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MOTOR CONTROL: NEURAL MODELS

AND SYSTEMS THEORY

Kenji DOYA∗, Hidenori KIMURA∗∗ Aiko MIYAMURA∗∗

In this paper, we introduce several system theoretic problems brought forward
by recent studies on neural models of motor control. We focus our attention on
three topics: (i) the cerebellum and adaptive control, (ii) reinforcement learning
and the basal ganglia, and (iii) modular control with multiple models. We discuss
these subjects from both neuroscience and systems theory viewpoints with the
aim of promoting interplay between the two research communities.
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1. Introduction

Neuroscience and systems theory play complementary roles in understanding the
mechanisms of adaptive systems. Neuroscientists are faced with complex, high-
performance adaptive systems and try to understand why they work so nicely. Sys-
tems theorists tend to start from simple, idealized systems but try to prove rigorously
how they perform under well-defined conditions. In this paper, we introduce recent
examples of converging efforts from both sides towards understanding and building
adaptive autonomous systems, and aim to promote future collaboration between the
neuroscience and systems theory communities.

The biological motor system is in some sense an ideal realization of control. It
consists of actuators, sensors and controllers, like usual control systems do. Unlike
artificial control systems, however, it exhibits much higher performance with great
flexibility and versatility in spite of the nonlinearity, uncertainties and large degrees
of freedom of animal bodies. Actually, motor control has been a main focus of neu-
roscience research for a long time, but what is strange is that control theorists have
rarely tried to seriously investigate a theoretical basis of biological motor control.
Fortunately, recent progress in computational neuroscience involving motor control
has brought forward several system theoretic issues in much clearer ways and with
deeper insight than before.
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We focus our attention on the following three topics:

1. The cerebellum and adaptive control,

2. Reinforcement learning and the basal ganglia, and

3. Modular control using multiple models.

These three topics are related to the functions of the cerebellum, the basal gan-
glia, and the cerebral cortex, respectively, which are the major components of the
mammalian brain (cf. Fig. 1) (Doya, 1999).
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Fig. 1. The global circuit linking the cerebellum, the basal ganglia and the cerebral cortex.

For the sake of the first topic, we review the basic anatomy and physiology of the
cerebellum and some neural modeling studies on how the cerebellum acquires internal
models of the body and the environment. We then theoretically analyze a biologically
motivated learning model of the cerebellum (Kawato et al., 1987; Kawato and Gomi,
1992) and prove that it is a robust, versatile adaptive control architecture after some
improvements.

For the sake of the second topic, we introduce a neural network study on “re-
inforcement learning” and show its relationship with the classical theory of dynamic
programming. There was recently been some excitement in the neuroscience commu-
nity concerning the idea that the activity of neurons that release a neurotransmitter
dopamine is quite similar to the learning signal used in reinforcement learning algo-
rithms. This has provided a strong clue as to the function of the basal ganglia, which
receives strong dopaminergic projections.
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For the sake of the third topic, we first review recent advances in multiple model-
based control methods that ensure stability under system uncertainty. Incidentally,
recent hot topics in computational neuroscience research include the switching and
combination of multiple internal models. For instance, a biologically motivated learn-
ing architecture has been shown to be able to deal with both nonstationary and
nonlinear control tasks quite nicely and it awaits further theoretical analyses.

From these examples, we wish to illustrate that neurobiological models of motor
control are valuable candidates for theoretical analyses and real-world applications,
and that systems theory can provide valuable insights into the functions of the nervous
system.

2. The Cerebellum and Adaptive Control

2.1. Biological Background

The cerebellum is known to be involved in the control of quick limb movements (Ghez
and Thach, 2000). For example, patients with cerebellar damage are strongly impaired
in the control of multi-joint movements such as arm reaching and locomotion, although
it is possible for them to execute simple, single-joint movements. It has also been
demonstrated in experimental animals that the adaptation of quick eye movements is
dependent on the cerebellum. Accordingly, it has been hypothesized that the major
role of the cerebellum is both the temporal and spatial coordination of movements.

The cerebellar circuit has a roughly feedforward organization with two major
input pathways: mossy fiber inputs and the climbing fiber inputs (Fig. 2). Mossy
fibers send various sensory signals as well as motor commands to a massive number
of granule cells, which in turn send parallel fibers to the Purkinje cells. Each Purkinje
cell receives many thousands of parallel fiber inputs and only one climbing fiber input.

IO
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parallel fiber

mossy fiber

climbing fiber
GC PC

Fig. 2. The circuit of the cerebellum; GC: granule cells, PC: Purkinje cells, CN: cerebellar
nucleus, IO: inferior olive, ◦: excitatory synapse, •: inhibitory synapse.
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This peculiar organization had led Marr and Albus to propose a classical model
of the cerebellum as a pattern recognition machine that recognizes various contexts
for movement execution (Albus, 1971; Marr, 1969). In their model, granule cells work
as combinatorial encoders of sensory and motor variables, and Purkinje cells work as
pattern classifiers by using climbing fiber inputs as teacher signals.

In accordance with the Marr-Albus model, it was shown by Ito that the synaptic
strengths of parallel fiber inputs to Purkinje cells are modified when the parallel
fiber inputs are associated with climbing fiber inputs, which is known as long-term
depression (LTD, cf. Ito et al., 1982). Ito hypothesized that the cerebellum provides a
model of the body and the physical environment so that accurate movement control
is made possible despite time delays in sensory feedback (Ito, 1993).

A growing premise in control engineering at that time was that the design of a
high-level control system had to be based on a model of a controlled object (plant).
Ito’s proposition was the first to recognize the important role of models in motor
control, and was remarkably consistent with the model-based paradigm of control
system design at its early stage. In control system design, plant models can be obtained
through experiments and/or a priori physical knowledge. They can be represented in
mathematical forms. In neural motor control, the situation is totally different. The
brain must construct models of an object and the environment only through learning
by experience and memorize them in its neural network in a format usable for motor
control. Lately, the problem of how to acquire and store models of controlled objects in
the neural network has come to be a central issue. Below we introduce an interesting
architecture proposed by Kawato (Kawato et al., 1987; Kawato and Gomi, 1992),
which extends Ito’s hypothesis.

2.2. Feedback-Error Learning Model of the Cerebellum

In the early 80’s, the “computed torque” method was proposed for the control of
robotic manipulators. The challenge here was that the multi-link arm dynamics had
strong nonlinearity due to centrifugal and Coriolis forces, and that conventional linear
servo control was insufficient for fast movements. In the computed torque method,
the necessary torque for each motor is pre-calculated from the desired movement
trajectory using a nonlinear inverse dynamics model of the arm.

With the knowledge of such a trend in robotic control, Kawato extended Ito’s
framework and proposed the feedback-error learning architecture as a model of adap-
tive control by the cerebellum (Kawato et al., 1987). Figure 3 depicts Kawato’s scheme
in a block diagram form. Here, P denotes the plant, i.e., the neuromuscular system
of limbs. The control architecture has two main components: a fixed linear feedback
controller Kfb and an adaptive nonlinear feedforward controller Kff . The feedback
loop corresponds to the spinal and the cerebral feedback pathways which are innately
programmed. The performance of such a feedback servo is limited due to the nonlin-
earity of the system and the delays in the sensory feedback. The nonlinear feedforward
controller is assumed to take the role of the inverse model of the plant (e.g., the arm)
such that it calculates the control command (e.g., the torques) τ ∗ necessary to achieve
the desired movement trajectory (θ∗).
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Kff

Kfb

ffτ

fbτ P θθ* - τ*

Fig. 3. Kawato’s scheme of motor control.

The question in the above case was how to construct such an inverse model by
learning, or more specifically, how to derive a teaching signal for the feedforward
controller. Kawato’s answer was to use the output of the linear feedback controller
τfb as the error signal for the nonlinear, feedforward controller. It may be intriguing
why the output of a “stupid” controller can be used for the training of a more clever
controller. However, in both computer simulations and experiments with a PUMA
robot arm, Kawato showed that the nonlinear controller can actually learn an inverse
model by gradually replacing the output of the linear controller.

More specifically, the feedforward controller is characterized by the following
nonlinear dynamics:

τff = ϕ
(

w, θ, θ̇, θ̈
)

, (1)

where w is a vector of unknown parameters to be adaptively tuned in real time. If
the parameters w and the function ϕ are properly chosen, relation (1) generates
the desired torque τff = τ

∗, which is required for the desired trajectory θ∗ if we
substitute θ∗ for θ in (1). In this sense, the feedforward controller plays the role of
the inverse dynamics of P , and adaptive tuning of the feedforward controller can be
regarded as the modeling of the inverse dynamics P−1. The most salient feature of
Kawato’s scheme of adaptive control is its adaptation law described by

dw

dt
= α

(

∂τff
∂w

)T

τfb, (2)

where α > 0 is a parameter characterizing the adaptation speed. This algorithm is
derived by a gradient method that minimizes the squared norm of the error

E =
1

2
‖τ∗ − τff‖

2 (3)

under the assumption that

τ∗ = τff + τfb. (4)

Indeed, the gradient method for tuning the parameters w is given by

dw

dt
= −α

∂E

∂w
,
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which results in (2) under approximation (4). Approximation (4) implies that the
input to the plant is always approximately correct. Justification of this approximation
is one of the issues of the paper.

2.3. Control Theoretic Considerations

2.3.1. Feedback Error Learning Scheme as a Control Architecture

Now, we consider Kawato’s feedback error learning scheme from the viewpoint of
control system design in the framework of control theory. Actually, understood as
a control architecture, the scheme is not new. Rather, it is a typical two-degree-of-
freedom control scheme that has been known for years. The basic scheme is given in
Fig. 4, where K1 denotes a feedback controller that is responsible for the feedback
properties of the control system (e.g., robustness against parameter variations, distur-
bance rejection, etc.), while K2 denotes a feedforward controller that is responsible
for the filtering properties (e.g., response speed, smooth tracking, etc.).

- P

K2

K1 ue

ffu

fbu
r y

Fig. 4. Kawato’s scheme in ideal situations.

In the ideal situation where the inverse of P (i.e., P−1) exists and is stable, we
can achieve the perfect tracking

e(t) = r(t)− y(t) = 0, (5)

by choosing

K2 = P
−1 (6)

for any stabilizing feedback controller K1. This is the case when all of the zeros of P
are stable. Unfortunately, almost all of the practically important plants do not satisfy
this condition.

There are two non-ideal cases that depend on the locations of unstable zeros.
The first case is where all unstable zeros are infinite. In other words, all of the finite
zeros of P are stable. In that case, we can choose K2 as

K2 = P
−1W, (7)
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where W is a stable filter that makes K2 stable and proper. Obviously, any stable
W whose relative degree is equal to that of P is acceptable. Figure 5 represents a
scheme where the tracking error e(t) is given by

e(t) =W (s)r(t) − y(t), (8)

rather than (5). It is clear that the perfect tracking is achieved with respect to the
tracking error (8).

- K1er P y

K2

W

Fig. 5. A modification of Fig. 4.

Finally, we consider the case where there are finite unstable zeros. In this case,
the feedforward controller (6) or (7) does not work because it must have some unstable
poles, which will be canceled out by unstable zeros of the plant. In this case, we may
choose K2 as

K ′2 = arg inf
K: stable

‖(I − PK)W‖∞. (9)

This is actually the approximate inverse proposed by Zames (1981). The correspond-
ing architecture is shown in Fig. 6. The feedforward controller K ′2 given by (9) min-
imizes the normalized L2 error

J =
‖Wr − y‖2
‖r‖2

.

- K1 P

K2
’

r yeW

Fig. 6. A modification of Fig. 5.

2.3.2. Adaptation without Delay

Now we consider Kawato’s feedback error learning method in the framework of adap-
tive control theory. In order to focus on the most essential features of the scheme,
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we assume that the plant has a stable inverse. This is the simplest case which we
discussed in the previous subsection. In this case, the ideal feedforward controller is
given by (6). Hence, we must devise a tuning rule for K2 that assures the convergence
of K2 to P

−1.

First, we parameterize the feedforward controller K2 in the state space as

η̇1 = Fη1 + gr, (10)

η̇2 = Fη2 + gu0, (11)

u0 = c
T
0 η1 + d

T
0 η2 + k0r, (12)

where η1 ∈ � n and η2 ∈ � n are the state vectors of K2, and n denotes the McMillan
degree of P (s). F is any stable matrix with (F, g) being stable. The transfer function
from r to u0 is given by

Tu0r(s) =
k0 + c

T
0 (sI − F )

−1g

1− dT0 (sI − F )
−1g
. (13)

If (F, g) is controllable, Tu0r(s) can be equal to any transfer function of degree n by
choosing vectors c0 and d0, and a scalar k0 approximately. The parameterization (9)
is used frequently in the literature on adaptive control (Åström and Wittenmark,
1989). Thus it is possible to set c0, d0 and k0 so that K2 is equal to P

−1. In adaptive
control, however, the parameters c0, d0 and k0 are unknown and we must construct
a tuning rule for these parameters to produce a desired transfer function with input
r and output u . More precisely, the parameterization (10)–(12) is rewritten as

ξ̇1 = Fξ1 + gr, (14)

ξ̇2 = Fξ2 + gu, (15)

uff = c(t)
T ξ1 + d(t)

T ξ2 + k(t)r, (16)

and the unknown parameters c(t), d(t) and k(t) are tuned such that the error

e(t) = u0(t)− uff (t)

tends to zero. A popular tuning rule is obtained by minimizing the squared error

J(t) = e(t)2 =
(

u0(t)− uff (t)
)2

using the gradient method. This results in the tuning rule

ċ(t) = αe(t)ξ1(t), (17)

ḋ(t) = αe(t)ξ2(t), (18)

k̇(t) = αe(t)r(t), (19)

where α is a parameter for adjusting the adaptation speed. The tuning rule (17)–(19)
is essentially equivalent to (2) if we replace τ by u.
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The convergence proof of the adaptation law (14)–(19) is quite standard. Set

V (t) = ‖c0 − c(t)‖
2 + ‖d0 − d(t)‖

2 + ‖k0 − k(t)‖
2,

where c0, d0 and k0 are correct parameters that generate the desired I/O relation
given in (9).

Then, from (17)–(19), it follows that

V̇ (t) = −α
[

(c0−c(t))
T ξ1(t) + (d0−d(t))

T ξ2(t) + (k0−k(t))r(t)
]

e(t)

= −α(cT0 ξ1(t) + d
T
0 ξ2(t) + k0r(t) − uff (t))e(t)

= −αe(t)2 + α
[

cT0 (η1(t)− ξ1(t)) + d
T
0 (η2(t)− ξ2(t))

]

.

Since F is stable, η1(t) → ξ1(t) and η2(t) → ξ2(t). Therefore, we have established
e(t)→ 0.

The above procedure cannot be applied to our purpose of identifying P−1(s)
because we do not know the desired output n0(t) = P

−1r(t). To circumvent this
fundamental difficulty, Kawato used the feedback signal ufb as an error signal that
drives learning. From Fig. 4, it follows that

ufb(t) = u(t)− uff (t),

where u(t) is the input to the plant. If u(t) is identical to the desired output of the
feedforward controller K2, we can use the above identification scheme for identifying
P−1(s). However, u(t) is not equal to the desired output P−1(s)r(t). This is the
difficulty in Kawato’s scheme.

Now, we write the adaptation law of Kawato’s scheme (2) by reading τ as u.
The parameterization (14)–(16) is written as

ξ̇1 = Fξ1 + gr(t), (20)

ξ̇2 = Fξ2 + g
(

u0(t)− P
−1(s)e(t)

)

, (21)

uff (t) = c(t)
T ξ1 + d(t)

T ξ2 + k(t)r(t), (22)

where u0(t) denotes the true input

u0(t) = P
−1(s)r(t) (23)

and e(t) denotes the tracking error

e(t) = r(t) − P (s)u(t). (24)

Taking the feedback controller K1 as a constant gain, we have

ufb(t) = K1e(t). (25)

We denote by w(t) the unknown vectors c(t), d(t) and k(t), i.e.,

w(t) =
(

c(t)T d(t)T k(t)
)T
.
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Then, we have

∂uff (t)

∂w
=
[

ξ1(t)
T ξ2(t)

T r(t)
]T

.

Accordingly, we have the following representation of (2):

ċ(t) = αξ1(t)K1e(t), (26)

ḋ(t) = αξ2(t)K1e(t), (27)

k̇(t) = αr(t)K1e(t). (28)

The essential feature of Kawato’s scheme is the existence of the inverse in (21), which
reflects the fact that we do not know the desired output u0(t) of the feedforward con-
troller K2. Actually, it represents the coupling of feedforward learning and feedback
control.

Since u(t) = uff (t) +K1e(t) from Fig. 4, we have

u0(t)− uff (t) = (P
−1(s) +K1)e(t).

The correct values c0, d0 and k0 of the parameters c(t), d(t) and k(t), respectively,
generate the following system:

η̇1 = Fη1 + gr(t), (29)

η̇2 = Fη2 + gu0(t), (30)

u0 = c
T
0 η1 + d

T
0 η2 + k0r(t). (31)

From (20) and (29), it follows that

u0(t)− uff (t) = ∆c(t)
T ξ1(t) + ∆d(t)

T ξ2(t) + ∆k(t)r(t)

+ dT0
(

η2(t)− ξ2(t)
)

,

where

∆c(t) = c0 − c(t), (32)

∆d(t) = d0 − d(t), (33)

∆k(t) = k0 − k(t). (34)

Due to (21) and (30), we have

η2(t)− ξ2(t) = −(sI − F )
−1gP−1(s)e(t).

Accordingly, we have obtained the representation of the tracking error

e(t) = G(s)−1
(

∆c(t)ξ1(t) + ∆d(t)ξ2(t) + ∆k(t)r(t)
)

, (35)

where

G(s) :=
(

1− dT0 (sI − F )
−1g

)

P−1(s) +K1. (36)
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The vectors c0, d0 and k0 are chosen such that (13) holds for Tur(s) = P
−1(s).

Therefore, we have

G(s) = k0 + c
T
0 (sI − F )

−1g +K1. (37)

The following result is shown in (Miyamura and Kimura, 2000).

Theorem 1. If G(s) given by (37) is strictly positive real, then the algorithm implies
e(t)→ 0 as t→∞.

Now, since we assume that P−1(s) is stable, k0+c
T
0 (sI−F )

−1g, which represents
the “numerator” of P−1(s), is also stably invertible. Hence, we can always make
G(s) strictly positive real by choosing a large K1. Accordingly, we have verified that
Kawato’s scheme is always stable if K1 is sufficiently large, provided that P (s) has
a stable inverse.

2.3.3. The Case with a Time Delay

The existence of significant time delays in the sensory feedback pathway was an im-
portant motivation for introducing a feedforward controller in Kawato’s scheme. Now,
we consider the feasibility of Kawato’s scheme for the case where there is a significant
time delay in the feedback loop. Figure 7 illustrates a block diagram of Kawato’s
scheme, where τ is the delay time. The artificial time delay is introduced after the
command signal r(t) to make the tracking error consistent.

- y

K2

K1 Pr

e sτ-

ue t τ-(       )
e sτ-

ufb

uff

Fig. 7. Kawato’s scheme with time delay.

Now, the parameterization and tuning rule are respectively described as

ξ̇1 = Fξ1 + gr, (38)

ξ̇2 = Fξ2 + gu, (39)

uff (t) = c(t)
T ξ1(t) + d(t)

T ξ2(t) + k(t)r, (40)

u(t) = uff (t) +K1e(t− τ), (41)
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and

ċ(t) = αξ1(t− τ)e(t− τ), (42)

ḋ(t) = αξ2(t− τ)e(t− τ), (43)

k̇(t) = αr(t − τ)e(t− τ). (44)

From (35) and (38), it follows that

e(t) = Gτ (s)
−1
(

∆c(t)T ξ1 +∆d(t)
T ξ2 +∆k(t)r

)

, (45)

where ∆c(t), ∆d(t) and ∆k(t) are given by (36) and

Gτ (s) = k0 + c
τ
0(sI − F )

−1g +K1e
−τs. (46)

The relation (45) corresponds to (37) for the delay-free case. The convergence of the
algorithm is guaranteed only locally for the case with a delay.

Theorem 2. If Gτ (s) is strictly positive real, then it converges for a sufficiently
small α, if the initial error e(0) is sufficiently small.

Since Gτ (s) contains the delay e
−τs as a coefficient of K1, the condition that

Gτ (s) is strictly positive real cannot be met for large K1. In that case, we may choose
F and g so that Gτ (s) is positive real. However, since k0 and c0 are unknown, it
may be difficult to select such F and g.

3. Reinforcement Learning and the Basal Ganglia

3.1. Reinforcement Learning

Neural network models of reward- and penalty-based learning have been formulated
under the name of “reinforcement learning” (RL) (Sutton and Barto, 1998). In the
RL framework, the desired output of a control system is not explicitly specified. The
controller, or the agent, has to find the right output by trying different action outputs
at different states and monitoring the “rewards” associated with them.

In the early 80’s, Barto and his colleagues proposed the “actor-critic” architecture
for reinforcement learning of control tasks (Barto et al., 1983, cf. Fig. 8). The archi-
tecture consists of an “actor” that produces stochastic action outputs and a “critic”
that evaluates how good or bad the resulting state is.

Specifically, the actor implements a feedback control law, or a policy

u(t) = G
(

x(t)
)

+ ν(t), (47)

where u ∈ � m is the action output, x ∈ � n is the system state, and ν ∈ � n denotes
noise for exploration. In a deterministic environment, the state changes with

x(t+ 1) = F
(

x(t),u(t)
)

(48)
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Actor Environmentaction

state

Fig. 8. The actor-critic architecture.

and a reward is given according to

r(t) = R
(

x(t),u(t)
)

. (49)

The role of the critic is to predict the cumulative future reward

V (x) = E
[

r(t) + γr(t+ 1) + γ2r(t + 2) + · · · | x(t) = x
]

, (50)

where r(t + 1), r(t+ 2), . . . are determined by the evolution of the combined system
(47)–(49). The parameter 0 ≤ γ ≤ 1 is called the “discount factor.” The critic makes
a prediction of the above expected cumulative reward V from the current state x(t)
using a look-up table or a function approximator like a neural network.

A variable that represents the inconsistency of temporarily adjacent predictions

δ(t) = r(t) + γV
(

x(t+ 1)
)

− V
(

x(t)
)

, (51)

is called the “temporal difference error” (TD error) and serves as a dual learning
signal for the critic and the actor.

The goal of learning by the critic is to make an accurate prediction of cumula-
tive future reward V (x), i.e., to bring the TD error δ to zero. When the critic is
parameterized as V (x;v), this is achieved by updating the parameters v by

v := v + αcδ(t)

(

∂V

∂v

)T

, (52)

where αc is the learning rate.

The goal of learning by the actor is to improve the policy G so that the corre-
sponding cumulative future reward V becomes larger. With proper learning by the
critic, the average TD error δ should converge to zero. However, with the use of a
stochastic policy, it fluctuates around zero. A positive TD error δ(t) implies that ei-
ther the immediate reward r(t) or the predicted future reward V (x(t+1)) is greater
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than expected. Accordingly, the TD error can be used to bias, or reinforce, the pol-
icy towards the direction of the previous output perturbation ν. When the actor is
parameterized as G(x;w), its parameters w are updated by

w := w + αaδ(t)ν(t)

(

∂G

∂w

)T

, (53)

where αa is the learning rate.

Although the derivations were performed by heuristics, the above TD learning
algorithms have been successfully applied to several control tasks as well as game
solving programs (Tesauro, 1994).

3.2. Insights from Dynamic Programming

The goal of reinforcement learning is quite similar to that of optimal control. Both
are formulated as methods for maximizing the reward or minimizing the cost. A
conceptual difference is that mathematical models of the system dynamics and the
cost function are usually assumed in optimal control but they are supposed to be
unknown, at least initially, in reinforcement learning.

In the late 80’s, it was clarified that the output of the critic V (x) is equivalent
to the “value function” in the formulation of dynamic programming (DP). The main
issue in the DP framework is to find a value function that satisfies the Bellman
equation

V (x) = max
u

E
[

R(x,u) + γV
(

F (x,u)
)]

. (54)

Then an optimal policy is derived from the value function V and the reward model
R as

u = G(x) = argmax
u

E
[

R(x,u) + γV
(

F (x,u)
)]

. (55)

In the conventional DP, the value function V (x) is derived off-line by using
the reward model R(x,u) and the state transition model F (x,u). In the actor-critic
framework, the actor learns a policy that maximizes the right-hand side of the Bellman
equation while the critic learns the value function to satisfy the Bellman equation by
minimizing the TD error.

This interpretation of RL algorithms from the DP viewpoint enabled theoretical
analyses of their convergent properties (Watkins, 1989; Dayan, 1992). It also enabled
the development of novel reinforcement learning algorithms (Doya, 2000). It further
promoted studies on the use of function approximation methods with DP, in which
the value function may not be updated over the entire state space but appropriately
learned only in those regions that are relevant for a given task. In turn, this enabled
the application of RL or DP to a variety of optimization problems which had not
been practically solved by traditional DP (Bertsekas and Tsitsiklis, 1996; Sutton and
Barto, 1998).
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3.2.1. Q Learning

One variant of reinforcement learning is called “Q learning,” in which the term that
should be maximized in the Bellman equation is defined as

Q(x,u) = E
[

R(x,u) + γV
(

F (x,u)
)]

. (56)

This is called the “action value function” for the action u at the state x. A
commonly used policy is the “softmax” function

P (u | x) =
eβQ(x,u)
∑

u
′∈U

eβQ(x,u′)
, (57)

where U is the set of possible actions. The parameter β, called the inverse tem-
perature, controls the trade-off between the exploration of a new action and the
exploitation of the knowledge learned. It is equivalent to the greedy policy (55) with
β →∞.

In the original Q learning, the action value function is updated by

Q
(

x(t),u(t)
)

:= (1− α)Q
(

x(t),u(t)
)

+ α

[

r(t) + γ max
u
′∈U
Q
(

x(t+ 1),u′
)

]

, (58)

where αQ is the learning rate.

Therefore, instead of using models of reward R and dynamics F as in DP, the
action value function is updated by the actual experience of reward r(t) and the next
state x(t + 1). The convergence of Q learning was established for discrete systems
with finite states and actions (Watkins, 1989). This also served as the basis for other
convergence proofs of TD-based algorithms.

3.2.2. Continuous TD Learning

Most studies on reinforcement learning have assumed discrete states and actions up-
dated in discrete time. However, RL algorithms for the case of continuous states,
actions and time are helpful in applications to control tasks in which a smooth per-
formance is desired. This was made possible based on the continuous-time formulation
of dynamic programming (Doya, 2000).

For a continuous-time system

ẋ(t) = F
(

x(t),u(t)
)

, (59)

the value function is defined as

V
(

x(t)
)

=

∫

∞

t

e
s−t

τ r(t) ds, (60)

where τ is the time scale of evaluation. The optimality condition is given by the
Hamilton-Jacobi-Bellman equation

1

τ
V (x) = max

u

[

R(x,u) +
∂V

∂x
F (x,u)

]

. (61)
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A continuous-time counterpart of the TD error is defined as

δ(t) = r(t) + V̇
(

x(t)
)

−
1

τ
V
(

x(t)
)

. (62)

The basic strategy is the same as in the discrete-time case: while estimating the value
function by making the TD error δ(t) zero, update the action policy so that δ(t) is
maximized.

When the model of the input gain ∂F/∂u is known and the cost for the action
is convex with respect to each output, i.e.,

R(x,u) = R(x) +
∑

j

Sj(uj), (63)

then the action that maximizes the TD error is given by

u = s

(

∂F

∂u

T ∂V

∂x

T
)

, (64)

where s is a component-wise inverse of the derivative of the action cost function, i.e.,
sj = (S

′

j)
−1 (Doya, 2000).

It has been demonstrated that this learning control scheme is applicable to diffi-
cult nonlinear control problems, such as the swing up control of an inverted pendulum
(Doya, 2000) and the learning of the stand-up behavior by a real robot hardware (Mo-
rimoto and Doya, 2000).

3.3. Reinforcement Learning Model of the Basal Ganglia

Learning based on rewards and punishment is one of the most essential elements of
animal behaviors. The properties and mechanisms of reward-based learning have been
well studied in psychology, ethology and neurobiology. An important fact found in
these experimental studies is that predictability is a very important factor in reward-
based learning. For example, a food reward can be used to reinforce a certain motor
response. However, if there is a predictable relationship between a sensory stimulus,
e.g., a light and the reward, the reward itself looses the role as a behavioral reinforcer
and the preceding light can reinforce a motor response as if it were a reward signal.

The neurotransmitter dopamine has been known to be involved in the reinforce-
ment of animal and human behaviors. For example, electric stimulation to dopamin-
ergic pathways as well as drugs that increase the release of dopamine are strong
behavioral reinforcers. It has been recently found in the recording of dopaminergic
neurons in monkeys that those neurons initially respond to rewards, such as food and
juice, but they later lose such responses if the reward is predictable from preceding
sensory events, such as light or sound. In turn, the sensory stimulus that enables the
monkey to predict the delivery of a future reward elicits the response of dopamine
neurons (Schultz et al., 1997).

This finding on the dopamine neuron response was a big surprise for researchers
working on reinforcement learning models. Before the learning of the value function,
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i.e., V (x) ≡ 0, the TD error (51) is simply δ(t) = r(t), that is, the same as the actual
reward. However, after the value function is well learned, δ(t) ' 0 is satisfied most of
the time. However, when a reward or a reward predicting sensory input is suddenly
presented, there should be a temporary increase in the TD error. Therefore, the
response of the dopamine neurons to a reward predicting stimulus exactly replicates
the behavior of the TD error in RL algorithms. Furthermore, the role of the dopamine
as a behavioral reinforcer is in accordance with the role of the TD error in the actor-
critic architecture.

The basal ganglia receive strong dopaminergic inputs. They have been known to
be involved in motor control because of severe motor symptoms for diseases in the
basal ganglia, such as Parkinson’s disease and Huntington’s disease. However, their
role in motor control in the normal brain has been a big enigma. The above finding
concerning dopamine neurons has led to proposals of novel functional models of the
basal ganglia (Houk et al., 1995; Montague et al., 1996).

Figure 9 illustrates the circuit of the basal ganglia. The input stage of the basal
ganglia, the striatum, is composed of two functional compartments: the striosome and
the matrix. The striosome projects to the dopaminergic neurons in the substantial
nigra, and the matrix projects through multiple inhibitory pathways to the motor
and premotor areas of the cerebral cortex. The dopaminergic neurons project back to
the striatum and make synaptic contacts onto the cortico-striatal synapses (Wilson,
1998).

cerebral cortex

striosome matrix

thalamus

dopamine SNr / GPiSNc

GPe

STN

striatum

Fig. 9. The circuit of the basal ganglia; SNc and SNr: compact and reticular parts of the
substantia nigra, GPe and GPi: external and internal segments of the global pallidus,
STN: subthalamic nucleus, ◦: excitatory synapse, •: inhibitory synapse.

Based on this anatomical organization and data from the dopaminergic neurons,
Barto, Houk and their colleagues proposed an actor-critic model of the basal ganglia
(Barto, 1995; Houk et al., 1995). In this model, the striosome works as a “critic”
predicting the future reward, and the matrix works as an “actor” selecting motor
outputs. Both compartments learn by using the TD signal carried by the dopamin-
ergic neurons. This model nicely explains the roles of the basal ganglia in learning
and execution of voluntary movements. Similar reinforcement learning models of the
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basal ganglia have successfully replicated experimental data on reward-based learning
(Hikosaka et al., 1999; Nakahara et al., 1998; Schultz et al., 1997; Suri and Schultz,
1998) and contributed towards a better understanding of the function of the basal
ganglia.

3.3.1. Action Value Function Model of the Basal Ganglia

It has been known that the neurons in a part of the basal ganglia called the caudate
nucleus are involved in saccadic eye movements in particular directions. Recently,
Kawagoe and her colleagues (Kawagoe et al., 1998) showed that the activity of the
caudate neurons in monkeys is strongly dependent on the expectations of reward. In an
experiment in which a water or a juice reward were given only in one of four directions,
the direction tuning of the caudate neurons was found to be strongly modulated by
whether the movement was going to be rewarded or not. Even though eye movements
in three of four directions were not rewarded, the animal performed the movement in
order to move to the next trial, which might be rewarded. Consequently, the activity
of the caudate neurons does not simply encode the movement command, but seems
to encode the reward value associated with the movement.

Such a behavior is well characterized by the hypothesis that the caudate neurons
encode the action value function Q(x,u) which is the predictor of a future reward
if an action u is taken at a state x. This hypothesis also suggests that a form of
stochastic sampling of actual actions based on the predicted reward, such as (57),
is implemented in the down-stream of the caudate nucleus. This model of action
selection based on action value functions can provide a new working hypothesis about
the role of multiple feed-forward connections in the basal ganglia circuit.

3.3.2. Interaction of the Basal Ganglia and the Cerebellum

Although “model-free” algorithms of reinforcement learning, such as the actor-critic
and Q learning, are applicable to a wide range of tasks, their learning is desperately
slow. If the model of the dynamics is known a priori , or has already been learned, it
is advantageous to utilize such a model in reinforcement learning (Doya, 2000).

As outlined in the previous section, the most likely storage place of internal
models of the body and the environment is the cerebellum. We have also mentioned
the possibility that the basal ganglia learn the value function. How can these two be
combined to implement a model-based reinforcement learning scheme, such as (55)
and (64)? Although there is no direct anatomical connection between the cerebellum
and the basal ganglia, they can communicate through the loop circuits with the
cerebral cortex (Doya, 1999).

In the discrete paradigm, model-based action selection (55) can be implemented
as follows. For an imaginary action candidate u∗, the resulting state x∗ = F (x,u∗) is
predicted by the internal model F in the cerebellum and represented in the cerebral
cortex. It is then sent to the basal ganglia, and the corresponding value V (x∗) is
predicted. If it is large enough, the candidate action u∗ is put to actual execution; if
it is not, another cation candidate is considered.
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In the continuous paradigm (64), the direction of the steepest increase in the
value function (∂V /∂x)T is predicted, possibly by the basal ganglia, and represented
in the cortex. It is then converted as an action command that is necessary to achieve
the state change by a “transpose model” (∂F/∂u)T in the cerebellum.

With the availability of brain imaging technologies, such hypotheses of global
collaboration of brain modules are now experimentally testable. For example, in a
number of experiments on skill learning, the lateral cerebellum and the rostral pre-
motor areas are highly activated. This suggests that subjects may use the above serial
search strategy in learning a new task.

As we have seen above, the computational theory of reinforcement learning and its
applications as models of brain mechanisms for goal-directed learning and behaviors
can be quite helpful in exploring the possible roles of the neural circuit within the
basal ganglia as well as the global circuit consisting of the basal ganglia, with the
cerebral cortex and the cerebellum (Doya, 1999).

4. Modular Control with Multiple Models

4.1. Switching Control

The configuration of multiple models is often used in the context of switching control
in control theory. Switching control is a control strategy that uses several controllers
one after another depending on the state of the plant and its environment.

A switching controller is composed of a set of candidate controllers and a switch-
ing logic, which specifies the switching rule of selecting one controller at a time from
candidate controllers. Switching controllers were used mainly for the control of a non-
linear plant by linear controllers. Sliding mode control is a typical example of such
controllers, which dates back to the idea of variable structure control.

Recently, switching control has been used for adaptive control, where an unknown
plant is represented not by a single model but by several candidate models (Morse,
1996). Corresponding to each candidate model of the plant, an appropriate controller
is prepared. At each instance of time, one controller among the candidate controllers
is chosen by the supervisor, the selection being based on the observation of the state
and environment. A standard scheme of switching control based on multi-model con-
figuration is shown in Fig. 10. Each controller Ci is constructed from a possible plant
model Pi. The supervisor decides which controller to use based on which model is
most likely the one in reference to the observation data.

4.2. Modular Learning by the “Soft” Competition of Predictors

It has been demonstrated in motor adaptation experiments, such as eye movement
control, that de-adaptation to a normal condition and re-adaptation to a previously
learned condition are much faster than adaptation to a new condition. This suggests
that humans do not just tune the parameters of a single controller but retain multiple
controllers for different situations and switch them on the fly. If a condition is varied



96 K. Doya et al.

Switching Device Supervisor

Plant

C2C1 Cm...

yr e-

Fig. 10. A standard form of switching control.

between two learned ones, the motor output smoothly interpolates between the two
cases, often following a sigmoid curve (Ghahramani and Wolpert, 1997).

Imamizu and his colleagues demonstrated that when a subject learns to use a
new tool, a small part of the cerebellum is activated (Imamizu et al., 2000). They also
demonstrated that different local spots are activated when a subject uses different
tools (Imamizu et al., 1997). They suggested that such local activation spots in the
cerebellum are the neural correlates of internal models of controlled objects, and
that the cerebellum can learn and store multiple models for different objects and
environmental settings. It has also been demonstrated in monkey experiments that
a part of the premotor cortex, called pre-SMA, is activated when a motor task is
switched to another (Shima et al., 1996). These results suggest that the network
linking the cerebellum and the premotor cortex may be involved in the selection of
appropriated control modules for different conditions.

A basic question in using multiple controllers is how to select an appropriate
controller under a given condition. A naive solution is to try each controller one by
one and to select the one that offers the best performance. However, this is too costly
when there is a large number of candidate controllers.

Wolpert and Kawato proposed a modular control architecture called the “mul-
tiple paired forward and inverse models” (MPFIM) (Wolpert and Kawato, 1998).
This architecture comprises n pairs of a forward model and an inverse model of the
controlled object (Fig. 11). An important fact is that although we can test only one
inverse model controller at a time, it is possible to test multiple forward models simul-
taneously by comparing their prediction errors. This scheme was recently extended to
the reinforcement learning paradigm as “multiple model-based reinforcement learn-
ing” (MMRL), in which each inverse model controller is replaced by a reinforcement
learning agent (Doya et al., 2000b). We call these architectures the multiple predictor-
controller (MPC) architecture (Doya et al., 2000a).
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predictor 1

controller 1

predictor i

controller i

predictor n

controller n
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^
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Fig. 11. The multiple predictor-controller (MPC) architecture. MPFIM uses an inverse mod-
el for the controller while a reinforcement learning module is used in MMRL.

In the MPC architecture, the outputs of the controllers as well as the learning of
the predictors and the controllers are weighted by a “responsibility signal”

λi(t) =
e−Ei(t)/2σ

2

n
∑

j=1

e−Ej(t)/2σ
2

, (65)

where Ei(t) is the squared prediction error of the i-th prediction model. This formula
is called the “softmax” function and the parameter σ controls the sharpness in module
selection. For a continuous-time system

ẋ(t) = F
(

x(t),u(t)
)

, (66)

we denote the output of the i-th predictor as ˆ̇xi(t) and its prediction error is given
by

Ei(t) = ||ˆ̇xi(t)− ẋ(t)||
2. (67)

The above responsibility signal λi(t) is used for four purposes: (i) weighting the
state prediction outputs, (ii) weighing the learning of prediction models, (iii) weighting
the action outputs, and (iv) weighting the learning of controllers, as outlined below.
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1. State prediction: The outputs of the prediction models are linearly weighted
by the responsibility signal λi(t) to make a prediction of the vector field

ˆ̇x(t) =
n
∑

i=1

λi(t)ˆ̇xi(t). (68)

These predictions are used in model-based control algorithms as well as for the
annealing of σ, as will be described later.

2. Prediction model learning: λi(t) is then used for weighting the parameter
update of the prediction models. Namely, the error signal for the i-th prediction
model is given by

λi(t)
(

ˆ̇xi(t)− ẋ(t)
)

. (69)

3. Action output: The outputs of the controllers

ui(t) = gi
(

x(t)
)

(70)

are linearly weighted by λi(t) to produce the action output to the environment

u(t) =

n
∑

i=1

λi(t)ui(t). (71)

4. Controller learning: λi(t) is also used for weighting the learning of the con-
trollers. The actual equation for the parameter update varies with the choice of
the control algorithms. When a temporal difference (TD) algorithm (Barto et
al., 1983; Sutton, 1988; Doya, 2000) is used, the TD error δ(t) weighted by the
responsibility signal

δi(t) = λi(t)δ(t) (72)

is used as the teaching signal for the i-th RL controller.

Using the same weighting factor λi(t) to train the prediction models and the
controllers helps each RL controller to learn an appropriate control policy for the
context in which its paired prediction model produces valid predictions.

4.3. Multiple Linear Quadratic Controllers

In the MPC architecture, the availability of the learned prediction models of the
environment is helpful in the design of controllers. In general, reinforcement learning
is notoriously slow for nonlinear, high-dimensional control tasks. However, when a
locally linear model of the dynamics and a locally quadratic model of the reward
or cost are available, an optimal value function is designed by solving the Riccati
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equation. Accordingly, as a special case of the MPC architecture, we have formalized
a multiple linear-quadratic controller (MLQC) architecture (Doya et al., 2000b).

Figure 12 is an example of application of MLQC to the task of pendulum swing-
up with a limited torque (Doya, 2000). This is a simple, but non-trivial, nonlinear
control task. The goal is to bring the pendulum to the upright position. When the
output torque is limited, several swinging motions are necessary to bring it upwards.

Two modules, each consisting of a locally linear dynamic model, a locally quadrat-
ic reward model, and an LQ controller, were devised. The parameters of the two
modules were initially set randomly (Figs. 13(a) and (c)).

The following annealing process was used for the parameter σ which controls
the sharpness of the responsibility signal (65):

σk+1 = ηaEk + (1− η)σk , (73)

where k denotes the number of trials and Ek is the average state prediction error
during the k-th trial.

Within about 100 learning trials, both the dynamic and reward models well
approximated the sine- and cosine-shaped target functions, respectively, as shown
in Figs. 13(b) and (d). Accordingly, successful swing-up was achieved with the first
module, which made the downward position unstable, and the second module, which
made the upright position stable (Fig. 12(b)). The two modules were appropriately
switched by the responsibility signal λi(t).

This example shows that the MPC architecture can appropriately handle a non-
linear control task by dividing it into multiple linear task domains. In other experi-
ments, it has also been demonstrated that the MPC architecture can adapt to nonsta-
tionary environments, by selecting appropriate modules for different environmental
settings (Haruno et al., 1999; Doya et al., 2000b).

A marked difference of MPC from the conventional switching control paradigm is
the use of “soft” competition by the graded responsibility signal as opposed to “hard”
switching. In the conventional switching control, the prediction models as well as the
controllers are fixed while they are learned in the MPC architecture. The rationale for
using soft competition is that if hard switching is used from the onset of learning, a
suboptimal decomposition of the task based on premature prediction models is likely
to be fixed. Therefore, it is desirable to use a large σ initially and gradually decrease
σ as the learning proceeds (Pawelzik et al., 1996), e.g., by (73).

This biologically motivated control architecture using multiple adaptive models
seems to have large potential in nonlinear/nonstationary control. However, there are
still many open questions. In general, a mixture of outputs from two good controllers
may turn out to be a bad strategy, e.g., pressing the accelerator and the brake at
the same time at a yellow traffic light. Furthermore, the concatenation of locally
optimal control policies is not guaranteed to produce a globally optimal policy. Such
problems in adaptive multiple model-based control deserve serious investigations from
the viewpoint of systems theory.
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Fig. 12. (a) An example of swing-up performance for dynamics ml2θ̈ = −mgl sin θ−µθ̇+T ,
where m = l = 1, g = 9.8, µ = 0.1 and Tmax = 5.0. The reward is given by
r = − cos(θ)− 1

2
RT 2. (b) The trajectory from the initial state (0 [rad], 0.1 [rad/s]);

o: start, +: goal, solid line: Module 1, dashed line: Module 2. (c) Time evolution of
the state (top), the action (middle) and the responsibility signal (bottom).
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Fig. 13. Development of state and reward prediction of models. (a) and (b): Outputs of
state prediction models before and after learning, respectively; (c) and (d): outputs
of the reward prediction model before and after learning, respectively; solid line:
Module 1, dashed line: Module 2, dotted line: targets (ẍ and r), ◦: centers of
spatial responsibility prediction ci.
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5. Conclusion

As we have seen in the three examples, neuroscience and systems theory can play
complementary roles in elucidating the design principles of robust, adaptive systems.
Bidirectional interaction between the two research disciplines is highly important
and can be very productive. We hope that better collaboration between the two
communities will give rise to a better understanding of the principles of complex
adaptive systems.
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