
Int. J. Appl. Math. Comput. Sci., 2001, Vol.11, No.1, 165–188 165

MOTION PLANNING, EQUIVALENCE, INFINITE

DIMENSIONAL SYSTEMS

Pierre ROUCHON∗

Motion planning, i.e., steering a system from one state to another, is a basic
question in automatic control. For a certain class of systems described by ordi-
nary differential equations and called flat systems (Fliess et al., 1995; 1999a),
motion planning admits simple and explicit solutions. This stems from an explic-
it description of the trajectories by an arbitrary time function y, the flat output,
and a finite number of its time derivatives. Such explicit descriptions are related
to old problems on Monge equations and equivalence investigated by Hilbert
and Cartan. The study of several examples (the car with n-trailers and the
non-holonomic snake, pendulums in series and the heavy chain, the heat equa-
tion and the Euler-Bernoulli flexible beam) indicates that the notion of flatness
and its underlying explicit description can be extended to infinite-dimensional
systems. As in the finite-dimensional case, this property yields simple motion
planning algorithms via operators of compact support. For the non-holonomic
snake, such operators involve non-linear delays. For the heavy chain, they are
defined via distributed delays. For heat and Euler-Bernoulli systems, their sup-
ports are reduced to a point and their definition domain coincides with the set
of Gevrey functions of order 2.

Keywords: infinite dimensional control systems, motion planning, flatness, ab-

solute equivalence, Pfaffian systems, delay systems, Gevrey functions

1. Introduction

The idea underlying equivalence and flatness (Fliess et al., 1999a)—a one-to-one cor-
respondence between trajectories of systems—is not restricted to control systems
described by ordinary differential equations. It can be adapted to delay differential
systems and to partial differential equations with boundary control. Of course, there
are many more technicalities and the picture is far from clear. Nevertheless, this new
point of view seems promising for the design of control laws. In this paper, we sketch
some recent developments in this direction.

We consider three kinds of systems: nonholonomic, pendulum, and diffusion sys-
tems. Each of them admits two families of models: finite-dimensional ones and infinite-
dimensional ones. The flat output, well defined in the finite-dimensional case, admits
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Cedex 06, France, e-mail: rouchon@cas.ensmp.fr



166 P. Rouchon

also a natural equivalent in the infinite-dimensional case. In a certain sense, the finite
and infinite descriptions are thus equivalent, and similar motion planning algorithms
can be constructed.

Thus flatness admits an infinite-dimensional extension. The systems examined
here in detail suggest to us the following setting in terms of operators admitting com-
pact supports with respect to the time t. Take Ω 3 x 7→ X(x, t) ∈ �

q , defined on
an open and smooth domain Ω of

�
n . Assume that X is a solution of a square

partial differential system P (X) = 0 on Ω satisfying on ∂Ω the boundary condition
L(X,u) = 0, with t 7→ u(t) ∈ �

m the control. Roughly speaking, an explicit param-
eterization consists in defining compact support operators Ax, x ∈ Ω, and B with
a common domain of definition D including enough time functions t 7→ y(t) ∈ �

m

(density, partition of unity, stability by addition and multiplication, etc.) such that
Ξ : (x, t) 7→ Axy|t and υ : t 7→ By|t with t 7→ y(t) ∈

�
m belonging to D sat-

isfy automatically P (Ξ) = 0 and L(Ξ, υ) = 0. Finding [0, T ] 3 t 7→ u(t) (T > 0),
steering X from X(x, 0) = X0(x) to X(x, T ) = X1(x) reduces then to finding
t 7→ y(t) when y(t) is prescribed by the initial state X0 (resp. final state X1)
for t small enough (resp. large enough). Similarly, equivalence between two systems
(P (X) = 0, L(X,u) = 0) and (Q(Z) = 0,M(Z, v) = 0) could be defined via compact
support operators exchanging solutions.

Such a setting requires precise definitions. Using module theory and the notion
of π-freeness (Mounier, 1995) is a first possibility. Notice that parameterizations de-
veloped in (Pommaret, 1978; 1995) deal with under-determined systems of PDE’s,
whereas here P (X) = 0 admits the same number of unknowns and equations. We
shall concentrate here on three typical kinds of systems where flatness admits a direct
infinite-dimensional extension.

2. Non-Holonomic Systems

Many mobile robots such as those considered in (Campion et al., 1996; Murray and
Sastry, 1993; Tilbury, 1994) admit the same structure. They are flat, and the flat
output corresponds to the Cartesian coordinates of a special point. Starting from the
classical n-trailer systems (Fliess et al., 1995; 1997; Rouchon et al., 1993a; 1993b),
we show that, when n, the number of trailers, tends to infinity, the system tends to a
trivial delay system, the non-holonomic snake. Invariance with respect to rotations and
translations makes very natural the use of Frénet formulae and curve parameterization
with respect to the arc length instead of time (see (Martin et al., 1997; Rouchon and
Rudolph, 1999) for relations between flatness and physical symmetries). The study
of such systems gives us the opportunity to recall links with an old problem, stated
by Hilbert (1912) and investigated by Cartan (1914), on Pfaffian systems, Goursat
normal forms and (absolute) equivalence.
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Fig. 1. Kinematics of a car.

2.1. Car

The conditions of rolling without slipping yield (see Fig. 1 for the notation)














ẋ = v cos θ,

ẏ = v sin θ,

θ̇ =
v

l
tanϕ,

(1)

where v, the velocity, and ϕ, the steering angle, are the two controls. Geometrically,
these equations mean that the angle θ gives the direction of the tangent to the curve
followed by P , the point of coordinates (x, y), and that tanϕ/l corresponds to the
curvature of this curve:

v = ±‖Ṗ‖,
(

cos θ

sin θ

)

= Ṗ /v, tanϕ = l det(P̈ Ṗ )/v
√

|v|.

Thus there is a one-to-one correspondence between arbitrary smooth curves and the
solutions of (1). As shown in (Fliess et al., 1995), it provides a very simple algorithm
to steer the car from one configuration to another.

2.2. Car with n-Trailers (Fliess et al., 1995)

Take a single car above and hitch n trailers to its back (cf. Fig. 2). The resulting
system still admits two control variables: the velocity of the car v and the steering
angle φ. As for the single car, modeling is based on the assumption of rolling without
slipping.

There is a one-to-one correspondence between smooth curves of arbitrary shapes
and the system trajectories. It suffices to consider the curve followed by Pn, the
Cartesian position of the last trailer. It is not necessary to write down explicitly
the system equations in the state-space form (1). Just remember that the kinematic
constraints indicate that the velocity of each trailer (more precisely, of the middle of
its wheel axle) is parallel to the direction of its hitch.

Set n = 1 and have a look at Fig. 3. Assume that the curve C followed by P1
is smooth and denote by s→ P (s) an arc length parameterization. Then P1 = P (s)
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Fig. 2. Car with n trailers.

Fig. 3. Case of n = 1.

and θ1 is the angle of ~τ , the unitary tangent vector to C. Since P0 = P + d1~τ ,
derivation with respect to s yields

d

ds
P0 = ~τ + d1κ~ν

with (~τ , ~ν) the Frénet frame of C and κ its curvature. Thus dP0/ds 6= 0 is tangent
to C0, the curve followed by P0. This curve is smooth and

tan(θ0 − θ1) = d1κ, ~τ0 =
1

√

1 + (d1κ)2
(~τ + d1κ~ν).

Derivation with respect to s0, (ds0 =
√

1 + (d1κ)2 ds) yields the steering angle φ:

tanφ = d0κ0 = d0
1

√

1 + (d1κ)2

(

κ+
d1

1 + (d1κ)2
dκ

ds

)

.
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The car velocity v is then given by

v(t) =
√

1 + d21κ
2(s(t)) ṡ(t)

for any C1 time function, t → s(t). Notice that φ and θ0 − θ1 always remain in
] − π/2, π/2[. These computations prove the one-to-one correspondence between the
system trajectories determined by φ and θ0− θ1 in ]−π/2, π/2[, and regular planar
curves of arbitrary shape with an arbitrary C1 time parameterization.

The case n > 1 is just a direct generalization. The correspondence between
arbitrary smooth curves s 7→ P (s) (tangent ~τ , curvature κ) with a C1 time param-
eterization t 7→ s(t) is then defined by a smooth invertible map

� 2 × � 1× �
n+2 7→ � 2 × � 1×]− π/2, π/2[n+1× �

(

P, ~τ , κ,
dκ

ds
, . . . ,

dnκ

dsn
, ṡ

)

7→ (Pn, θn, θn − θn−1, . . . , θ1 − θ0, φ, v) ,

where v is the car velocity. More details are given in (Fliess et al., 1995).

With such a correspondence, motion planning reduces to a trivial problem: Find
a smooth curve with prescribed initial and final positions, tangents, curvatures κ and
curvature derivatives, diκ/dsi, i = 1, . . . , n.

2.3. General One-Trailer System (Rouchon et al., 1993b)

This non-holonomic system is shown in Fig. 4. Here the trailer is not directly hitched
to the car at the centre of the rear axle, but more realistically at a distance a from
this point. The equations take the form



























ẋ = v cosα,

ẏ = v sinα,

α̇ =
v

l
tanϕ,

β̇ =
v

b

(a

l
tanϕ cos(α− β)− sin(α− β)

)

.

(2)

Controls are the car velocity v and the steering angle ϕ.

Fig. 4. Car with one trailer.
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There still exists a one-to-one correspondence between the trajectories of (2) and
arbitrary smooth curves with a C1 time parameterization. Such curves are followed
by the point P (see Fig. 4) of coordinates

X = x+ b cosβ + L(α− β) b sinβ − a sinα
√

a2 + b2 − 2ab cos(α− β)
,

Y = y + b sinβ + L(α− β) a cosα− b cosβ
√

a2 + b2 − 2ab cos(α− β)
,

(3)

where L is defined by the elliptic integral

L(α− β) = ab
∫ 2π+α−β

π

cosσ√
a2 + b2 − 2ab cosσ

dσ. (4)

Fig. 5. Geometric construction with the Frénet frame.

We also have a geometrical construction (see Fig. 5): the tangent vector ~τ is
parallel to AB. Its curvature κ depends on δ = α− β:

κ = K(δ) =
sin δ

cos δ
√
a2 + b2 − 2ab cos δ − L(δ sin δ

. (5)

The function K is an increasing bijection between ]γ, 2π − γ[ and �
. The constant

γ ∈ [0, π/2] is defined by the implicit equation

cos γ
√

a2 + b2 − 2ab cosγ = ab sin γ
∫ γ

π

cosσ√
a2 + b2 − 2ab cosσ

dσ.

For a = 0, γ = π/2 and P coincides with B. Then D is given by D = P − L(δ)~ν
with ~ν the unitary normal vector. Thus (x, y, α, β) depends on (P, ~τ , κ). The steering
angle ϕ depends on κ and dκ/ds, where s is the arc length. The car velocity v is
then computed from κ, dκ/ds and ṡ, the velocity of P .
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2.4. Contact Structure, Equivalence and Pfaffian Systems

As opposed to the standard n-trailer systems, formulae for the general one-trailer
system are not obvious. They cannot be found by some physical intuition. In fact,
they rely on old questions and results relative to Pfaffian systems.

Nonholonomic systems with two controls, as the above trailer systems, are drift-
less systems of the form

ẋ = f1(x)u1 + f2(x)u2

defined by two vector fields f1 and f2. Elimination of u1 and u2 yields a linear
system in ẋ with coefficients depending on x. If n is the dimension of x, we have
then n− 2 equations corresponding to a Pfaffian system of codimension 2, say

ωi ≡
n
∑

j=1

aji (x) dxj = 0, i = 1, . . . , n− 2.

The n−2 differential forms ωi are independent and such that (ωi, f1) = (ωi, f2) = 0.
Equivalence of Pfaffian systems via transformations of x-coordinates is an old question
firstly stated by Pfaff. Weber (1898), Goursat (1923), and Cartan (1915) gave the
conditions of equivalence (around a generic x) to the contact system

dx2 − x3 dx1 = 0, dx3 − x4 dx1 = 0, . . . , dxn−1 − xn dx1 = 0.

The interest in such systems is mainly due to the fact that their general solution is
given by an arbitrary function of one variable z 7→ w(z) and a finite number of its
derivatives:

x1 = z, x2 = w(z), x3 =
dw

dz
, . . . , xn =

dn−2w

dzn−2
.

This means that we can parameterize the general solution of ẋ = f1(x)u1 + f2u2
without integrating the control t 7→ u(t). Just consider the above relations with
any C1 time function t 7→ z(t) and any Cn−2 function of z, z 7→ w(z). The
quantities x1 = z(t) and x2 = w(z(t)) play a special role here. We call them the
flat output (Fliess et al., 1995). For trailer systems we have sketched here similar
parameterizations: they are based on Frénet formulae and written in a special way in
order to exploit the invariants with respect to planar isometries.

A coordinate-free characterization of contact systems was originally written in
terms of the derived flag and differential form. In a dual way, it reads for the two
vector fields f1 and f2 as follows: the generic rank of Ek has to be equal to k + 2
for k = 0, . . . , n− 2 where E0 := span{f1, f2}, Ek+1 := span{Ek, [Ek, Ek]}, k ≥ 0.
(See (Giaro et al., 1978; Murray, 1994; Murray and Sastry, 1993; Pasillas-Lépine, 2000)
for complementary results on chained normal forms and singularity classification of
Goursat systems).

This characterization is much more general. Cartan (1914; 1915) (see also (Martin
and Rouchon, 1994) for dynamic feedback refinements) proved that the Ek’s charac-
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terize systems that can be solvable without any integration, a notion introduced few
years earlier by Hilbert (1912). Hilbert considers the second-order Monge equation

d2y

d2x
= F

(

x, y, z,
dy

dx
,
dz

dx

)

,

an under-determined differential system (a single differential equation relating two
x-functions, y(x) and z(x)). He wonders if its general solution can be expressed
without integrals as for the first-order Monge equation. Hilbert also shows that this
question is related to the classification of under-determined systems under a trans-
formation group much more general than punctual transformations. Hilbert proposes
a nice analogy with the group of birational transformations and the classification of
algebraic manifolds.

Hilbert’s original idea of ‘integrallos Auflösung’ can be extended to some infinite-
dimensional control systems. Such extensions require advance and delay operators in
complement to derivation and are based on several examples such as the nonholonomic
snake characterized in what follows.

2.5. Nonholonomic Snake

Fig. 6. The non-holonomic snake, a car with an infinite number of small trailers.

When the number of trailers is large, it is natural, as shown in Fig. 6, to introduce a
continuous approximation of the ‘non-holonomic snake’. The trailers are now indexed
by a continuous variable l ∈ [0, L], and their positions are given by a map [0, L] 3
l 7→M(l, t) ∈ � 2 satisfying the following partial differential equations:

∥

∥

∥

∥

∂M

∂l

∥

∥

∥

∥

= 1,
∂M

∂l
∧ ∂M
∂t
= 0.

The first equation says that l 7→M(l, t) is an arc length parameterization. The second
one amounts to the rolling-without-slipping conditions: the velocity of the trailer l
is parallel to the direction of the plane of its wheels, i.e., the tangent to the curve
l 7→M(l, t). It is then obvious that the general solution to this system is

M(l, t) = P (s(t)− l), l ∈ [0, L],
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where P is the snake head and s 7→ P (s) an arc length parameterization of the curve
followed by P . Similarly,

M(l, t) = Q(s(t) + l), l ∈ [0, L],

where Q is the snake tail. It corresponds to the flat output of the finite-dimensional
approximation, the n-trailer system of Fig. 2, with n large and di = L/n. The
derivatives up to order n are in the infinite case replaced by advances in the arc
length scale. This results from the formal relation

Q(s+ l) =
∑

i≥0

Q(i)(s)li/i!

and the series truncation up to the first n terms. Nevertheless, M(l, t) = Q(s(t)+ l)
is much simpler to use in practice. When n is large, the series experience convergence
difficulties for s 7→ Q(s) smooth but not analytic.
When the number of trailers is large and the curvature radius 1/κ of s 7→ Q(s)

is much larger than the length of each small trailer, such an infinite-dimensional
approximation is valid. It reduces the dynamics to trivial delays. It is noteworthy that,
in this case, an infinite-dimensional description yields a much better reduced model
than a finite-dimensional description that gives complex nonlinear control models and
algorithms1.

3. Pendulums and Heavy Chains

3.1. Juggling Robot 2kπππ (Lenoir et al., 1998)

The robot 2kπ developed at École des Mines de Paris consists of a manipulator
carrying a pendulum, see Fig. 7. There are five degrees of freedom (dof’s): 3 angles
for the manipulator and 2 angles for the pendulum. The 3 dof’s of the manipulator
are actuated by electric drives, while the 2 dof’s of the pendulum are not actuated.

This system is typical of underactuated, nonlinear and unstable mechanical sys-
tems such as the PVTOL (Martin et al., 1996), Caltech’s ducted fan (Martin et al.,
1997; Murray, 1995), the gantry crane (Fliess et al., 1995), Champagne flyer (Lemon
and Hause, 1994). As shown in (Fliess et al., 1995; Martin, 1992; Martin et al., 1997)
the robot 2kπ is flat, with the centre of oscillation of the pendulum as a flat output.
Let us recall some elementary facts.

The Cartesian coordinates of the suspension point S of the pendulum can be
considered here as control variables: they are related to the angles of the manipulator
θ1, θ2, θ3 via static relations. Let us concentrate on the pendulum dynamics. This
dynamics is similar to that of a punctual pendulum with the same mass m located at
point H , the oscillation centre (the Huygens theorem). Denoting by l = ‖SH‖ the
length of the isochronous punctual pendulum, the Newton equation and geometric

1 The finite-dimensional system does not require to be flat (trailer i can be hitched to trailer
i − 1 not directly at the centre of its wheel axle, but more realistically at a positive distance
from this point (Martin and Rouchon, 1994)).
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Fig. 7. The robot 2kπ.

constraints yield the following differential-algebraic system (~T is the tension, see
Fig. 8):

mḦ = ~T +m~g, ~SH ∧ ~T = 0, ‖SH‖ = l.
If, instead of setting t 7→ S(t), we set t 7→ H(t), then ~T = m(Ḧ − ~g). S is located
at the intersection of the sphere with centre H and radius l with the line passing
through H of direction Ḧ − ~g:

S = H ± 1

‖Ḧ − ~g‖
(Ḧ − ~g).

These formulae are crucial for designing a control law steering the pendulum from
the lower equilibrium to the upper equilibrium, and also for stabilizing the pendulum
while the manipulator is moving around (Lenoir et al., 1998).

Fig. 8. The isochronous pendulum.

3.2. Towed Cable Systems (Martin et al., 1997; Murray, 1996)

This system consists of an aircraft flying in a circular pattern while towing a cable
with a tow body (drogue) attached at the bottom. Under suitable conditions, the
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Fig. 9. The towed cable system and a finite-link approximate model.

cable reaches a relative equilibrium in which it maintains its shape as it rotates. By
choosing the parameters of the system appropriately, it is possible to make the radius
at the bottom of the cable much smaller than the radius at the top of the cable. This
is illustrated in Fig. 9.

The motion of the towed cable system can be approximately represented using
a finite-element model in which the segments of the cable are replaced by rigid links
connected by spherical joints. The forces acting on the segment (tension, aerodynamic
drag and gravity) are lumped and applied at the end of each rigid link. In addition
to the forces on the cable, we must also consider the forces on the drogue and the
towplane. The drogue is modelled as a sphere and essentially acts as a mass attached
to the last link of the cable, so that the forces acting on it are included in the cable
dynamics. The external forces on the drogue again consist of gravity and aerodynamic
drag. The towplane is attached to the top of the cable and is subject to drag, gravity,
and the force of the attached cable. For simplicity, we model the towplane as a pure
force applied at the top of the cable. Our goal is to generate trajectories for this
system that allow operation away from relative equilibria, as well as transition between
one equilibrium point and another. Due to the high dimension of the model for the
system (128 states are typical), traditional approaches to solving this problem, such
as optimal control theory, cannot be easily applied. However, it can be shown that
this system is differentially flat using the position of the bottom of the cable Hn as
the differentially flat output. See (Murray, 1996) for a more complete description and
additional references.

Assume that there is no friction and consider only gravity. Then, as for the
pendulum of 2kπ, we have

Hn−1 = Hn +
1

‖mnḦn −mn~g‖
(mnḦn −mn~g),
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where mn is the mass of link n. The Newton equation for link n − 1 yields (with
obvious notation)

Hn−2 = Hn−1 +
mnḦn +mn−1Ḧn−1 − (mn +mn−1)~g
‖mnḦn +mn−1Ḧn−1 − (mn +mn−1)~g‖

.

More generally, at link i we have

Hi−1 = Hi +

∑n

i mk(Ḧk − ~g)
‖
∑n
i mk(Ḧk − ~g)‖

.

These relations imply that S is a function of Hn and its time derivatives up to
order 2n. Thus Hn is the flat output. Let us consider now an infinite-dimensional
description. It could provide simpler computations, as for the nonholonomic snake
and the car with n trailers.

3.3. Nonlinear Heavy-Chain Systems

The nonlinear conservative model of a homogenous heavy chain with an end mass is
the following:























































ρ
∂2M

∂t2
=
∂

∂s

(

T
∂M

∂s

)

+ ρ~g,

∥

∥

∥

∥

∂M

∂s

∥

∥

∥

∥

= 1,

M(L, t) = u(t),

T (0, t)
∂M

∂s
(0, t) = m

∂2M

∂t2
(0, t)−m~g,

(6)

where [0, L] 3 s 7→ M(s, t) ∈ � 3 is an arc length parameterization of the chain and
T (s, t) > 0 is the tension. The control u is the position of the suspension point. If
we use

N(s, t) =

∫ s

0

M(σ, t) dσ
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instead of M(s, t) (Bäcklund transformation), we get

ρ
∂2N

∂t2
= T (s, t)

∂2N

∂s2
(s, t)− T (0, t)∂

2N

∂s2
(0, t) + ρs~g,

∥

∥

∥

∥

∂2N

∂s2

∥

∥

∥

∥

= 1,

∂N

∂s
(L, t) = u(t),

T (0, t)
∂2N

∂s2
(0, t) = m

∂3N

∂t2∂s
(0, t)−m~g,

N(0, t) = 0.

Assume that the load trajectory is given by

t 7→ y(t) = ∂N
∂s
(0, t).

Then (we take the positive branch)

T (s, t) =

∥

∥

∥

∥

ρ
∂2N

∂t2
(s, t)− (ρs+m)~g +mÿ(t)

∥

∥

∥

∥

and we have the Cauchy-Kovalevskaya problem

∂2N

∂s2
(s, t) =

1

T (s, t)

(

ρ
∂2N

∂t2
(s, t)− (ρs+m)~g +mÿ(t)

)

,

N(0, t) = 0,

∂N

∂s
(0, t) = y(t).

Formally, its series solution is expressed in terms of y and its derivatives of an infinite
order. This could be problematic since y must be analytic and the series converges
for s ≥ 0 small enough.

We will see below that the solution of the tangent linearization of this Cauchy-
Kovalevskaya system around the stable vertical steady-state can be expressed via
advances and delays of y. Such a formulation avoids series with y derivatives of
arbitrary orders. For the nonlinear system above, we conjecture a solution involving
nonlinear delays and advances of y.
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3.4. Linear Heavy-Chain Systems (Petit and Rouchon, 2001)

Fig. 10. The homogeneous chain without any load.

A small-angle approximation of (6) with m = 0 yields the following dynamics around
the stable vertical steady-state:















∂

∂s

(

gs
∂X

∂s

)

− ∂
2X

∂t2
= 0,

X(L, t) = u(t),

(7)

where X(s, t) is the horizontal coordinate of M . In this case, the vertical and hori-
zontal dynamics are decoupled. The two horizontal dynamics are also decoupled. The
tension T equals gρs. The control u is the trolley horizontal position.

We prove in (Petit and Rouchon, 2001) that the general solution of (7) is given
by the following formulae where y is the free-end position X(0, t):

X(s, t) =
1

2π

∫ π

−π

y
(

t+ 2
√

s/g sin θ
)

dθ. (8)

Simple computations show that (8) corresponds to the series solution of the (singular)
Cauchy-Kovalevskaya problem:















∂

∂s

(

gs
∂X

∂s

)

=
∂2X

∂t2
,

X(0, t) = y(t).
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The relation (8) means that there is a one-to-one correspondence between the
(smooth) solutions of (7) and the (smooth) functions t 7→ y(t). For each solution
of (7), set y(t) = X(0, t). For each function t 7→ y(t), set X via (8) and u via

u(t) =
1

2π

∫ π

−π

y(t+ 2
√

L/g sin θ) dθ (9)

to obtain a solution of (7).

Finding t 7→ u(t) steering the system from a steady state X ≡ 0 to another
X ≡ D becomes obvious. It just consists in finding t 7→ y(t) that is equal to 0
for t ≤ 0 and to D for t large enough (at least for t > 4

√

L/g), and in computing u
via (9).

For example, take

y(t) =































0 if t < 0,

3L

2

(

t

T

)2 (

3− 2
(

t

T

))

if 0 ≤ t ≤ T ,

3L

2
if t > T ,

where the chosen transfer time T equals 2∆ with ∆ = 2
√

L/g, the travelling time
of a wave between x = L and x = 0. For t ≤ 0 the chain is vertical at position 0.
For t ≥ T the chain is vertical at position D = 3L/2.
When m > 0, a small-angle approximation of (6) gives



































∂

∂s

(

g(s+ a)
∂X

∂s

)

− ∂
2X

∂t2
= 0,

∂2X

∂t2
(0, t) = g

∂X

∂s
(0, t),

X(L, t) = u(t),

where a = m/ρ is homogenous with respect to the length. We also prove in (Petit
and Rouchon, 2001) that its general solution depends on advances and delays of y
and its first derivative.

4. Diffusion and Gevrey Functions

4.1. Finite-Dimensional Models

Fig. 11. A finite volume model of a heating system.
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Consider the three-compartment model illustrated in Fig. 11. Its dynamics is based
on the following energy balance equations (m, ρ, Cp and λ are physical constants):



















mρCp θ̇1 = λ(θ2 − θ1),

mρCp θ̇2 = λ(θ1 − θ2) + λ(θ3 − θ2),

mρCp θ̇3 = λ(θ2 − θ3) + λ(u− θ3).

(10)

It is obvious that this linear system is controllable with y = θ1 as the the Brunovsky
output: it can be transformed via a linear transformation of coordinates and a linear
static feedback into y(3) = v.

Taking an arbitrary number n of compartments yields































































mρCp θ̇1 = λ(θ2 − θ1),

mρCp θ̇2 = λ(θ1 − θ2) + λ(θ3 − θ2),
...

mρCp θ̇i = λ(θi−1 − θi) + λ(θi+1 − θi),
...

mρCp θ̇n−1 = λ(θn−2 − θn−1) + λ(θn − θn−1),

mρCp θ̇n = λ(θn−1 − θn) + λ(u− θn).

(11)

Here y = θ1 remains the Brunovsky output: via a linear transformation of coordinates
and a linear static feedback we have y(n) = v.

When n tends to infinity, m and λ tend to zeros as 1/n, and (11) tends to the
classical heat equation (12) considered below. We will see that the temperature on
the side opposite to u, i.e., y = θ(0, t), still plays a special role.

4.2. Heat Equation (Laroche et al., 1998)

Consider the linear heat equation



















∂tθ(x, t) = ∂
2
xθ(x, t), x ∈ [0, 1],

∂xθ(0, t) = 0,

θ(1, t) = u(t),

(12)

where θ(x, t) is the temperature and u(t) is the control input. We claim that

y(t) := θ(0, t)
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is a ‘flat’ output. Exchange the role of time t and space x, and consider the following
Cauchy-Kovalevskaya system































∂2θ

∂x2
=
∂θ

∂t
,

θ(0, t) = 0,

∂θ

∂x
(0, t) = 0.

(13)

Its series solution is represented by


























θ(x, t) =
∞
∑

i=1

y(i)(t)

(2i)!
x2i,

u(t) =

∞
∑

i=1

y(i)(t)

(2i)!
.

(14)

Whenever t 7→ y(t) is an arbitrary function (i.e., a trajectory of the trivial system
y = v), t 7→

(

θ(x, t), u(t)
)

defined by (14) is a (formal) trajectory of (12) and vice
versa. This is exactly the idea underlying our definition of flatness in (Fliess et al.,
1999a). Notice that these calculations have been known for a long time, see (Valiron,
1950, pp.588 and 594).

To make the statement precise, we now turn to convergence issues. On the one
hand, t 7→ y(t) must be a smooth function such that

∃ K,M > 0, ∀i ≥ 0, ∀t ∈ [t0, t1], |y(i)(t)| ≤M(Ki)2i

to ensure convergence. On the other hand, t 7→ y(t) cannot in general be analytic.
Indeed, if the system is to be steered from an initial temperature profile θ(x, t0) =
α0(x) at time t0 to a final profile θ(x, t1) = α1(x) at time t1, eqn. (12) implies

∀t ∈ [0, 1], ∀i ≥ 0, y(i)(t) = ∂itθ(0, t) = ∂2ix θ(0, t),

and in particular

∀i ≥ 0, y(i)(t0) = ∂
2i
x α0(0) and y

(i)(t1) = ∂
2i
x α1(1).

If, for instance, α0(x) = c for all x ∈ [0, 1] (i.e., a uniform temperature profile), then
y(t0) = c and y

(i)(t0) = 0 for all i ≥ 1, which implies y(t) = c for all t provided the
function is analytic. It is thus impossible to reach any final profile but α1(x) = c for
all x ∈ [0, 1].
Smooth functions t ∈ [t0, t1] 7→ y(t) that satisfy

∃ K,M > 0, ∀i ≥ 0, |y(i)(t)| ≤M(Ki)σi

are known as Gevrey functions of order σ (Ramis, 1979) (they are also closely related
to functions of class S (Gelfand and Shilov, 1964)). The Taylor expansion of such
functions is convergent for σ ≤ 1 and divergent for σ > 1 (the larger σ is, the
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‘more divergent’ the Taylor expansion becomes). Analytic functions are thus Gevrey
of order ≤ 1.

In other words, we need a Gevrey function on [t0, t1] of order > 1 but ≤ 2,
with initial and final Taylor expansions imposed by the initial and final temperature
profiles. With such a function, we can then compute an open-loop control steering
the system from one profile to the other by the formula (14).

For instance, we steered the system from the uniform temperature zero at t = 0
to the uniform unit temperature at t = 1 by using the function

� 3 t 7→ y(t) :=



























0 if t < 0,

1 if t > 1,

∫ t

0
exp
(

−1/(τ(1− τ))γ
)

dτ
∫ 1

0 exp
(

−1/(τ(1− τ))γ
)

dτ
if t ∈ [0, 1],

with γ = 1 (Gevrey order 1 + 1/γ).

More details can be found in (Laroche et al., 1998) where numerical tests indicate
practical interest in using Gevrey functions of order > 2 and divergent series.

4.3. Flexible (Euler-Bernoulli) Beam (Aoustin et al., 1997; Fliess et al.,
1996)

        motor

Fig. 12. A flexible beam rotating around a control axle.

Symbolic computations ‘à la Heaviside’ with s instead of ∂/∂t are important here.
We will not develop the formal aspect with the use of the Mikusiński operational
calculus as in (Fliess et al., 1996). We just concentrate on the computations. We have
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the following 1D modeling:

∂ttX = −∂xxxxX,

X(0, t) = 0, ∂xX(0, t) = θ(t),

θ̈(t) = u(t) + k∂xxX(0, t),

∂xxX(1, t) = −λ∂ttxX(1, t),
∂xxxX(1, t) = µ∂ttX(1, t),

where the control is the motor torque u, X(r, t) is the deformation profile, k, λ and
µ are physical parameters (t and r are on reduced scales).

We will show that the general solution can be expressed in terms of an arbitrary
C∞ function y (Gevrey order ≤ 2 for convergence):

X(x, t) =
∑

n≥0

(−1)n y(2n)(t)
(4n)!

Pn(x) +
∑

n≥0

(−1)n y(2n+2)(t)
(4n+ 4)!

Qn(x) (15)

with ı =
√
−1,

Pn(x) =
x4n+1

2(4n+ 1)
+
(= −<)(1− x+ ı)4n+1

2(4n+ 1)
+ µ=(1− x+ ı)4n

and

Qn(x) =
λµ

2
(4n+ 4)(4n+ 3)(4n+ 2)

(

(=−<)(1− x+ ı)4n+1 − x4n+1
)

− λ(4n+ 4)(4n+ 3)<(1− x+ ı)4n+2

(< and = stand for the real and imaginary parts, respectively). Notice that θ and
u result from (15): it suffices to derive term by term.

We just show here how to get these formulae with λ = µ = 0 (no inertia at the
free end r = 1, M = J = 0). The method remains unchanged in the general case.
The problem is how to get

X(x, t) =
∑

n≥0

y(2n)(t)(−1)n
(4n)!

πn(x) (16)

with

πn(x) =
x4n+1

2(4n+ 1)
+
(= −<)(1− x+ ı)4n+1

2(4n+ 1)
.

With the Laplace variable s, we have the ordinary differential system

X(4) = −s2X,
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where

X(0) = 0, X(2)(1) = 0, X(3)(1) = 0.

The derivatives are with respect to the spatial variable r and s stands here for a
parameter. The general solution depends on an arbitrary constant, i.e., an arbitrary
function of s, since we have three boundary conditions. With the following four ele-
mentary solutions of X(4) = −s2X :

C+(x) =
(

cosh
(

(1− x)
√
sξ
)

+ cosh
(

(1− x)
√
s/ξ
)

)

/2,

C−(x) =
(

cosh
(

(1− x)
√
sξ
)

− cosh
(

(1− x)
√
s/ξ
)

)

/(2ı),

S+(x) =
(

ı sinh
(

(1− x)
√
sξ
)

+ sinh
(

(1− x)
√
s/ξ
)

)

/(2ξ
√
s),

S−(x) = ξ
(

ı sinh
(

(1− x)
√
sξ
)

− sinh
(

(1− x)
√
s/ξ
)

)

/(2
√
s),

where ξ = exp(ıπ/4), X reads as

X(x) = aC+(x) + bC−(x) + cS+(x) + dS−(x).

The three boundary conditions provide three equations relating the constants a, b,
c and d:

aC+(0) + bC−(0) + cS+(0) + dS−(0) = 0, sb = 0, sc = 0.

Thus b = c = 0 and we have just one relation between a and d:

aC+(0) + dS−(0) = 0.

Since

C+(0) = <
(

cosh(ξ
√
s)
)

, S−(0) = =
(

ξ sinh(ξ
√
s/
√
s)
)

are entire functions of s very similar to cosh(
√
s) and sinh

√
s/
√
s appearing for the

heat eqn. (12), we can associate with them two operators, algebraically independent
and commuting,

δ+ = C+(0), δ− = S−(0).

They are in fact ultra-distributions belonging to the dual space of Gevrey functions
of order less than ≤ 2 and with pointwise support (Gelfand and Shilov, 1964). We
have thus a module generated by two elements (a, d) satisfying δ+a+ δ−d = 0. This
is an

�
[δ+ , δ−]-module. This module is not free but δ+-free (Mounier, 1995):

a = δ−y, d = −δ+y

with y = −δ−1+ d.
The basis y plays the role of a flat output since

X(x) =
(

S−(0)C+(x) − S−(x)C+(0)
)

y.
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Simple but tedious computations using hyperbolic trigonometric formulae yield then

X(x) = −1
2

[

S−(x) + =
(

S−(1− x+ ı)
)

]

y.

The series of the entire function S− provides (16). We conjecture that the quantity y
possesses a physical sense as an explicit expression with integrals of X over r ∈ [0, 1]
(centre of flexion).

5. Conclusion

The above infinite-dimensional examples can be completed by several others. For
advance/delay parameterizations we have:

� water-tanks systems (Dubois et al., 1999);

� telegraph equation (Fliess et al., 1999b; Mounier et al., 1996);

� flexible beams (Fliess et al., 1998b; Mounier et al., 1995);

� Burger equation and nonlinear delays (Petit et al., 1998) (see also (Mounier and
Rudolph, 1998) for flatness-based control of non-linear delay systems).

For series parameterization with Gevrey functions, we have

� tubular chemical reactors (a multi-input case) (Fliess et al., 1998a; Rouchon
and Rudolph, 2000);

� heat equation with variable coefficients (Laroche and Martin, 2000; Rothfuß et
al., 2000).

All of the above examples are 1D systems. Such explicit parameterizations also
exist for higher space dimensions. Take, e.g., the 2D wave equation corresponding,
in the linear approximation, to the surface wave generated by the horizontal motions
of a cylindric tank containing a fluid (linearized Saint-Venant equations—a shallow
water approximation):











∂2ξ

∂t2
= gh̄ ∆ξ on Ω,

g∇ξ · n = −D̈ · n on ∂Ω,

(17)

where Ω is the interior of a circle with radius R and centre D(t) ∈ � 2 , the control (n
is the normal to the boundary ∂Ω), h̄+ ξ is the height of the liquid, and g denotes
the gravity. A family of solutions to (17) is given by the following formulae ((r, θ) are
the polar coordinates):

ξ(r, θ, t) =
1

π

√

h̄

g

(
∫ 2π

0

cosα
[

ȧ
(

t− r cosα
c

)

cos θ + ḃ
(

t− r cosα
c

)

sin θ
]

dα

)
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and ((u, v) are the Cartesian coordinates of D)

u =
1

π

∫ 2π

0

a

(

t− R cosα
c

)

cos2 α dα,

v =
1

π

∫ 2π

0

b

(

t− R cosα
c

)

cos2 α dα,

where t 7→ (a(t), b(t)) ∈ � 2 is an arbitrary smooth function.
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