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A linear quadratic optimal control problem for a class of discrete distributed systems is analyzed. To solve this problem, we
introduce an adequate topology and establish that optimal control can be determined though an inversion of the appropriate
isomorphism. An example and a numerical approach are given.
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1. Introduction

Most of the systems encountered in practice are continu-
ous in time (Athans and Falb, 1966; Curtain and Pritchard,
1978; Curtain and Zwart, 1995; Kalman, 1960; Lasiecka
and Triggiani, 2000). However, the analysis and control
of a continuous system with a computer requires sam-
pling and thus a discretization of the system considered.
The importance of discrete systems lies in the fact that
they are present in a large number of fields, such as en-
gineering, economics, biomathematics, etc. The recourse
to discrete models is often preferred by engineers since,
on the one hand, some mathematical complexities such as
the choice of a function space and regularity of the solu-
tion are avoided and, on the other the hand, they are better
adapted to computer processing.

Let us start with a continuous distributed system:

x(t) = S(t)x0 +
∫ t

0

S(t−r)Bu(r) dr, t ∈ [0, T ], (1)

where x0, x(t) ∈ X , (S(t))t≥0 is a strongly continuous
semigroup on X , B ∈ L(U ,X ), and X , U are Hilbert
spaces. (X and U can be of finite dimensions, and then
the system is lumped.)

One of the discretization procedures which is most
often used (Lee et al., 1972; Ogata, 1995; Rabah and Mal-
abre, 1999) consists in partitioning the time horizon time
[0, T ] using the instants t0 = 0, t1 = δ, t2 = 2δ, . . . ,
tn = nδ, where δ = T/N and N ∈ N

∗, δ being the
sampling period. Then we assume that the control u is
constant over each interval [ti, ti+1[, i.e.,

u(t) = ui, ∀t ∈ [ti, ti+1[. (2)

Thus, setting x(ti) = xi, we get

xi+1 = x(ti+1)

= S(ti+1)x0

+
∫ ti+1

0

S(ti+1 − r)Bu(r) dr

= S(δ)S(ti)x0

+
∫ ti

0

S(δ)S(ti − r)Bu(r) dr

+
∫ ti+1

ti

S(ti+1 − r)Bu(r) dr

= S(δ)
[
S(ti)x0 +

∫ ti

0

S(ti − r)Bu(r) dr
]

+
∫ ti+1

ti

S(ti+1 − r)Bu(r) dr,

and then

xi+1 = S(δ)xi +
∫ ti+1

ti

S(ti+1 − r)Bu(r) dr. (3)

Using the hypothesis (2), we deduce that

xi+1 = S(δ)xi +
[∫ ti+1

ti

S(ti+1 − r)B dr
]
ui

= S(δ)xi +
(∫ δ

0

S(τ)B dτ
)
ui,

where τ = ti+1 − r. Then

xi+1 = Φxi + Bui, (4)

with Φ = S(δ) and B =
∫ δ

0
S(τ)B dτ.



M. Rachik et al.432

The discrete version (4) has been the subject of
numerous works (Chraibi et al., 2000; Dorato, 1993;
Faradzhev et al., 1986; Halkin, 1964; Klamka, 1995;
2002; Lee et al., 1972; Lun’kov, 1980; Weiss, 1972).
Our contribution in this context consists in studying the
quadratic control problem for a linear discrete system. It
is true that we are not the first to have examined this prob-
lem. Lee et al. (1972) demonstrated that optimal con-
trol and optimal cost can be obtained using a discrete
Riccati equation. Zabczyk (1974) proved that the opti-
mum can be computed using Lagrange multipliers. In
(Karrakchou and Rachik, 1995; Karrakchou et al., 1998),
the Hilbert uniqueness method (HUM), set forth by Li-
ons (1988a; 1988b), was used to prove that the optimum
comes from solving an algebraic linear equation.

The originality of our work consists in adopting the
discretization scheme described previously, but in the ab-
sence of the hypothesis (2), i.e., we assume that the con-
trol u(·) is not necessarily constant in the time interval
[ti, ti+1[.

In fact, when the difference between two consecu-
tive sampling instants is quite important (for example, if
the system (1) is a compartmental model (Daley and Gani,
2001; Jolivet, 1983) describing the evolution of a long ill-
ness or a chronic illness, it is natural that the difference
between two measurements, ti+1 − ti, can be as long as
several months), it does not make sense to suppose that
u(t) is constant between the instants ti+1 and ti.

In order to overcome this obstacle, we reconsider the
discretization of the system (1), but without the hypothe-
sis (2), which yields the difference equation

xi+1 = Φxi +
∫ ti+1

ti

Bi(θ)u(θ) dθ, (5)

with Φ = S(δ) and Bi(θ) = S(ti+1 − θ)B. To be more
precise and classify our problem in a more general mathe-
matical framework, in this paper we consider the discrete-
time system

⎧⎨
⎩ xi+1 = Φxi +

∫ ti+1

ti

Bi(θ)u(θ) dθ, i ≥ 0,

x0 ∈ X ,

(6)

where xi ∈ X is the state variable and u(θ) ∈ U .
Using a technique which is similar to the HUM (Li-

ons, 1988a; 1988b; El Jai and Bel Fekih, 1990; El Jai
and Berrahmoune, 1991), we introduce a suitable topol-
ogy to prove that optimal control and optimal cost stem
from the inversion of a coercive isomorphism and thus
from an algebraic equation easy to solve by classical nu-
merical methods.

To motivate the problem discussed in this paper, con-
sider temperature distribution in an industrial oven whose

simplified mathematical model is

∂T

∂t
(x, t) = α

∂2T

∂2x
(x, t) +

p∑
i=1

giXωiui(t), ∀t ≥ 0,

(7)
where T (·, t) is the temperature profile at the time t. We
suppose that the system is controlled by a variable control
u(t) = (u1(t), . . . , up(t))T , where ui(t) acts on the zone
ωi ⊂]0, 1[ according to a spatial distribution gi ∈ L2(ωi).

The associated initial condition is supposed to be ho-
mogeneous, i.e.,

T (x, 0) = T0(x), ∀x ∈ [0, 1],

and the boundary condition is also homogeneous, i.e.,

T (0, t) = T (1, t) = 0, ∀t ≥ 0.

Equation (7) can be written as

∂T

∂t
(x, t) = AT (x, t) + Bu(t), ∀t ≥ 0, (8)

where A is the operator ∂2/∂x2 whose domain D(A) and
spectrum σ(A) are respectively given by

D(A) =
{

f ∈ L2(0, 1) / f
′′ ∈ L2(0, 1)

and f(0) = f(1) = 0
}
,

and

σ(A) =
{
λn = −n2π2 / n ∈ N

∗},

while the associated eigenfunctions are

ϕn(x) =
√

2 sin (nπx), n = 1, 2, . . . ,

(ϕn)n≥1 being an orthonormal basis of L2(0, 1). The
bounded operator B is such that

B :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R
p −→ L2(0, 1),⎛

⎜⎜⎝
u1

...

up

⎞
⎟⎟⎠ −→

p∑
i=1

giXωiui.

It is known that the mild solution of Eqn. (8) is

x(t) = S(t)x0 +
∫ t

0

S(t − r)Bu(r) dr, t ∈ [0, T ],

where x(t) ∈ X = L2(0, 1), and (S(t))t≥0 is the strongly
continuous semigroup generated by the operator A. Then
the discretization of our system without the hypothesis (2)
leads to the difference equation

xi+1 = Φxi +
∫ ti+1

ti

Bi(θ)u(θ) dθ. (9)
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The corresponding output is supposed to be a sequence
of measurements taken at the instants t0 = 0, t1 =
δ, . . . , tN = Nδ = T , i.e.,

y(ti) = T (·, ti).

The control strategy consists in determining minimum-
norm control allowing us to minimize the differences
‖y(tN) − yd‖ and (‖y(ti) − ri‖)0≤i≤N−1, where yd is
a desired state and (ri)1≤i≤N−1 is a given desired trajec-
tory. Mathematically, solving this problem amounts to the
minimization of the quadratic criterion

J(u) = 〈yN − yd, G(yN − yd)〉

+
N−1∑
i=1

〈yi − ri, M(yi − ri)〉

+
∫ T

0

〈u(θ), Ru(θ)〉dθ.

M , R and G are selected to weigh the relative importance
of the performance measures caused by the vectors (y i)i,
the control variable u and the final output yN , respectively.

2. Some Useful Properties

In this section, we shall develop an optimality system to
characterize some optimal control u∗. For this purpose,
observe that the state (xk)1≤k≤N can be written as fol-
lows:

xk = Φkx0 +
k∑

j=1

∫ tj

tj−1

Φk−jBj−1(θ)u(θ) dθ,

k = 1, . . . , N. (10)

If we introduce the bounded operator H defined by

H :

⎧⎨
⎩

L2(0, T ;U) −→ l2(1, 2, . . . , N ;X ),

u −→ Hu =
(
(Hu)i

)
1≤i≤N

,

where

(Hu)k =
k∑

j=1

∫ tj

tj−1

Φk−jBj−1(θ)u(θ) dθ,

∀k = 1, 2, . . . , N, (11)

then from (10) we establish that

xk = Φkx0 + (Hu)k, ∀k = 1, 2, . . . , N.

The adjoint operator H∗ is such that

〈Hu, (x1, . . . , xN )〉l2(1,...,N ;X )

=
N∑

k=1

〈(Hu)k, xk〉

=
N∑

k=1

〈 k∑
i=1

∫ ti

ti−1

Φk−iBi−1(θ)u(θ) dθ, xk

〉

=
N∑

i=1

N∑
k=i

∫ ti

ti−1

〈u(θ), B∗
i−1(θ)Φ

∗k−ixk〉dθ

=
N∑

i=1

∫ ti

ti−1

〈u(θ),
N∑

k=i

B∗
i−1(θ)Φ

∗k−ixk〉dθ.

Setting

f(θ) =
N∑

k=i

B∗
i−1(θ)Φ

∗k−ixk, ∀θ ∈ [ti−1, ti[,

i = 1, 2, . . . , N,

we have

〈Hu, (x1, . . . , xN )〉l2(1,...,N ;X ) =
∫ T

0

〈u(θ), f(θ)〉dθ.

Then H∗(x1, x2, . . . , xN ) ∈ L2(0, T ;U) is given by

H∗(x1, x2, . . . , xN )(θ) =
N∑

k=i

B∗
i−1(θ)Φ

∗k−ixk,

θ ∈ [ti−1, ti[ for i = 1, 2, . . . , N. (12)

Consider the operator L defined by

L :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L2(0, T ;U) −→ X ,

u −→ (Hu)N

=
N∑

k=1

∫ tk

tk−1

ΦN−kBk−1(θ)u(θ) dθ,

so that
xN = ΦNx0 + Lu.

The adjoint operator L∗ : X −→ L2(0, T ;U) is such that

〈Lu, x〉 =
〈 N∑

k=1

∫ tk

tk−1

ΦN−kBk−1(θ)u(θ) dθ, x
〉

=
N∑

k=1

∫ tk

tk−1

〈u(θ), B∗
k−1(θ)Φ

∗N−kx〉dθ

=
∫ T

0

〈u(θ), g(θ)〉dθ,
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and therefore

(L∗x)(θ) = B∗
k−1(θ)Φ

∗N−kx,

∀θ ∈ [tk−1, tk[, k = 1, . . . , N.

3. Optimality System

Knowing that the functional to minimize in L2(0, T ;U) is

J(u) = 〈xN − xd, G(xN − xd)〉

+
N−1∑
i=1

〈xi − ri, M(xi − ri)〉

+
∫ T

0

〈u(θ), Ru(θ)〉dθ, (13)

we use the technical results established in the previous
section to deduce that

〈xN − xd, G(xN − xd)〉
= 〈ΦNx0 − xd + Lu, G(ΦNx0 − xd) + GLu〉
= 〈ΦNx0 − xd, G(ΦNx0 − xd)〉 + 〈u, L∗GLu〉

+ 2〈Lu, G(ΦNx0 − xd)〉,
and, for i = 1, . . . , N − 1, we have

〈xi − ri, M(xi − ri)〉
= 〈Φix0 − ri + (Hu)i, M(Φix0 − ri) + M(Hu)i〉
= 〈Φix0 − ri, M(Φix0 − ri)〉 + 〈(Hu)i, M(Hu)i〉

+ 2〈(Hu)i, M(Φix0 − ri)〉.
We easily deduce that the functional J can be written

as
J(u) = const + J∗(u),

where

const = 〈ΦNx0 − xd, G(ΦNx0 − xd)〉

+
N−1∑
i=1

〈Φix0 − ri, M(Φix0 − ri)〉,

and

J∗(u) = 2
(
〈Lu, G(ΦNx0 − xd)〉

+
N−1∑
i=1

〈(Hu)i, M(Φix0 − ri)〉
)

+ 〈u, L∗GLu〉 +
N−1∑
i=1

〈(Hu)i, M(Hu)i〉

+ 〈u, Ru〉.

Consider the sequence (ak)1≤k≤N and the operators
D and R described by{

ak = M(Φkx0 − rk), k = 1, 2, . . . , N − 1,

aN = G(ΦNx0 − xd),

D :

⎧⎪⎪⎨
⎪⎪⎩
F = l2(1, 2, . . . , N,X ) −→ F = l2(1, 2, . . . , N,X ),

(x1, x2, . . . , xN ) −→ (Mx1, Mx2, . . . ,

MxN−1, GxN )

and

R :

{
L2(0, T ;U) −→ L2(0, T ;U),

u −→ Ru,

where (Ru)(θ) = Ru(θ). It is easy to see that⎧⎪⎪⎨
⎪⎪⎩

D∗ = D and D ≥ 0,

(R)∗ = R, (R)−1 = R−1

and 〈Ru, u〉 ≥ α‖u‖2
L2(0,T ;U).

(14)

Moreover, since Lu = (Hu)N , the cost functional J ∗ can
be written as

J∗(u) = 2〈Hu, (a1, a2, . . . , aN )〉
+ 〈Hu, DHu〉+ 〈u, Ru〉

= 2〈u,H∗(a1, a2, . . . , aN )〉+〈u, (H∗DH+R)u〉
= 2l(u) + B(u, u),

where l is the linear form

l :

{
L2(0, T ;U) −→ R,

u −→ 〈u,H∗(a1, . . . , aN )〉

and B(·, ·) is the symmetric bilinear form

B(·, ·) :

⎧⎪⎪⎨
⎪⎪⎩

L2(0, T ;U)× L2(0, T ;U) −→ R,

(u, v) −→
B(u, v) = 〈u, (H∗DH + R)v〉.

We have B(u, u) = 〈Hu, DHu〉+ 〈u, Ru〉 so B(u, u) ≥
〈u, Ru〈 because D ≥ 0. From (14) we deduce that
B(u, u) ≥ α‖u‖2.

Thus J∗ is the sum of a continuous linear form l and a
bilinear, continuous, symmetric and coercive form B(·, ·).

From the Lax-Milgram theorem (Brezis, 1987; Cia-
rlet, 1988; Lions, 1968)), it follows that J ∗ has a unique
solution u∗ in L2(0, T,U). Furthermore, u∗ is character-
ized by

B(u∗, v) = −l(v), ∀v ∈ L2(0, T ;U),
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i.e.,

〈(H∗DH + R)u∗, v〉 = −〈H∗(a1, . . . , aN ), v〉.
Thus

H∗DHu∗ + Ru∗ = −H∗(a1, . . . , aN ).

The optimal control u∗ is characterized by

u∗ = −(R)−1
[H∗DHu∗ + H∗(a1, a2, . . . , aN )

]
.

Accordingly,

u∗ = −(R)−1H∗

×
[(

M(Hu∗)1, . . . , M(Hu∗)N−1, G(Hu∗)N

)
+

(
M(Φx0 − r1), . . . , M(ΦN−1x0 − rN−1),

G(ΦNx0 − xd)
)]

,

which gives

u∗ = −R−1H∗[(Mxu∗
1 , Mxu∗

2 , . . . , Mxu∗
N−1, Gxu∗

N )

− (Mr1, Mr2, . . . , MrN−1, Gxd)
]
.

Hence for θ ∈ [ti−1, ti[, i = 1, 2, . . . , N−1, we have

u∗(θ) = −R−1B∗
i−1(θ)

(N−1∑
k=i

Φ∗k−iM(xu∗
k − rk)

+Φ∗N−iG(xu∗
N − xd)

)
and

u∗(θ) = −R−1B∗
N−1(θ)G(xN − xd)

if θ ∈ [tN−1, tN [.

Consider the signal (pi)1≤i≤N defined by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pi =
N−1∑
k=i

Φ∗k−iM(xk − rk) + Φ∗N−iG(xN − xd),

i = 1, 2, . . . , N − 1

pN = G(xN − xd).

We have

Φ∗pi+1 =
N−1∑

k=i+1

Φ∗k−iM(xk − rk)+Φ∗N−iG(xN −xd)

= pi − M(xi − ri), i = 1, 2, . . . , N − 2,

and thus the signal pi satisfies the following difference
equation:{

pi = Φ∗pi+1 + M(xi − ri), i = 1, 2, . . . , N − 1,

pN = G(xN − xd).

Finally, we deduce the following optimality system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u∗(θ) = −R−1B∗
i−1(θ)pi, θ ∈ [ti−1, ti[,

i = 1, 2, . . . , N,

pi = Φ∗pi+1 + M(xu∗
i − ri),

i = 1, 2, . . . , N − 1,

pN = G(xu∗
N − xd),

xu∗
i+1 = Φxu∗

i +
∫ ti+1

ti

Bi(θ)u∗(θ) dθ,

i = 0, 1, . . . , N − 1.

(15)

4. Convenient Topology

In this section, we develop a technique similar to the
HUM. Indeed, let f = (x1, x2, . . . , xN−1, xN ) ∈ F =
l2(1, 2, . . . , N ;X ) and the signal zf = (zf

1 , . . . , zf
N ) be

described by the difference equation⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zf
i = Φ∗N−iG

1
2 xN +

N−1∑
k=i

Φ∗k−iM
1
2 xk,

i = 1, 2, . . . , N − 1,

zf
N = G

1
2 xN .

(16)

We define the following functional on l2(1, . . . , N ;X ):

|‖f |‖2 = ‖f‖2+
N∑

k=1

∫ tj

tj−1

〈B∗
j−1(θ)z

f
j , R−1B∗

j−1(θ)z
f
j 〉dθ.

(17)

Lemma 1. |‖ · ‖| is a norm on F equivalent to the usual
one.

Proof. From the linearity of the map f → z f
j , it is easy to

deduce that |‖ · ‖| is a norm on the space F . The equiva-
lence is then immediate.

For f = (x1, x2, . . . , xN−1, xN ) ∈ F , we define
Ψf = (Ψf

i )0≤i≤N by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ψf
i+1 = ΦΨf

i +
∫ ti+1

ti

Bi(θ)uf (θ) dθ,

i = 0, 1, . . . , N − 1,

Ψf
0 = 0,

(18)

where

uf (θ)=R−1B∗
i−1(θ)z

f
i , θ∈ [ti−1, ti[, i=1, 2, . . . , N.

Remark 1. We can easily see that

Ψf
k =

k∑
j=1

Φk−j
[∫ tj

tj−1

Bj−1(θ)R−1B∗
j−1(θ) dθ

]
zf

j ,

k = 1, . . . , N.
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Define the operator Λ by

Λ :

{
F → F ,

f → f + (M
1
2 Ψf

1 , . . . , M
1
2 Ψf

N−1, G
1
2 Ψf

N).

Lemma 2. The operator Λ is bounded and self-adjoint,
and we have

〈Λf, f〉 = |‖f‖|2.
Proof. Setting g = (y1, y2, . . . , yN), we have

〈Λf, g〉 = 〈f +(M
1
2 Ψf

1 , . . . , M
1
2 Ψf

N−1, G
1
2 Ψf

N), g〉

= 〈f, g〉 +
N−1∑
i=1

〈M 1
2 Ψf

i , yi〉+〈G 1
2 Ψf

N , yN〉.

If we define Pi = M
1
2 for all i ∈ {1, . . . , N − 1} and

PN = G
1
2 , then

〈Λf, g〉= 〈f, g〉 +
N∑

i=1

〈Ψf
i , Piyi〉

= 〈f, g〉 +
N∑

i=1

〈 i∑
j=1

Φi−j

×
(∫ tj

tj−1

Bj−1(θ)R−1B∗
j−1(θ) dθ

)
zf

j , Piyi

〉

= 〈f, g〉 +
N∑

i=1

( i∑
j=1

∫ tj

tj−1

〈
zf

j , Bj−1(θ)R−1

× B∗
j−1(θ)Φ

∗i−jPiyi

〉
dθ

)

= 〈f, g〉 +
N∑

j=1

N∑
i=j

〈
zf

j ,

×
(∫ tj

tj−1

Bj−1(θ)R−1B∗
j−1(θ) dθ

)
Φ∗i−jPiyi

〉

= 〈f, g〉+
N−1∑
j=1

〈
zf

j ,
(∫ tj

tj−1

Bj−1(θ)R−1B∗
j−1(θ) dθ

)

×
(N−1∑

k=j

Φ∗i−jM
1
2 yi + Φ∗N−jG

1
2 yN

)〉

+
〈
zf

N ,
(∫ tN

tN−1

BN−1(θ)R−1B∗
N−1(θ) dθ

)
G

1
2 yN

〉

= 〈f, g〉+
N∑

j=1

∫ tj

tj−1

〈B∗
j−1(θ)z

f
j , R−1B∗

j−1(θ)z
g
j 〉dθ

= 〈f, Λg〉,

and

〈Λf, f〉 = ‖f‖2+
N∑

j=1

∫ tj

tj−1

〈B∗
j−1(θ)z

f
j , R−1B∗

j−1(θ)z
f
j 〉dθ

= |‖f‖|2.

Remark 2. As a consequence of Lemma 2, we easily de-
duce that Λ is an isomorphism.

Finally, we state our fundamental result of this sec-
tion.

Theorem 1. The optimal control u∗ minimizing the func-
tional (13) in L2(0, T ;U) is

u∗(θ)=R−1B∗
i−1(θ)z

f
i , θ∈ [ti−1, ti[, i=1, 2, . . . , N,

(19)
where zf

i is the solution of the difference equation⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

zf
i = Φ∗N−iG

1
2 fN +

N−1∑
k=i

Φ∗k−iM
1
2 fk,

i = 1, 2, . . . , N − 1,

zf
N = G

1
2 fN ,

(20)

and f = (f1, . . . , fN−1, fN) is the unique solution of the
algebraic equation

Λf = −(
M

1
2 (Φx0 − r1), . . . , M

1
2 (ΦN−1x0 − rN−1),

G
1
2 (ΦNx0 − xd)

)
. (21)

Moreover, the optimal cost is

J(u∗) = |‖f‖|2. (22)

Proof. Since the operator Λ ∈ L(F) constitutes an iso-
morphism, Eqn. (21) possesses a unique solution f =
(f1, . . . , fN−1, fN). Using the optimality system and the
definition⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
zf

i = Φ∗N−iG
1
2 fN +

N−1∑
k=i

Φ∗k−iM
1
2 fk,

i = 1, 2, . . . , N − 1,

zf
N = G

1
2 fN ,

it is sufficient to establish that{
fi = −M

1
2 (xu

i − ri), i = 1, . . . , N − 1,

fN = −G
1
2 (xu

N − xd),
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where

xu
k = Φkx0 +

k∑
j=1

Φk−j

∫ tj

tj−1

Bj−1(θ)u(θ) dθ.

But

Λf = −(
M

1
2 (Φx0 − r1), . . . , M

1
2 (ΦN−1x0 − rN−1),

G
1
2 (ΦNx0 − xd)

)
,

which implies{
fk = −M

1
2 (Ψf

k + Φkx0 − rk), k = 1, . . . , N − 1,

fN = −G
1
2 (Ψf

N + ΦNx0 − xd).

If we replace Ψf by its value given by (18), we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fk = −M
1
2

(
Φkx0 +

k∑
j=1

Φk−j

×
∫ tj

tj−1

Bj−1(θ)R−1B∗
j−1(θ)z

f
j︸ ︷︷ ︸

u∗(θ)

dθ − rk

)
,

k = 1, . . . , N − 1,

fN = −G
1
2

(
ΦNx0 +

N∑
j=1

ΦN−j

×
∫ tj

tj−1

Bj−1(θ)R−1B∗
j−1(θ)z

f
j︸ ︷︷ ︸

u∗(θ)

dθ − xd

)
.

That gives{
fk = −M

1
2 (xu∗

k − rk), k = 1, . . . , N − 1,

fN = −G
1
2 (xu∗

N − xd).

So u∗ is the optimum of J . Moreover,

J(u) = 〈(xu∗
N − xd), G(xu∗

N − xd)〉

+
N−1∑
k=1

〈(xu∗
k − rk), M(xu∗

k − rk)〉

+ ‖u∗‖2
L2(0,T ;U)

= ‖G 1
2 (xu∗

N − xd)‖2

+
N−1∑
k=1

‖M 1
2 (xu∗

k − rk)‖2 + ‖u∗‖2

= ‖fN‖2 +
N−1∑
k=1

‖fk‖2 +
∫ T

0

〈u∗(t), Ru∗(t)〉dt

= ‖f‖2 +
N∑

i=1

∫ ti

ti−1

〈R−1B∗
i−1(θ)z

f
i , B∗

i−1(θ)z
f
i 〉dt

= |‖f‖|2.

Remark 3. (i) In order to obtain the minimizing control
u∗, one has to solve the infinite dimensional algebraic
equation (21). However, in general, we do not know an
explicit form of the operator Λ−1. Since the bilinear con-
tinuous form

F × F → R,

(x, y) �→ 〈x, Λy〉F
is coercive, the Galerkin method can be applied to approx-
imate the solution f of (21) and, consequently, the optimal
control u∗.

(ii) If in the functional J we have M = 0, then setting
F = X suffices to consider Γ instead of Λ, where Γ ∈
L(X ) is the operator defined by

Γf = f + G
1
2 Ψf

N

with

Ψf
N =

N∑
j=1

ΦN−j
[∫ tj

tj−1

Bj−1(θ)R−1B∗
j−1(θ) dθ

]
zf

j ,

zf
j = Φ∗N−jG

1
2 f, j = 1, 2, . . . , N.

Then, for M = 0, from Theorem 1 it follows that the
minimizing control u∗ is

u∗(θ) = R−1B∗
i−1(θ)z

f
i

for θ ∈ [ti−1, ti[ and i = 1, 2, . . . , N , where

zf
i = Φ∗N−iG

1
2 f, i = 1, 2, . . . , N,

and f constitutes the unique solution of the algebraic
equation

Γf = −G
1
2 (ΦNx0 − xd).

Moreover, using the Galerkin method, an approximate
control sequence is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u∗
n(θ) = R−1B∗

i−1(θ)z
fn

i , θ ∈ [ti−1, ti[,
i = 1, 2, . . . , N,

zfn

i = Φ∗N−iG
1
2 fn, i = 1, 2, . . . , N,

fn =
n∑

i=1

fn,iϕi,

where (ϕn)n is an orthonormal basis of X , and the vector⎛
⎜⎜⎜⎜⎝

fn,1

fn,2

...

fn,n

⎞
⎟⎟⎟⎟⎠
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is the unique solution of the matrix equation

Γn

⎛
⎜⎜⎜⎜⎝

fn,1

fn,2

...

fn,n

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

〈−G
1
2 (ΦNx0 − xd), ϕ1〉

〈−G
1
2 (ΦNx0 − xd), ϕ2〉

...

〈−G
1
2 (ΦNx0 − xd), ϕn〉

⎞
⎟⎟⎟⎟⎠ ,

with Γn = (〈Γϕi, ϕj〉)1≤i,j≤n.

Example 1. Consider the system (7) defined in Section 1,
and the cost functional

J(u) = ‖xN − xd‖2 +
∫ T

0

|u(θ)|2 dθ,

where U = R, X = L2(0, 1), R = 1, M = 0,
G = I , x0 = 0, xd = γϕ1 and Biu = u · Xwi , with
wi = [ai, bi] ⊂ [0, 1]. This means that we suppose that
the activity of the control u on the parabolic system (7)
is restricted to the zone [ai, bi] (the action support of the
control u changes at each moment i), where

ϕn(θ) =
√

2 sin nπθ

is an orthonormal basis of X .
Since

S(t)x =
∞∑

n=1

e−n2π2t〈x, ϕn〉Xϕn,

the operator Φ is such that

Φx =
∞∑

n=1

e−n2π2δ〈x, ϕn〉Xϕn,

and
Bi(θ) = S

(
(i + 1)δ − θ

)
Bi.

Here we have

Bi(θ)u = S(ti+1 − θ)Biu

=
∞∑

n=1

e−n2π2(ti+1−θ)〈Biu, ϕn〉ϕn

= u ·
∞∑

n=1

e−n2π2(ti+1−θ)
(∫

wi

ϕn(x) dx
)
ϕn.

Consequently, setting

αi(n) =
∫

wi

ϕn(x) dx =
√

2
∫ bi

ai

sin nπxdx

=
√

2
nπ

[
cosnπx

]bi

ai

,

we have

Bi(θ)u = u ·
[ ∞∑

n=1

αi(n)e−n2π2(ti+1−θ)ϕn

]
.

Therefore

〈Bi(θ)u, x〉 =
〈
u ·

[ ∞∑
n=1

αi(n)e−n2π2(ti+1−θ)ϕn

]
, x

〉

= u ·
[ ∞∑

n=1

αi(n)e−n2π2(ti+1−θ)〈x, ϕn〉
]
,

and hence

B∗
i (θ)x =

∞∑
n=1

αi(n)e−n2π2(ti+1−θ)〈x, ϕn〉.

According to Theorem 1, the solution to the optimal
control problem is as follows:

u∗(θ) = B∗
i−1(θ)z

f
i

=
∞∑

n=1

αi−1(n)e−n2π2(ti−θ)〈zf
i , ϕn〉

for θ ∈ [ti−1, ti[ and i = 1, 2, . . . , N , where

zf
i = ΦN−if =

[
S(δ)

](N−i)
f = S

(
(N − i)δ

)
f

= S(tN−i)f =
∞∑

k=1

e−k2π2tN−i〈f, ϕk〉ϕk.

Then
〈zf

i , ϕn〉 = e−n2π2tN−i〈f, ϕn〉,
and hence

u∗(θ) =
∞∑

n=1

αi−1(n)e−n2π2(T−θ)〈f, ϕn〉 (23)

for θ ∈ [ti−1, ti[ and i = 1, 2, . . . , N , where f is the
unique solution of the algebraic equation

Γf = xd,

which is equivalent to the infinite linear system

A

⎛
⎜⎜⎝

f1

f2

...

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

γ

0
...

⎞
⎟⎟⎠ , (24)

A being an infinite matrix,

A = (〈Γϕi, ϕj〉)1≤i,j≤∞,
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with

〈Γϕi, ϕj〉 =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + e−2i2π2T

N∑
k=1

α2
k−1(i)

(
e2i2π2tk − e2i2π2tk−1

2i2π2

)
if i = j,

e−i2π2T e−j2π2T

N∑
k=1

αk−1(i)αk−1(j)

×
(

e(i2+j2)π2tk−e(i2+j2)π2tk−1

(i2 + j2)π2

)
if i �= j.

As was mentioned in Remark 3, f =
∑∞

i=1 fiϕi is
such that

f = lim
n→∞ fn,

where fn =
∑n

i=1 fiϕi, with

⎛
⎜⎜⎜⎜⎝

fn
1

fn
2

...

fn
n

⎞
⎟⎟⎟⎟⎠

being the unique solution of the algebraic equation

An

⎛
⎜⎜⎜⎜⎝

fn
1

fn
2

...

fn
n

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

γ

0
...

0

⎞
⎟⎟⎟⎟⎠ .

An is the symmetric and positive definite matrix given by

A = (〈Γϕi, ϕj〉)1≤i,j≤n.

Concluding, in accordance with (23), the optimal
control u∗ can be approximated by the sequence (u∗

n)n≥1

defined as follows:

u∗
n(θ) =

n∑
k=1

αi−1(k)e−k2π2(T−θ)fn
k (25)

for θ ∈ [ti−1, ti[ and i = 1, 2, . . . , N . �

Remark 4. Consider the above example with Bu =
u · Xw, where w = [a, b] ⊂ [0, 1]. (Here, in contrast
to Example 1, we suppose that the action support of the
control u is independent of i.) Then we have

Bi(θ)u = u ·
[ ∞∑

n=1

α(n)e−n2π2(ti+1−θ)ϕn

]
,

with

α(n) =
∫

w

ϕn(x) dx =
√

2
∫ b

a

sin nπxdx.

On the other hand,

B∗
i (θ)x =

∞∑
n=1

α(n)e−n2π2(ti+1−θ)〈x, ϕn〉, θ ∈ [0, T ].

Hence

u∗(θ)=
∞∑

n=1

α(n)e−n2π2(T−θ)〈f, ϕn〉, θ∈ [0, T ], (26)

where f is the unique solution of the algebraic equation

Γf = xd,

with

〈Γϕi, ϕj〉 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 + α2
i

(
1 − e−2i2π2T

2i2π2

)
if i = j,

αiαj

(
1 − e−(i2+j2)π2T

(i2 + j2)π2

)
if i �= j.

As in the previous example, using the Galerkin method,
the optimal control u∗ can be approximated by the se-
quence (u∗

n)n≥1 given by

u∗
n(θ) =

n∑
k=1

α(k)e−k2π2(T−θ)fn
k , θ ∈ [0, T ],

5. Conclusion

The passage from the continuous version of a linear sys-
tem

ẋ(t) = Ax(t) + Bu(t) (27)

to its discrete counterpart

xi+1 = Φxi + Ψui (28)

is, generally, based on the assumption that

u(s) = u(ti), ∀s ∈ [ti, ti+1[, (29)

where ti and ti+1 are two consecutive sampling instants.
The approximation of the continuous system (27) by the
difference equation (28) is often justified by the choice of
a rather small sampling period.

In this paper, we have studied the quadratic linear
control problem associated with a linear system having a
discrete state variable and a continuous control variable.
Such a system can be regarded as a sampled version of
the continuous system (27) in the absence of the assump-
tion (29) (when the time interval [ti, ti+1[ is rather large or
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when variations in the control variable u(·) are very fast, it
makes no sense to adopt the hypothesis (29)). To solve the
problem, we introduced an adequate Hilbertian structure
and proved that the optimum and optimal cost stem from
an algebraic linear infinite dimensional equation which is
easily solvable by the classical Galerkin method. As a
natural continuation of this work, while being inspired by
(Rachik et al., 2003), we are going to investigate the linear
quadratic control problem considered for an infinite time
horizon.
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