crete targets. For a given data set, the set of all strongly relevant features forms a
core. A minimal set of features satisfactory to describe concepts in a given data set,
including a core and possibly some weakly relevant features, forms a reduct. As we
remember, the core is an intersection of reducts.

3.2. Methods of Feature Selection

Feature selection methods contain two main streams (Bishop, 1995; Duda and Hart,
1973; Fukunaga, 1990; John et al., 1994; Pregenzer, 1997): open-loop methods and
closed-loop methods.

The open-loop methods (filter methods) are based mostly on selection of features
using the between-class separability criterion (Cios et al., 1998; Duda and Hart, 1973).
The closed-loop methods (John et al., 1994) called also the wrapper methods, are based
on feature selection using a predictor performance (and thus forming a feedback in
processing) as a criterion of feature subset selection. A selected feature subset is
evaluated using as a criterion Jfeature = Jpredictor a performance evaluation Jpredictor
of a whole prediction algorithm for the reduced data set containing patterns with the
selected features as the pattern’s elements.

3.3. Feature Selection Criteria

A feature selection algorithm is based on the defined feature selection criterion. Some
of the criteria might satisfy the monotonicity property

Jfeature(X+feature) ≥ Jfeature(Xfeature), (20)

where Xfeature describes a feature subset, and X+feature denotes a larger feature subset
containing Xfeature as a subset. This means that adding a feature to a given feature
set will cause the value of the criterion stay the same or increase:

Jfeature
(

{x1}
)

≤ Jfeature
(

{x1, x2}
)

≤ Jfeature
(

{x1, x2, x3}
)

≤ · · · ≤ Jfeature
(

{x1, x2, . . . , xn}
)

. (21)

Criteria with monotonicity properties cannot be used to compare the goodness of
different size feature subsets when a large subset contains a smaller one. However, in
practice, these criteria can still be used to compare different feature subsets of equal
size.

3.3.1. Open-Loop Feature Selection Criteria

Open-loop feature selection criteria are based on information (like interclass separa-
bility) contained in the data set alone. They do not use a feedback from the predictor
quality for the feature selection process.
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Some of the criteria for feature selection which are based on interclass separability
have the roots in the idea of Fisher’s linear transformation. According to this idea, a
good feature (with a high discernibility power) will cause a small within-class scatter
and a large between-class scatter.

Let us consider the original (total) data set Tall containing Nall cases (xi, citarget)
with patterns x constituted using n-features and labeled by one target class citarget
from all l possible classes. For a data set Tall we will denote the number of cases in
each class ci (i = 1, 2, . . . , l) by Ni (

∑l
i=1Ni = Ntotal). In order to define the feature

selection criterion one needs to define a function which gives a larger value when a
within-class scatter is smaller or a between-class scatter is larger (Duda and Hart,
1973; Fisher, 1936). The following criterion, based on interclass separability, may be
defined:

Jfeature =
|Sb|
|Sw|
=
det(Sb)
det(Sw)

, (22)

Sw =
l
∑

i=1

Ni
∑

j=1,xj∈ci

(

xj − µi
) (

xj − µi
)T
, Sb =

l
∑

i=1

Ni(µi− µ)(µi− µ)T , (23)

where µ represents the total data mean and the determinant |Sb| denotes a scalar
representation of the between-class scatter matrix, and similarly, the determinant
|Sw| denotes a scalar representation of the within-class scatter matrix.

Criteria based on minimum concept description. Based on the minimum con-
struction idea (Blumer et al., 1987) and the minimum description length (Rissanen,
1978) paradigm, one technique of best feature selection could be to choose a min-
imal feature subset that fully describes all the concepts (e.g. classes in prediction-
classification) in a given data set (Almuallim and Dietterich, 1991; Pawlak, 1991).

A straightforward technique of best feature selection could be choosing a minimal
feature subset that fully describes all the concepts (for example, classes in classifica-
tion) in a given data set (Almuallim and Dietterich, 1991; Doak, 1992; Kononenko,
1994; Pawlak, 1991). The idea of feature selection, with the minimum concept crite-
rion, can be extended by using the concept of reduct defined by the theory of rough
sets (Pawlak, 1991; Skowron, 1990). A reduct is a minimal set of attributes that de-
scribes all the concepts in a data set. A data set may have many reducts. If we use the
definition of the above open-loop feature selection criterion, we will see that for each
reduct (defining a subset of attributes Xfeature,reduct) we have a maximum value of
the criterion Jfeature(Xfeature,reduct). Based on the paradigm of the minimum concept
description, we can select a minimum length reduct as the best feature subset.

3.3.2. Closed-Loop Feature Selection Criteria

We will consider the problem of defining a feature selection criterion for a prediction
task based on an original data set Tall containing Nall cases (x, target) formed
by n-dimensional input patterns x (whose elements represent all features X) and
targets of the output. Assume that the m-feature subset Xfeature ⊆ X ought to be
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evaluated based on the closed-loop type criterion. A reduced data set Tfeature, with
patterns containing only m features from the subset Xfeature, should be constructed.
Then a type of predictor PRfeature (for example, k-nearest neighbors, or a neural
network), used for feature quality evaluation, should be decided. Ideally, this predictor
should be the same as a final predictor PR for the whole design. However, in a
simplified suboptimal solution, a computationally less expensive predictor can be
used only for the feature selection purpose. Let us assume that, for the feature set
X considered, a reduced feature data set Xfeature has been selected and a predictor
algorithm PRfeature, used for feature evaluation, had been decided. Then, evaluation
of feature goodness can be provided by means of one of the methods used for the final
predictor evaluation. This will require defining a performance criterion JPRfeature of a
predictor PRfeature, and an error counting method which will show how to estimate
the performance through the averaging of results. Consider as an example a hold-out
error counting method for predictor performance evaluation. In order to evaluate the
performance of the predictor PRfeature, an extracted feature data set Tfeature is split
into an Ntra case training set Tfeature,tra, and an Ntest case test set Tfeature,test (hold
out for testing). Each case (xif , target

i) of both sets contains a feature pattern xf
labeled by a target. The evaluation criteria can be defined separately for prediction-
classification and prediction-regression.
We will consider defining a feature selection criterion for a prediction-

classification task, when a feature subset Tfeature case contains pairs (xf , ctarget)
of a feature input pattern xf and a categorical-type target ctarget taking a value
of one of possible l classes ci. The quality of the classifier PRfeature, computed on
the based of the limited-size test set Tfeature,test with Ntest patterns, can be mea-
sured using the following performance criterion JPRfeature (here equal to the feature
selection criterion Jfeature):

JPRfeature = Ĵall miscl =
nall miscl
Ntest

100%, (24)

where nall miscl is the number of all misclassified patterns, and Ntest is the number
of all tested patterns. This criterion estimates the probability of an error (expressed
in percents) by the relative frequency of an error.

3.4. Feature Selection with Individual Feature Ranking

One of the straightforward feature selection procedures is based on an evaluation of
the predictive power of individual features, followed by a ranking of such evaluated
features and eventually the choice of the first best m features. A criterion applied to
an individual feature could be either of the open-loop or closed-loop type. It can be
expected that a single feature alone may have a very low predictive power, whereas
when put together with others, it may demonstrate a significant predictive power.
One can attempt to select a minimal number m̂ of the best ranked features that

guarantees a performance better than or equal to a defined level according to a certain
criterion Jfeature,ranked.
An example of the algorithm for feature selection with individual feature ranking

can be described as follows.
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We assume that a data set Tall with Nall labeled patterns formed on the basis of
n features X = {x1, x2, . . . , xn} is given. We also assume that two criteria are defined:
(a) an individual feature evaluation criterion Jfeature,single, and (b) an evaluation
criterion Jfeature,ranked for a final collection of m ranked features.

1. Set j = 1, and choose feature xj .

2. Compute a predictive power of the feature xj alone by computing the value of
Jfeature,single(xj).

3. If j ≤ n continue from step 1 with incremented j, j = j + 1, otherwise go to
the next step.

4. Rank all n features according to the value of the computed criterion
Jfeature,single:

xa, xb, . . . , xm, . . . , xr, Jfeature,single(xa) ≥ Jfeature,single(xb), etc. (25)

5. Find the minimal number of m̂ first ranked features according to the criterion
Jfeature,ranked.

6. Select the first m̂ best ranked features as a final subset of selected features.

One of the criteria evaluating the predictive power of a feature could be defined by
the measure of significance of the feature (attribute) xj ∈ X ,

µX,X (xj) =
card (POSX(X))− card (POSX−{xj}(X))

cardTall
, (26)

evaluated for the original classification X∗ generated for the entire feature set X for
data set Tall.

4. Principal Component Analysis and Rough Sets for Feature

Projection, Reduction and Selection

We will discuss PCA for feature projection and reduction, and then the joint method
of feature selection using PCA and the rough sets method (Cios et al., 1998).

We assume that the knowledge about a domain of recognition is represent-
ed by a limited size sample of N random n-dimensional patterns x ∈ � n rep-
resenting extracted object’s features. We assume that an unlabeled training data
set T = {x1,x2, . . . ,xN} can be represented as an N × n data pattern matrix
X =
[

x1,x2, . . . ,xN
]T
. The training data set can be statistically characterized by the

n×n dimensional covariance matrix Rx. Let the eigenvalues of the covariance matrix
Rx be arranged in the decreasing order λ1 ≥ λ2 ≥ · · ·λn ≥ 0 (with λ1 = λmax),
with the corresponding orthonormal eigenvectors e1, e2, . . . , en. The optimal trans-
formation

y = Ŵx (27)
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is provided using the m × n optimal Karhunen-Loéve linear transformation matrix
Ŵ (denoted also by WKLT )

Ŵ =
[

e1, e2, . . . , em
]T
. (28)

This matrix is composed of m rows representing the first m orthonormal eigenvectors
of the original data covariance matrix Rx. The optimal matrix Ŵ transforms the
original n-dimensional patterns x into m-dimensional (m ≤ n) feature patterns y

Y =
(

ŴXT
)T

= XŴT (29)

minimizing the mean-least-square reconstruction error. The PCA method can be
applied for the feature extraction and dimensionality reduction by forming the m-
dimensional (m ≤ n) feature vector y containing only the first m most dominant
principal components of x. There remains an unsolved problem of which principal
components are best for a given processing goal. One of possible methods (criteria)
for selection of a dimension of a reduced feature vector y is to choose a minimal
number of the first m most dominant principal components y1, y2, . . . , ym of x for
which the mean square reconstruction error is less than the heuristically set error
threshold ε.

We have applied Principal Component Analysis and the rough sets method (Cios
et al., 1998) for the orthonormal projection (and reduction) of reduced feature patterns
representing recognized face images. In the next section, we will present an application
of rough sets for feature selection/reduction.

4.1. Application of Rough Sets and Principal Components for Feature
Selection

The PCA provides feature projection and reduction optimal from the point of view
of minimizing the reconstruction error. However, PCA does not guarantee that the
selected first principal components will be the most adequate for classification. One
of the possibilities for selecting discriminative features from principal components
is to apply rough sets theory (Pawlak, 1991; Skowron, 1990). Namely, a reduct can
be used for selecting some of the principal components that constitute this reduct.
Consequently, these principal components will describe all the concepts in a data set.
Suboptimal solutions can be found by choosing a minimal length reduct or a dynamic
reduct as the selected set of principal components forming a selected, final feature
pattern.

The following steps can be proposed for the PCA and rough sets-based procedure
for feature selection. Rough sets methods require that a processed data set contain
discrete features, so the projected PCA pattern features must be discretized.

Assume that we are given a data set T , containing N cases labeled by the
associated classes

T =
{

(x1, c1target)(x
2, c2target), . . . , (x

N , cNtarget)
}

. (30)
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A case (xi, citarget) (i = 1, 2, . . . , N) is constituted with an n-dimensional real-valued
pattern x ∈ � n with the corresponding categorical target class citarget. We assume

that T contains Ni (
∑l
iNi = N) cases from each categorical class ci, with the total

number of classes denoted by l.

Since PCA is an unsupervised method, first, from the original, class-labeled data
set T , a pattern part is isolated as an N × n data pattern matrix

X =
[

x1, x2, . . . ,xN
]

. (31)

The PCA procedure is applied for the pattern matrix X, with the resulting n × n
optimal Karhunen-Loéve matrix WKL (where n is the length of the original pattern
x). Now, according to the designer decision, the number m ≤ n of first dominant
principal components has to be selected. Then, the reduced m× n Karhunen-Loéve
matrix WKL, containing only first m rows of a full size matrix W, is constructed.
Applying the matrix WKL, the original n-dimensional pattern x can be projected
using transformation y =WKLx onto the reduced m-dimensional patterns y in the
principal components space. The entire projected N ×m matrix Y of patterns can
be obtained by the formula Y = XWT

KL
.

At this stage, the reduced, projected data set, represented by Y (with real-
valued attributes), has to be discretized. As a result, the discrete-attribute data set
represented by the N ×m matrix Yd is computed. Then, the patterns from Yd are
labeled by the corresponding target classes from the original data set T . It forms a
decision table DTm with m-dimensional principal component related patterns. From
the decision table DTm, the selected reduct Xfeature,reduct of size r can be found as
a final selected attribute set.

Once the selected attribute set has been found (as a selected reduct), the final
discrete-attribute decision table DT f,d is composed. It consists of these columns from
the discrete matrix Yd which are included in the selected feature set Xfeature,reduct.
Each pattern in DT f,d is labeled by the corresponding target class. Similarly, one
can obtain a real-valued reduced decision table DT f,r extracting (and adequately
labeling by classes) these columns from the real-valued projected matrix Y which
are included in the selected feature set Xfeature,reduct. Both the resulting reduced
decision tables can be used for the classifier design.

Algorithm: Feature extraction/selection using PCA and rough sets.

Given: an N -case data set T containing n-dimensional patterns, with real-valued
attributes, labeled by l associated classes {(x1, c1target), (x2, c2target), . . . , (xN , cNtarget)}.

1. Extract from the original class-labeled data set T a pattern part as an N × n
data pattern matrix X.

2. For the matrix X compute the covariance matrix Rx.

3. For the matrix Rx find the eigenvalues and corresponding eigenvectors, and
arrange them in a descending order.
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4. Select the reduced dimension m ≤ n of a feature vector in the principal compo-
nents space using the defined selection method, which may base on a judgement
of the ordered values of computed eigenvalues.

5. Compute the optimal m × n Karhunen-Loéve transform matrix WKL based
on the eigenvectors of Rx.

6. Transform the original patterns from X into m-dimensional feature vectors in
the principal component space by formula y = WKLx for a single pattern,
or formula Y = XWKL for a whole set of patterns (where Y is an N ×m
matrix).

7. Discretize the patterns in Y with the resulting matrix Yd.

8. Form the decision table DTm using the patterns from the matrix Yd with the
corresponding classes from the original data set T .

9. Find a selected reduct from the decision table DTm treated as a selected set
of features Xfeature,reduct describing all the concepts in DTm.

10. Construct the final (reduced) discrete-attribute decision table DT f,d containing
these columns from the projected discrete matrix Yd which correspond to the
selected feature set Xfeature,reduct. Label patterns by the corresponding classes
from the original data set T .

11. Compose the reduced, final real-valued attribute decision table DT f,r contain-
ing these columns from the projected discrete matrix Yd which correspond
to the selected feature set Xfeature,reduct. Label patterns by the corresponding
classes from the original data set T .

The results of the discussed method of feature extraction/selection depend on the
data set type and the designer decisions, including: (a) selection of the dimension m ≤
n of the projected pattern in the principal component space, (b) the discretization
method, and (c) selection of a reduct.

5. Numerical Experiments for Face Recognition

To demonstrate the role of rough sets methods for feature selection/reduction, we have
carried out numerical experiments regarding face recognition. Feature extraction from
images was provided by Singular Value Decomposition. Each gray-scale face image
was of the dimension 112 × 92 pixels. Classification of face images was performed
with a Learning Vector Quantization (LVQ) neural network.

5.1. Singular Value Decomposition as a Feature Extraction from Face
Images

Singular Value Decomposition (SVD) can be used to extract features from images
(Hong, 1991; Świniarski and Hargis, 2001). A rectangular n×m real image represented
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by an n×m matrix A, where m ≤ n, can be transformed into a diagonal matrix by
means of SVD. Assume that the rank of A is r ≤ m. The matrices AAT and ATA
are non-negative, symmetric, and have the identical eigenvalues λi. For m ≤ n there
are at most r ≤ m non-zero eigenvalues. The SVD transform decomposes matrix
A into the product of two orthogonal matrices: Ψ of dimension n× r and Φ of
dimension m× r, as well as a diagonal matrix Λ1/2 of dimension r × r. The SVD of
a matrix (image) A is given by

A = ΨΛ1/2ΦT =
r
∑

i=1

√

λi ψi φ
T
i , (32)

where the matrices Ψ and Φ have r orthogonal columns ψi ∈
� n and φi ∈

� m

(i = 1, . . . , r), respectively (representing orthogonal eigenvectors of AAT and ATA).
The square matrix Λ1/2 has the diagonal entries defined by

Λ1/2 = diag
(

√

λ1,
√

λ2, . . . ,
√

λr

)

, (33)

where σi =
√
λi (i = 1, 2, . . . , r) are the singular values of A. Each λi, (i =

1, 2, . . . , r) is a non-zero eigenvalue of AAT (as well as ATA). Given a matrix A (an
image) decomposed as A = ΨΛ 1/2ΦT , since Ψ and Φ have orthogonal columns,
the singular value decomposition transform (SVD transform) of the image A is defined
as

Λ1/2 = ΨTAΦ. (34)

If the matrix A represents an n × m image, then r singular values
√
λi (i =

1, 2, . . . , r) from the main diagonal of the matrix Λ 1/2 can be considered as extracted
features of the image. These r singular values can be arranged as an image feature
vector (SVD pattern) xsvd = [

√
λ1,
√
λ2, . . . ,

√
λr]T of an image.

Despite the expressive power of the SVD transformation (Hong, 1991), it is diffi-
cult to say arbitrarily how powerful the SVD features could be for a classification of
face images.

The r-element SVD patterns can be heuristically reduced by removing its rr
trailing elements whose values are below a heuristically selected threshold εsvd. This
can result in nsvd,r = r−rr element reduced SVD patterns xsvd,r. In the next sections
we discuss techniques of finding a reduced set of face image features.

5.2. Data Sets

We have analyzed of 13 selected classes of face images (13 persons), with 27 instances
for each class, from an Olivetti ORL face data base1 (Samaria and Harter, 1994).
Each gray-scale face image was of the dimension 112 × 92 pixels (with an original
face space representation of 10304 pixel-based features). The entire 351-image data
set, consisting 13 classes of faces with 27 instances per class, was divided into training

1 ORL database is available at www.cam-orl.co.uk/facedatabase.html
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and test sets: 313 cases of these images were used for the training set, and 38 final
cases for the test set. Given an original face images set, we applied feature extrac-
tion using SVD of matrices representing image pixels. As a result, we obtained for
each image the 92-element xsvd pattern with features being the singular values of a
face matrix (arranged in a descending order). In the next processing step a heuristic
reduction of SVD patterns was provided, yielding 60-element reduced SVD patterns
xsvd,r. Then, according to the proposed method, we applied PCA for feature projec-
tion/reduction based on reduced SVD patterns from the training set. The projected
60-element PCA patterns were then heuristically reduced to 20-element reduced PCA
patterns xsvd,r,pca,r. In the last preprocessing step the rough sets method was used for
the final feature selection/reduction of the reduced PCA continuous-valued patterns.
For discretization of the continuous reduced PCA features, we applied the dividing
of each attribute values range into 10 evenly spaced zones. The discretized training
set was used to find the six-element reduct (Cios et al., 1998). This reduct was used
to form the final pattern xsvd,r,pca,r,rs,r The training and test sets (decision tables)
with real-valued pattern attributes were reduced according to the selected reduct.

5.3. Learning Vector Quantization (LVQ) Neural Network Classifier

We applied an LVQ neural network for face classification using, reduced by rough
sets, training and test sets. The LVQ vector quantization neural network is a static,
feedforward, neuromorphic system whose weight values can be determined using a
supervised learning. For a given training set TR = {xi, Cxi}li=1 containing l labeled
n-dimensional pattern vectors x ∈ � n , the network could be formed of two layers of
neurons: input and output layers. The number of neurons in the input layer equals the
dimension of the input pattern vectors n. The weightless neurons of the input layer
just receive the input pattern element values. The output layer contains Mq neurons,
where Mq is equal to the number of code-book reference vectors. The Mq neurons
of the output layer are divided into M classes {Ci}Mi=1, defined in the training set
TR. Each output neuron belongs to a certain class. Few neurons may be assigned to
the same class.
The neurons of the first layer are fully connected with the output layer neurons

via weights. The network outputs are modeled by xs =Wx; y = F(xs) , where W is
the weight matrix, and F is the output activation vector function. The purpose of the
LVQ neural network is to quantize the input patterns through representing them by
Mq reference vectors. These reference vectors approximate the input patterns. The
learning of the LVQ network guarantees mapping of input patterns from the input
pattern space

� n into one of the reference vectors from a limited-size code-book
Wc = {(i, wi)}Mqi=1. In the LVQ learning algorithm, usually several reference vectors
of the code-book are assigned to each class Ci from the training set

WCi = {wj} for all j and wj representing class Ci. (35)

Kohonen (1990) proposed the following supervised learning algorithm that approxi-
mately minimizes misclassification errors of vector quantization stated as the nearest-
neighborhood classification.
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During supervised learning with punish-reward idea of weights adjustment, the
optimal reference vectors wi (i = 1, 2, . . . ,Mq) of the code-book can be found as the
asymptotic values of the following learning process. First, for a given input pattern
x belonging to the class Cl, and previous values {wkj }

Mq
i=1, the code-book reference

vector which is the nearest to the vector x is selected:

j-th nearest reference vector wj min
i=1,2,...,Mq

‖x−wi‖. (36)

This reference vector belongs to a certain class Cr. Then only this j-th reference
vector wj , nearest to x, will be adjusted in the following way:

wk+1j = wkj + α(k)[x−wj ] if Cl = Cr , (37)

wk+1j = wkj − α(k)[x−wj ] if Cl 6= Cr ,

wk+1i = wki if i 6= j,

where 0 < α(k) < 1 is the learning rate (a decreasing function of the learning step).
The above weight adjustment is based on the “Winner-Takes-All” and punish-reward
ideas. Only a reference vector wj , which is the nearest to the pattern x, is adjusted.

Results of experiments. The described sequence of processing steps, applied in the
design of classifiers, included: extraction of SVD features from images, heuristic reduc-
tion of SVD features, Principal Component Analysis with Karhunen-Loéve transfor-
mation, heuristic reduction of PCA features, discretization and the rough sets based
feature selection and reduction. Classification of face images was performed using an
LVQ neural network trained for the reduced 5-element pattern data sets. The reduc-
tion of the PCA patterns by rough sets was provided based on a selected 5-element
relative reduct (containing a set of elements {0, 1, 2, 3, 5} of the PCA pattern).
The LVQ network consisted of 5 inputs and the number of outputs dependant

on the number of code-books selected to represent classes. For the reference data, the
reduced training sets, the best recognition accuracy 97.3% for the test set, consisting
of 38 cases, was obtained for 65 code-books, with 150,000 training epochs.

6. Conclusion

We have presented a rough sets method and its role in feature selection for pattern
recognition. We proposed a sequence of data mining steps, including application of
SVD, PCA and rough sets for feature selection. This processing sequence was shown
as potential for feature extraction and feature selection in designing neural network
classifiers for face images. This method provides a substantial reduction of the pattern
dimensionality. Rough sets methods showed an ability to reduce significantly the
pattern dimensionality and proved to be data mining techniques viable as a front
end of neural network classifiers. The Learning Vector Quantization neural network
was found as a viable classifier for patterns reduced by the rough sets method and
representing facial images, yielding 97.3% of the classification accuracy for the test
set.
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