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COMPUTING IN THE COMPOSITE GF(qrn) 

OF CHARACTERISTIC 2 FORMED BY MEANS 

OF AN IRREDUCIBLE BINOMIAL 

CZESLAW KOSCIELNY* 

Since the operation of reduction modulo a polynomial needed for parallel com

puting in GF(qm) is the simplest possible in the case of a binomial, in this 

paper the main properties of irreducible binomials over GF(q) of characteris

tic 2 are given. It is shown that P(x) = xm- Po is irreducible over GF(q) for 

q = 28
, s > 1 if m ~ 3 divides q - 1. The method of performing all mul

tiplicative operations in GF(qm) of characteristic 2 (multiplication, rising to 

an arbitrary power, multiplicative inversion) formed by means of an irreducible 

polynomial is also presented. The use of irreducible binomials may be attractive 

for those engineers and researches who deal with implementation of hardware 

and microprogrammed devices for computing in GF(qm), even if m and q are 

large. 

1. Introduction 

Computations in finite fields are important in such domains as error-control coding, 
signal processing, switching theory and cryptography, and it is now discussed from the 
point of view of developing efficient algorithms and parallel architectures for perform
ing such computations. In this paper, the author shows how to determine irreducible 
binomials over certain composite Galois fields of characteristic 2 and presents the ques
tion of applying such binomials for implementing multiplicative operations in finite 
fields (since addition is trivial, only multiplicative operations are considered here). It 
is obvious that the operation of reduction modulo an irreducible binomial, needed for 
computing in GF(qm), is the simplest possible in comparison with reduction modulo 
irreducible polynomials having more than two terms. Therefore, the application of 
irreducible binomials as field polynomials remarkably simplifies algorithms in finite 
field arithmetics. The method presented here is applicable when q = 28

, s > 1 and 
if m 2: 3 divides q - 1. This case is rather frequent (e.g. the desired conditions are 
fulfilled for more than 41% of all GF(28

), 2::; s::; 128). Since the roots of any irre
ducible binomial over a composite GF(q) of characteristic 2 are linearly dependent, 
only the canonical basis of GF(qm) over GF(q) is considered in the paper. 

The author is of the opinion that the use of irreducible binomials can have some 
influence on the application research concerning implementation of hardware and 
micro-programmed devices of various structure and configuration for performing op
erations in large and huge finite fields of characteristic 2. 

* Technical University of Zielona G6ra, Department of Robotics and Software Engineering, ul. 
Podg6rna 50, 65-246 Zielona G6ra, Poland, e-mail: ckos@irio.pz.zgora.pl. 



672 Cz. Koscielny 

2. Finite Field Arithmetic in GF(qm) for q = 2S, s > 1, m> 3 
andml(q-1) 

Although the existence of irreducible binomials over finite fields was proved in the 
nineteenh century (Serret, 1866) and several irreducible binomials over composite 
Galois fields of characteristic 2 were probably calculated and noticed years ago (e.g. 
two such binomials are listed in Green and Taylor, 1974), the author has not found 
any paper regarding a possibility of their application. Thus, to initiate this practical 
question, the following theorem is formulated: 

Theorem 1. Let 

q=25
, s>1, mj(q-1), m2:3 (1) 

Then the binomial 

P(x) = xm- Po (2) 

where P0 denotes an arbitrary primitive element of GF(q), is irreducible over GF(q). 

Proof. To prove this theorem, it suffices to show that non-null elements of GF(q) are 
not roots of the binomial (2). Let w denote a primitive element of GF(qm), and a 
be a primitive element of GF(q). Thus a= w(qm-1)/(q-1). The equation P(ak) = 0, 
where 0 :::; k :::; q - 2, has a solution if and only if (ak)m = a, viz. if m k = 1 
(mod q- 1). It follows from the elementary number theory that this is impossible 
because (m, q- 1) > 1. Therefore the roots of (2) are not elements of GF(q) and 
this binomial is irreducible over GF(q). • 

Corollary 1. The binomial {2), belonging to the exponent e = m(q- 1), is the 
minimum function m(qm_1);e(x) for the element /3 E GF(qm), where 

m-1 

/3 = w1fm L qk (3) 
k=O 

It should be noted that Theorem 1 is a particular case of a more general theorem 
proved by Serret (1866), where a field with characteristic 2: 2 is considered and the 
term P0 may also have an order different from q - 1. 

To discuss how to perform operations in GF(qm) constructed by means of an 
irreducible binomial, let the polynomials over G F( q) 

A(x) = Ao + A1x + · · · + Am-1Xm-
1 

B(x) = Bo + B1x + · · · + Bm-lXm-
1 

be two arbitrary elements of GF(qm), and let 

PD(x) = PDo + PD1x + · · · + PDm-1xm-1 

SQ(x) = SQo + SQ1x + · · · + SQm-1Xm-1 

(4) 

(5) 
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denote the product of elements (4) and the square of A(x), respectively. It is clear 
that (5) is computed according to 

P D(x) = A(x)B(x) (mod P(x)) 

SQ(x) = (A(x)) 2 (mod P(x)) 
(6) 

over GF(q), where P(x) is as in Theorem 1. 

The author determined (5) for m = 3, 5, ... , 13 and observed that the compo
nents of PD(x) and SQ(x) can be expressed as simply as in the following theorem: 

Theorem 2. Let q and m satisfy the conditions of Theorem 1. Then, for any odd 
m > 1 the operations of multiplication and squaring in G F( qm) are described by 
means of the equations 

P Di = 2::::: AjBk + 2::::: AJBkPo (7) 
j+k=i j+k=m+i 

for i,j,k E {O,l, ... ,m- 1}, 

fori E {O,l, ... ,(m-1)/2} 
(8) 

SQ2i+l = A(m+l)/2+iPo for i E {0, 1, ... , (m- 3)/2} 

The proof by induction of eqns. (7) and (8) is omitted. 

The direct writing out of (7) and (8) for m = 3 and m 
astonishing simplicity and regularity: 

5 reveals their 

P Do = AoBo + A2B1Po + A1B2Po 

PD1 = A1Bo + AoB1 + A2B2Po 

P D2 = A2Bo + A1B1 + AoB2 

SQo = A6 

SQ1 = A~Po 
SQ2 = Ai 

P Do = AoBo + A4B1Po + A3B2Po + A2B3Po + A1B4Po

p D1 = A1Bo + AoB1 + A4B2Po + AgBgPo + A2B4Po 

PD2 = A2Bo + A1B1 + AoB2 + A4B3Po + A3B4Po 

P Dg = AgBo + A2B1 + A1B2 + AoBg + A4B4Po 

P D4 = A4Bo + A3B1 + A2B2 + A1B3 +AoB4 

(9) 

(10) 

(11) 
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SQo = A5 

SQ1 = A5Po 

SQ2 = Ai 

SQ3 = A~Po 
SQ4 =A~ 

Cz. J{oscielny 

(12) 

As is known, formulae (7) and (8) can be successfully used in designing both effi
cient algorithms and compact hardware or micro-programed devices for performing 
all multiplicative operations in a composite G F( qm) of characteristic 2 satisfying the 
conditions of Theorem 1, under the assumption that one has a possibility of carrying 
out all the operations in GF(q). The operation of inversion in GF(qm) can be either 
realized as the (qm- 2)-th power of an element or, alternatively, calculated from (7) 
as described in what follows. Let 

INV(x) = 1/A(x) (mod P(x)) 

INV(x) = INVo + INV1x + · · · + INVm-1 xm-1 (13) 

denote the inverse of a non-null A(x). Then by substituting B(x) = INV(x) into (7) 
and taking into account that A(x) INV(x) = 1, the system of linear equations 
over GF(q) 

M 

INV0 

INV1 

INVm-1 

1 

0 

0 

(14) 

is obtained, where M is an m x m matrix with elements being functions in Ai 
and P0 • The solution of (14) directly yields the components of (13). 

In some cases, by applying algorithms for efficient polynomial multiplication 
(Knuth, 1981; Sedgewick, 1990), a considerable reduction in the number of gates 
in the implemented hardware is possible when compared with the straightforward 
approach. The reduction results from saving some multiplications in GF(q) at 
the cost of extra additions. For example, in (9) one must compute nine different 
products AiBj. By rewriting these equations in the form 

PDo = ((A1 +A2)(B1 +B2) +A1B1 +A2B2)Po +AoBo 
PD1 = (Ao + A1)(Bo + BI) + A1B1 + AoBo + A2B2Po 
PD2 = (Ao + A2)(Bo + B2) + AoBo + A2B2 

the number of needed different products AiBj can be reduced to six (A0 B0 , A1B 1 , 
A2B2, (A1 + A2)(B1 + B2), (Ao + AI)(Bo + BI), (Ao + A2)(Bo + B2)). 
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3. Example 

As an example, a problem of computing a product, a square, powers from 2 to 5 

and an inverse in a composite GF(q3 ) of characteristic 2 is presented. Thus now 

P(x) = x3 + P0 , P0 is a primitive element of GF(q), and the polynomials A(x) = 

A0 +A1x+A2x2, B(x) = B0 +B1x+B2x2 represent two arbitrary elements of GF(q3 ). 

Let 

PD(x) =: A(x)B(x) 

SQ(x) = (A(x)) 2 

CU B(x) = (A(x)) 3 

DG4(x) =: (A(x))4 

DG5(x) =: (A(x)) 5 

INV(x) =: 1/A(x) 

(mod P(x)) = PDo + PD1x + PD2x2 

(mod P(x)) = SQo + SQ1x + SQ2x2 

(mod P(x)) = CUBo + CUB1x + CUB2x2 

(mod P(x)) = DG40 + DG41x + DG42x2 

(mod P(x)) = DG5o + DG51x + DG52x2 

(mod P(x)) = INV0 + INV1x + INV2x2 

(15) 

denote the product of two elements, the first four powers and the inverse of A(x), 

respectively, in any GF(q3 ) of characteristic 2 satisfying (1). Since now m = 3, 

a product and a square in GF(q3 ) may be computed from (9) and (10). By assuming 

that B(x) = SQ(x) and substituting it into (9), the formula for rising to the third 

power in GF(q3 ) can be obtained: 

CUBo =A~+ Ai Po + A~PJ 
CU B1 = A6A1 + AoA~Po + Ai A2Po 

CU B2 = AoAi + A6A2 + A1 A~Po 

Similarly, by applying properly (9) and (10), one gets 

DG40 =A~ 

and 

DG41 = AiPo 

DG42 = A~PJ 

DG5o = Ag + Ai A2PJ + A1A~PJ 
DG51 = A~A1 + AoAi Po + A~PJ 
DG52 = A~A2 + Af Po + AoA~PJ 

(16) 

(17) 

(18) 

When applying (9) for computing the components of inversion over GF(q3 ), one 

must substitute B(x) = INV(x) and PD(x) = 1 in (9), which yields the following 

system of linear equations with unknowns I NV0 , I NV1 and I NV2 : 

(19) 
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The solution of (19) gives 

INV0 = Do/D 

INV1 = DI/D (20) 

INV2 = D2/D 

where 

Ao A2Po A1Po 1 A2Po A1Po 
D= A1 Ao A2Po ' Do= 0 Ao A2Po (21) 

A2 A1 Ao 0 A1 Ao 

Ao 1 A1Po Ao A2Po 1 

D1= A1 0 A2Po ' D2= A1 Ao 0 (22) 

A2 0 Ao A2 A1 0 

and finally 

INVo = (A6 + A1A2Po)j(A5 + AiPo + A~P5 + AoA1A2Po) 
INV1 = (AoA1 + A~Po)/(A5 + AiPo + A~P5 + AoA1A2Po) (23) 
INV2 = (Ar + AoA2)/(A5 + ArPo + A~P5 + AoA1A2Po) 

In (16)-(23) the variables Ai, Bi, P0 are elements of GF(q) and all the ope
rations are performed on these variables over GF(q). The parameter q may be 
arbitrarily chosen, but under the assumption that the condition (1) is fulfilled. 

To explain the method in detail, suppose that q = 4 and that the implementa
tion of operations in GF(43 ) is to be made. In this case, modules for performing all 
the operations in GF(4) are needed. Therefore, one ought to design an adder, a mul
tiplier, non-trivial scalers (multipliers by a constant greater than 1), a squarer and 
an inverter in GF(4). The field GF(4) is formed by means of the unique primitive 
polynomial of degree 2 over GF(2) 

p(x) = x2 + x + 1 

and two elements a, b E G F( 4) can be represented as two-dimensional vectors 
over GF(2), 

a= [ao a1], b = [bo b1] 

corresponding to the polynomials 

a(x) = ao + a1x, b(x) = bo + b1x 

In order to simplify the notation for further consideration, let us assume now 
that GF( 4) = ( {0, 1, 2, 3}, +, ·), where 0 = [00], 1 = [10], 2 = [01] and 3 = [11]. 
The tables of addition and multiplication in G F( 4), according to this notation, are 
given in Table 1. 
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Table 1. Tables of operations in GF(4). 

1 + 1 o 1 2 3 11 . 1 o 1 2 3 1 

0 0 1 2 3 0 0000 

1 1 0 3 2 1 0 1 2 3 

2 2 3 0 1 2 0 2 3 1 

3 3 2 1 0 3 0 3 1 2 

It can be easily seen that in G F( 4) with a canonical basis a multiplier, a squarer, 

an inverter, a multiplier by 2 and a multiplier by 3 are determined by the equations 

pd(x) ~ a(x)b(x) 

sq(x) ~ (a(x)) 2 

inv(x) ~ 1/a(x) 

mb2(x) ~ xa(x) 

mb3(x) ~ (x + 1)a(x) 

(mod p(x)) = pdo + pd1x 

(mod p(x)) = sqo + sq1x 

(mod p(x)) = inv0 + inv1x 

(mod p(x)) = mb2o + mb21x 

(mod p(x)) = mb3o + mb31x 

which correspond to the vector notation 

where 

a · b = (pdo pd1] 

a2 = [sqo sq1] 

1/a = [inv0 inv1] 

2 · a = [mb20 mb21] 

3 ·a= [mb3o mb31] 

pdo = aobo + a1b1 

pd1 = aob1 + a1bo + a1b1 

sqo = invo = mb21 = mb3o = ao + a1 

sq1 = inv1 = mb2o = a1 

mb31 = ao 

(24) 

(25) 

(26) 

The operations of addition and multiplication in (26) are performed, of course, 

over GF(2). 

To apply (16)-(20) and (23) in the particular case under consideration, one must 

take into account that q = 4. This implies the following substitutions into (16)-(20) 

and (23): 
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where 2 and 3 denote, according to the notation introduced, elements of G F( 4), which 
are both primitive. One should also remember that 

V /3 E G F ( 4) /33 = 
1 

{ 

1 "f /3 1: 0 

0 if/3=0 
(28) 

which means that the operation of rising a variable to the third power in G F ( 4) 
may be simply implemented by one two-input OR gate. After substitution of (27) 
into (16)-(20) and (23), they can be directly used to a logical design of the desired 
devices for performing operations in GF(43 ). 

In order to make it possible for the reader to verify the formulae for computing 
in GF(43 ), the multiplicative group of GF(43 ) is shown in Table 2. 

Table 2. Multiplicative group of GF(43
) (field polynomial: x 3 +2 over GF(4), 

primitive element of GF(43
): w = 1 + a-2

, a is a root of the field 
polynomial). 

W
0 = (100] w1 = [101] w2 = [120] w3 = [221] w4 = [103] w5 = [112] w6 = [323] 

w7 = [030] w8 = [130] w9 = [031] w10 = [111] w11 = [330] w12 = [233] w13 = [321] 

w14 = [002] w15 = [032] w16 = [102] w17 = [133] w18 = [022] w19 = [312] w20 = [121] 

w21 = [200] w22 = [202] w23 = [230] w24 = [332] w25 = [201] w26 = [223] w27 = [131] 

w28 = [010] w29 = [210] w30 = [012] w31 = [222] w32 = [110] w33 = [311] w34 = [132] 

w35 = [003] w36 = [013] w37 = [203] w38 = [211] w39 = [033] w40 = [123] w41 = [232] 

w42 = [300] w43 = [303] w44 = [310] w45 = [113] w46 = [302] w47 = [331] w48 = [212] 

w49 = [020] w50 = [320] w51 = [023] w52 = [333] w53 = [220] w54 = [122] w55 = [213] 

w56 = [001] w57 = [021] w58 = [301] w59 = [322] w60 = [011] w61 = [231] w62 = [313] 

This group has been generated according to 

wi = [Ai,o Ai,1 Ai,2), i = 0, 1, ... '62 (29) 

where 

( 1 + x2
) i = A· o + A· 1 x + A· 2 x2 

z, z, z, (mod x3 + 2) (30) 

is computed over GF(4) by using Table 1, since a:2 + 1 is a primitive element of 
G F ( 4 3 ) (a: is a root of the field polynomial). 

It is possible to proceed in a similar manner if q = 4k, k = 2, 3, ... , no matter 
how large q is, provided that one is capable of performing all the operations in 
GF(q). However, if q 2 16, then there are many possible representations of this field 
and, accordingly, many equivalent circuits or algorithms with a different degree of 
complexity can be designed. 
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From a practical point of view it is important to examine the degree of com
plexity of the multiplicative operations in the fields GF(qm) formed by means of 
an irreducible binomial and an irreducible trinomial. Generally, this question seems 
to be difficult, but the case of GF(43 ) can be analysed. It can be verified that the 
simplest trinomial over GF(4), F(x) = x3 + x + 1, is irreducible and belongs to 
the exponent 7. By using this trinomial to form G F ( 4 3 ), one can get the following 
equivalents of eqns. (9), (10), (16)-(18) and (23), respectively: 

where 

P Do = AoBo + A2B1 + A1B2 

PD1 = A1Bo + AoB1 + A2B1 + A1B2 + A2B2 

PD2 = A2Bo + A1B1 + AoB2 + A2B2 

SQo = A5 

SQ1 =A~ 

SQ2 = Ai +A~ 

CUBa= AJ +A{+ A1A~ +A~ 

CUB1 = A6A1 +A{+ AiA2 + AoA~ + A1A~ 

CU B2 = AoAi + A6A2 + Ai A2 + AoA~ + A1A~ +A~ 

DG4o = Ao 

DG41 = A1 +A2 

DG42 = A1 

DG5o = A5 + Ai + A1 A2 + A~ 
DG51 = Ai + AoA2 + A~ 

DG52 = AoA1 + Ai + AoA2 

INVo = (A5 + Ai + A1A2 + A~)/D 
INV1 = (AoAl + A~)/D 

INV2 = (Ai + A 0 A2 + A~)/D 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

The comparison of (31)-(36) with the formulae obtained by means of the pro
posed method is left to the reader who can also verify the correctness of (31)-(36) 
using Tables 1 and 3. 



680 Cz. Koscielny 

Table 3. Multiplicative group of GF(43
) (field polynomial: x3 + x + 1 over 

GF(4), primitive element of GF(43
): w = 1 + 2a, a-a root of the 

field polynomial). 

w 0 = (100] w1 = [120] w2 = (103] w3 = [033] w 4 = [122] w 5 = (231] w 6 = (020] 

w 7 = (023] w 8 = (130] w 9 = (111] w10 = [313] w11 = [211] w12 = (003] w13 = (113] 

w14 = (021] w15 = [202] w16 = (102] w17 = (212] w18 = [110] w19 = [132] w20 = (223] 

w21 = (300] w22 = [310] w23 = (302] w24 = [022] w25 = (311] w26 = [123] w27 = (010] 

w28 = (012] w29 = [320] w30 = (333] w31 = [232] w32 = (133] w33 = (002] w34 = (332] 

w35 = (013] w36 = (101] w37 = (301] w38 = (131] w39 = [330] w 40 = (321] w41 = [112] 

w42 = [200] w43 = (230] w 44 = (201] w 45 = (011] w 46 = [233] w 47 = (312] w
48 = (030] 

w49 = (031] w 50 = (210] w51 = (222] w52 = (121] w53 = [322] w 54 = (001] w 55 = [221] 

w 56 = (032] w 57 = [303] w 58 = (203] w 59 = (323] w 60 = [220] w 61 = [213] w 62 = [331] 

4. Conclusion 

A remarkable simplification resulting from the use of binomials as field polynomials 
makes it possible to easily implement any multiplicative operation in a class GF(qm) 
satisfying (1), even for higher q and m. Equations (7) and (8), describing multi
plications and squaring in G F( qm), which may be used to realize any multiplicative 
operation (e.g. exponentiation to an arbitrary power by applying the repeated square
and-multiply method), are regular, very simple and slowly grow versus m. 

Although the method proposed is applicable for both software and hardware 
implementations, in the author's opinion it can be almost directly used in design
ing micro-programmed devices of different structures or microprocessor systems for 
performing operations in large and huge composite finite fields. However, to make 
the method suitable for a VLSI implementation, one ought to resolve many practical 
questions. 
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