AN EXTENSION OF THE CAYLEY-HAMILTON THEOREM FOR A STANDARD PAIR OF BLOCK MATRICES

Tadeusz KACZOREK*

Abstract

The Cayley-Hamilton theorem is extended for a standard pair of matrices partitioned into blocks that commute in pairs. The Victoria theorem (Victoria, 1982) is a particular case for $E=I$ of the extended Cayley-Hamilton theorem. The new theorem is illustrated by an example. Some remarks on extension of the theorem for non-square block matrices are also given.

1. Introduction

The Cayley-Hamilton theorem plays an important role in linear algebra, linear networks and automatic control systems (Chang and Chen, 1992; Fragulis, 1995; Gantmacher, 1974; Kaczorek, 1992; 1993; Lancaster, 1969; Lewis, 1982; 1986; Mertzios, 1989). The theorem says that every square matrix satisfies its own characteristic equation (Gantmacher, 1974; Kaczorek, 1992; 1993; Lancaster, 1969). The classical Cayley-Hamilton theorem was extended for pairs of square matrices (Chang and Chen, 1992; Lewis, 1982; 1986), square block matrices (Victoria, 1982) and for two-dimensional (2D) and $n \mathrm{D}(n>2)$ linear systems described by the Roesser model or by the general model (Kaczorek, 1992; 1993; Mertzios, 1989; Mertzios and Christodoulou, 1986; Smart and Barnett, 1989; Theodoru, 1989). Recently in (Kaczorek, 1994; 1995a; 1995b) the Cayley-Hamilton theorem was extended for non-square matrices, non-square block matrices and for singular 2D linear systems with nonsquare matrices. In (Fragulis, 1995) the Cayley-Hamilton theorem was extended for polynomial matrices of an arbitrary degree. In the analysis and synthesis of generalized control systems we deal with standard pairs of block matrices (Kaczorek, 1992; 1993).

In this paper, the Cayley-Hamilton theorem will be extended for a standard pair of matrices partitioned into blocks that commute in pairs. The Victoria theorem (Victoria, 1982) is a particular case for $E=I$ of the theorem given in this paper. The extended Cayley-Hamilton theorem can be used e.g. for computing the inverse matrix of a block matrix and in the analysis of linear systems consisting of subsystems.

[^0]
2. Preliminaries

Let $P_{n}(\mathbb{C})$ be the set of n-order square complex matrices that commute in pairs and $M_{m}\left(P_{n}\right)$ be the set of square matrices partitioned in m^{2} blocks belonging to $P_{n}(\mathbb{C})$. The Kronecker product \otimes of the block matrix

$$
A=\left[\begin{array}{c}
A_{11} \ldots A_{1 m} \tag{1}\\
\ldots \ldots \ldots \ldots \\
A_{m 1} \ldots A_{m m}
\end{array}\right], \quad A_{i j} \in P_{n}(\mathbb{C})
$$

and a matrix $B \in \mathbb{C}^{n \times n}$ is defined by

$$
A \otimes B:=\left[\begin{array}{c}
A_{11} B \ldots A_{1 m} B \tag{2}\\
\ldots \ldots \ldots \ldots \ldots \\
A_{m 1} B \ldots A_{m m} B
\end{array}\right]
$$

where $\mathbb{C}^{n \times n}$ is the set of $n \times n$ complex matrices.
Definition 1. A pair of block matrices (E, A) is called standard if there exist scalars α and β such that

$$
\begin{equation*}
E \alpha+A \beta=I \quad \text { (the identity matrix) } \tag{3}
\end{equation*}
$$

Lemma 1. If the pair (E, A) is standard, then it is also commutative, i.e.

$$
\begin{equation*}
E A=A E \tag{4}
\end{equation*}
$$

Proof. Let $\beta \neq 0$. From (3) we have

$$
A=\frac{1}{\beta} I-\frac{\alpha}{\beta} E
$$

and

$$
E A=E\left(\frac{1}{\beta} I-\frac{\alpha}{\beta} E\right)=\left(\frac{1}{\beta} I-\frac{\alpha}{\beta} E\right) E=A E
$$

If $\alpha \neq 0$, the proof is similar.
Lemma 2. Let the pair (E, A) be standard.
(i) If $E \in M_{m}\left(P_{n}\right)$ and $\beta \neq 0$, then $A \in M_{m}\left(P_{n}\right)$.
(ii) If E is symmetric and $\beta \neq 0$, then A is also symmetric.

Proof. Let $\beta \neq 0$. From (3) we have $A=(1 / \beta) I-(\alpha / \beta) E$ and $A \in M_{n}\left(P_{n}\right)$, since by assumption $E \in M_{m}\left(P_{n}\right)$.

In Lemma 2 the roles of E and A (β and α, respectively) can be interchanged.
Definition 2. The matrix polynomial

$$
\begin{equation*}
\Delta(\Lambda, M)=\operatorname{det}[E \otimes \Lambda-A \otimes M]=\sum_{i=0}^{m} D_{i, m-i} \Lambda^{i} M^{m-i}, \quad D_{i j} \in \mathbb{C}^{n \times n} \tag{5}
\end{equation*}
$$

is called the (matrix) characteristic polynomial of the pair $E, A \in M_{m}\left(P_{n}\right) . \Lambda$ and M constitute the block indeterminate pair of (E, A). The pair (Λ, M) is called the block-eigenvalue pair of (E, A).

In (5) 'det' means the formal determinant of a block matrix $F \in M_{m}\left(P_{n}\right)$ which we obtain by developing the determinant of F and considering its commuting blocks as elements (Victoria, 1982). Denoting by Det F the usual determinant of F, we have the well-known relation (Victoria, 1982)

$$
\begin{equation*}
\operatorname{Det} F=\operatorname{Det}(\operatorname{det} F) \tag{6}
\end{equation*}
$$

3. Main Result

Consider a standard pair of block matrices $E, A \in M_{m}\left(P_{n}\right)$.
Theorem 1. Let (5) be the characteristic polynomial of (E, A). Then

$$
\begin{equation*}
\Delta(A, E)=\sum_{i=0}^{m}\left(I \otimes D_{i, m-i}\right) A^{i} E^{m-i}=0 \tag{7}
\end{equation*}
$$

Proof. Let

$$
\begin{align*}
B(\Lambda, M)= & B_{m-1,0} \otimes \Lambda^{m-1}+B_{m-2,1} \otimes \Lambda^{m-2} M+\cdots \\
& +B_{1, m-2} \otimes \Lambda M^{m-2}+B_{0, m-1} \otimes M^{m-1} \tag{8}
\end{align*}
$$

be the block-adjoint matrix of $[E \otimes \Lambda-A \otimes M]$. By using (6) it can be shown that (Victoria, 1982)

$$
\begin{equation*}
B(\Lambda, M)[E \otimes \Lambda-A \otimes M]=I \otimes \Delta(\Lambda, M) \tag{9}
\end{equation*}
$$

Substituting (5) and (8) into (9), comparing the matrix coefficients of the some powers of Λ and M and using the well-known property of the Kronecker product (Lancaster, 1969) $(A \otimes B)(C \otimes D)=(A C) \otimes(B D)$, we obtain

$$
\begin{align*}
B_{m-1,0} E & =I \otimes D_{m, 0} \\
-B_{m-1,0} A+B_{m-2,1} E & =I \otimes D_{m-1,1} \\
-B_{m-2,1} A+B_{m-3,2} E & =I \otimes D_{m-2,2} \tag{10}\\
-B_{1, m-1} A+B_{0, m-1} E & =I \otimes D_{1, m-1} \\
-B_{0, m-1} A & =I \otimes D_{0, m}
\end{align*}
$$

Postmultiplying (10) successively by $A^{m}, A^{m-1} E, \ldots A E^{m-1}, E^{m}$ and adding them, we obtain (7).

Note that in the particular case $E=I$ the Victoria theorem (Victoria, 1982) can be obtained from Theorem 1.

4. Example

Consider the pair of block matrices

$$
\begin{align*}
& E=\left[\begin{array}{ll}
E_{1} & E_{2} \\
E_{3} & E_{4}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & \vdots & 2 & 1 \\
0 & 1 & \vdots & 0 & 2 \\
\cdots & \ldots & \vdots & \cdots & \cdots \\
3 & 0 & \vdots & 2 & 2 \\
0 & 3 & \vdots & 0 & 2
\end{array}\right] \in M_{2}\left(P_{2}\right) \tag{11}\\
& A=\left[\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right]=\left[\begin{array}{ccccc}
2 & 1 & \vdots & 2 & 1 \\
0 & 2 & \vdots & 0 & 2 \\
\cdots & \cdots & \vdots & \cdots & \cdots \\
3 & 0 & \vdots & 3 & 2 \\
0 & 3 & \vdots & 0 & 3
\end{array}\right] \in M_{2}\left(P_{2}\right)
\end{align*}
$$

The pair (11) is standard since it satisfies (3) for $\alpha=-1$ and $\beta=1$. The characteristic polynomial of (11) has the form

$$
\begin{align*}
\Delta(\Lambda, M) & =\operatorname{det}[E \otimes \Lambda-A \otimes M]=\left|\begin{array}{ll}
E_{1} \Lambda-A_{1} M & E_{2} \Lambda-A_{2} M \\
E_{3} \Lambda-A_{3} M & E_{4} \Lambda-A_{4} M
\end{array}\right| \\
& =D_{20} \Lambda^{2}+D_{11} \Lambda M+D_{02} M^{2} \tag{12}
\end{align*}
$$

where

$$
\begin{align*}
& D_{20}=E_{1} E_{4}-E_{3} E_{2}=\left[\begin{array}{rr}
-4 & 1 \\
0 & -4
\end{array}\right] \\
& D_{11}=E_{3} A_{2}+A_{3} E_{2}-E_{1} A_{4}-A_{1} E_{4}=\left[\begin{array}{rr}
5 & -5 \\
0 & 5
\end{array}\right] \tag{13}\\
& D_{02}=A_{1} A_{4}-A_{3} A_{2}=\left[\begin{array}{ll}
0 & 4 \\
0 & 0
\end{array}\right]
\end{align*}
$$

Using (7), (12) and (13), we obtain

$$
\begin{aligned}
& {\left[\begin{array}{cc}
D_{20} & 0 \\
0 & D_{20}
\end{array}\right] A^{2}+\left[\begin{array}{cc}
D_{11} & 0 \\
0 & D_{11}
\end{array}\right] A E+\left[\begin{array}{cc}
D_{02} & 0 \\
0 & D_{02}
\end{array}\right] E^{2}} \\
& =\left[\begin{array}{rrrr}
-4 & 1 & 0 & 0 \\
0 & -4 & 0 & 0 \\
0 & 0 & -4 & 1 \\
0 & 0 & 0 & -4
\end{array}\right]\left[\begin{array}{rrrr}
10 & 7 & 10 & 11 \\
0 & 10 & 0 & 10 \\
15 & 9 & 15 & 15 \\
0 & 15 & 0 & 15
\end{array}\right] \\
& +\left[\begin{array}{rrrr}
5 & -5 & 0 & 0 \\
0 & 5 & 0 & 0 \\
0 & 0 & 5 & -5 \\
0 & 0 & 0 & 5
\end{array}\right]\left[\begin{array}{rrrr}
8 & 6 & 8 & 10 \\
0 & 8 & 0 & 8 \\
12 & 9 & 12 & 13 \\
0 & 12 & 0 & 12
\end{array}\right] \\
& \quad+\left[\begin{array}{llll}
0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{rrr}
7 & 5 & 6
\end{array}\right]\left[\begin{array}{llll}
0 & 9 & 0 & 6 \\
0 & 7 & 0 & 0 \\
9 & 9 & 10 & 11 \\
0 & 9 & 0 & 10
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the standard pair (11) is a zero of its characteristic polynomial (12).

5. Concluding Remarks

In (Kaczorek, 1995a), the Victoria theorem was only extended for non-square block matrices with square commutative blocks. In this paper, the Cayley-Hamilton theorem was extended for a standard pair of matrices partitioned into blocks that commute in pairs. The Victoria theorem in (Victoria, 1982) is a particular case of the proved theorem for $E=I$.

In a similar way as in (Kaczorek, 1994; 1995a; 1995b), the presented theorem can be extended for non-square block matrices and can be used for the computation of the left and right inverses of block matrices. Another example of application of the extended Cayley-Hamilton theorem is the analysis and synthesis of large-scale linear systems consisting of a number of subsystems.

References

Chang F.R. and Chen H.C. (1992): The generalized Cayley-Hamilton theorem for standard pencils. - Syst. Contr. Lett., Vol.18, No.2, pp.179-182.
Fragulis G.F. (1995): Generalized Cayley-Hamilton theorem for polynomial matrices with arbitrary degree. - Int. J. Contr., Vol.62, No.6, pp.1341-1349.
Gantmacher F.R. (1974): The Theory of Matrices, Vol.2. - Chelsea, New York.
Kaczorek T. (1992): Linear Control Systems, Vol.I. - New York: Research Studies Press Ltd.
Kaczorek T. (1993): Linear Control Systems, Vol.II. — New York: Research Studies Press Ltd.
Kaczorek T. (1994): Extensions of the Cayley-Hamilton theorem for 2-D continuous-discrete linear systems. - Appl. Math. and Comp. Sci., Vol.4, No.4, pp.507-515.
Kaczorek T. (1995a): An extension of the Cayley-Hamilton theorem for non-square blocks matrices and computation of the left and right inverses of matrices. - Bull. Pol. Acad. Sci. Techn., Vol.43, No.1, pp.49-56.
Kaczorek T. (1995b): An extension of the Cayley-Hamilton theorem for singular 2-D linear systems with non-square matrices. - Bull. Pol. Acad. Sci. Techn., Vol.43, No.1, pp.39-48.
Lancaster P. (1969): Theory of Matrices. - New York: Academic Press.
Lewis F.L. (1982): Cayley-Hamilton theorem and Fadeev's method for the matrix pencil, $[s E-A]$. - Proc. 22nd IEEE Conf. Dec. Contr., San Antonio, pp.1282-1288.
Lewis F.L. (1986): Further remarks on the Cayley-Hamilton theorem and Leverrie's method for the matrix pencil $[s E-A]$. - IEEE Trans. Automat. Contr., Vol.31, No.9, pp. 869-870.
Mertzios B.G. (1989): Computation of the fundamental matrix sequence and the CayleyHamilton theorem in singular 2-D systems. - Proc. Int. Symp. Mathematical Theory of Networks and Systems (MTNS-89), Vol.1, pp.172-178.
Mertzios B.G. and Christodoulou M.A. (1986): On the generalized Cayley-Hamilton theorem. - IEEE Trans. Automat. Contr., Vol.31, No.2, pp.156-157.
Smart N.M. and Barnett S. (1989): The algebra of matrices in n-dimensional systems. IMA J. Math. Contr. Inf., Vol.6, pp.121-133.
Theodoru N.J. (1989): M-dimensional Cayley-Hamilton theorem. - IEEE Trans. Automat. Contr., Vol.AC-34, No.5, pp.563-565.

Victoria J. (1982): A block-Cayley-Hamilton theorem. - Bull. Math. Soc. Sci. Matj. Roumanie, Vol.26, No.1, pp.93-97.

[^0]: * Warsaw Technical University, Faculty of Electrical Engineering, Institute of Control and Industrial Electronics, ul. Koszykowa 75, 00-662 Warszawa, Poland, e-mail: kaczorek@nov.isep.pw.edu.pl.

