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1. Introduction

Various optimization problems associated with the opti-
mal control of distributed parabolic systems with time de-
lays appearing in boundary conditions were studied re-
cently by Wang (1975), Knowles (1978), Kowalewski
(1988; 1990a;1990b; 1998; 1999; 2001), Kowalewski and
Duda (1992) and Kowalewski and Krakowiak (2000).

In (Wang, 1975), optimal control problems for par-
abolic systems with Neumann boundary conditions in-
volving constant time delays were considered. Such
systems constitute, in a linear approximation, a univer-
sal mathematical model for many diffusion processes in
which time-delayed feedback signals are introduced at the
boundary of a system’s spatial domain. For example, in
the area of plasma control, it is of interest to confine the
plasma in a given bounded spatial domain Ω by introduc-
ing a finite electric potential barrier or a “magnetic mirror”
surrounding Ω.

For a collision-dominated plasma, its particle density
is describable by a parabolic equation. Due to the parti-
cle inertia and finiteness of the electric potential barrier or
the magnetic mirror field strength, the particle reflection at
the domain boundary is not instantaneous. Consequently,
the particle flux at the boundary of Ω at any time depends
on the flux of particles which escaped earlier and reflected
back into Ω at a later time. This leads to Neumann bound-
ary conditions involving time delays.

Necessary and sufficient conditions which optimal
control must satisfy were derived. Estimates and a suffi-
cient condition for the boundedness of solutions were ob-
tained for parabolic systems with specified forms of feed-
back control.

Subsequently, in (Knowles, 1978), time-optimal con-
trol problems of linear parabolic systems with Neumann
boundary conditions involving constant time delays were
considered. Using the results of (Wang, 1975), the exis-
tence of a unique solution of such parabolic systems was
discussed. A characterization of optimal control in terms
of the adjoint system is given. This characterization was
used to derive specific properties of optimal control (bang-
bangness, uniqueness, etc.). These results were also ex-
tended to certain cases of nonlinear control without con-
vexity and to certain fixed-time problems.

Consequently, in (Kowalewski 1988; 1990a; 1990b;
1993; 1998; 1999; 2001; Kowalewski and Duda, 1992),
linear quadratic problems for parabolic systems with time
delays given in various forms (constant time delays, time-
varying delays, time delays given in the integral form,
etc.) were presented.

In particular, in (Kowalewski and Krakowiak, 2000),
time-optimal distributed control problems for parabolic
systems with deviating arguments appearing in the inte-
gral form both in state equations and in Neumann bound-
ary conditions were considered.
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In this paper, we consider the time-optimal bound-
ary control problem for a linear parabolic system in which
time lags appear in the integral form both in the state equa-
tion and in Neumann boundary condition.

The existence and uniqueness of solutions of such
parabolic equations are proved. Optimal control is char-
acterized by the adjoint equation. Using this characteriza-
tion, particular properties of time-optimal boundary con-
trol are proved, i.e. bang-bangness, uniqueness, etc.

2. Existence and Uniqueness of Solutions

Consider now the distributed-parameter system described
by the following parabolic delay equation:

∂y

∂t
+ A(t)y +

b∫
a

b(x, t)y(x, t − h) dh = u,

x ∈ Ω, t ∈ (0, T ), h ∈ (a, b), (1)

y(x, t′) = Φo(x, t′), x ∈ Ω, t′ ∈ [−b, 0), (2)

y(x, 0) = y0(x), x ∈ Ω, (3)

∂y

∂ηA
=

b∫
a

c(x, t)y(x, t − h) dh + v,

x ∈ Γ, t ∈ (0, T ), h ∈ (a, b), (4)

y(x, t′) = Ψo(x, t′), x ∈ Γ, t′ ∈ [−b, 0), (5)

where Ω ⊂ R
n is a bounded, open set with boundary Γ,

which is a C∞-manifold of dimension (n − 1). Locally,
Ω is totally on one side of Γ.

y ≡ y(x, t; u), u ≡ u(x, t), v ≡ v(x, t),

Q ≡ Ω × (0, T ), Q̄ = Ω̄ × [0, T ], Q0 = Ω × [−b, 0),

Σ = Γ × (0, T ), Σ0 = Γ × [−b, 0).

Furthermore, T is a specified positive number represent-
ing a time horizon, b is a given real C∞ function defined
on Q̄, c is a given real C∞ function defined on

∑
, h is a

time lag such that h ∈ (a, b), Φ0 and Ψ0 are initial func-
tions defined on Qo and Σo, respectively.

The parabolic operator ∂
∂t + A(t) in the state equa-

tion (1) satisfies the hypothesis of Section 1, Chapter 4 of
(Lions and Magenes, 1972, Vol. 2, p. 2), and A(t) is given
by

A(t)y = −
n∑

i,j=1

∂

∂xi

(
aij(x, t)

∂y(x, t)
∂xj

)
, (6)

and the functions aij(x, t) are real C∞ functions defined
on Q̄(the closure of Q) satisfying the ellipticity condition

n∑
i,j=1

aij(x, t)ϕiϕj ≥ α

n∑
i=1

ϕ2
i , α > 0,

∀(x, t) ∈ Q̄, ∀ϕi ∈ R. (7)

Equations (1)–(5) constitute a Neumann problem.
The left-hand side of (4) is written in the following form:

∂y

∂ηA
=

n∑
i,j=1

aij(x, t) cos(n, xi)
∂y(x, t)

∂xj
= q(x, t),

x ∈ Γ, t ∈ (0, T ), (8)

where ∂y/∂ηA is the normal derivative at Γ, directed to-
wards the exterior of Ω, cos(n, xi) is the i-th direction
cosine of n, with n being the normal at Γ exterior to Ω,
and

q(x, t) =

b∫
a

c(x, t)y(x, t − h) dh + v(x, t)

x ∈ Γ, t ∈ (0, T ), h ∈ (a, b). (9)

First, we shall prove sufficient conditions for the ex-
istence of a unique solution of the mixed initial-boundary
value problem (1)–(5) for the case where the distributed
control v ∈ L2(Q). For this purpose, for any pair of
real numbers r, s ≥ 0, we introduce the Sobolev space
Hr,s(Q) (Lions and Magenes 1972, Vol. 2, p. 6) defined
by

Hr,s(Q) = H0
(
0, T ; Hr(Ω)

)∩Hs
(
0, T ; H0(Ω)

)
, (10)

which is a Hilbert space normed by

⎛
⎝

T∫
0

‖y(t)‖2
Hr(Ω) dt + ‖y‖2

Hs
(
0,T ;H0(Ω)

)
⎞
⎠

1/2

, (11)

where the spaces Hr(Ω) and Hs(0, T ; H0(Ω)) are de-
fined in Chapter 1 of (Lions and Magenes 1972, Vol. 1).

The existence of a unique solution for the mixed
initial-boundary value problem (1)–(5) on the cylinder Q
can be proved using a constructive method, i.e., first, solv-
ing (1)–(5) on the subcylinder Q1 and then on Q2, etc.,
until the procedure covers the whole cylinder Q. In this
way the solution in the previous step determines the next
one.

For simplicity, we introduce the following notation:

Ej
∧= ((j−1)a, ja), Qj = Ω×Ej , Q0 = Ω×[−b, 0)
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Σj = Γ × Ej , Σ0 = Γ × [−b, 0) for j = 1, . . . , K.

Using Theorem 15.2 of (Lions and Magenes 1972, Vol. 2,
p. 81), we can prove the following lemma:

Lemma 1. Let

u ∈ H1/2,−1/4(Q), v ∈ L2(Σ), (12)

fj ∈ H−1/2,−1/4(Qj), (13)

where

fj(x, t) = u(x, t) −
b∫

a

b(x, t)yj−1(x, t − h) dh

yj−1

(·, (j − 1)a
) ∈ H1/2(Ω), (14)

qj ∈ L2(Σj), (15)

where

qj(x, t) =

b∫
a

c(x, t)yj−1(x, t − h) dh + v(x, t).

Then there exists a unique solution yj ∈ H3/2,3/4(Qj) for
the mixed initial-boundary value problem (1), (4), (14).

Proof. We observe that for j = 1, yj−1|Q0
(x, t− h)

= Φ0(x, t − h) and yj−1|Σ0
(x, t − h) = Ψ0(x, t − h).

Then the assumptions (13)–(15) are fulfilled if we as-
sume that Φ0 ∈ H3/2,3/4(Q0), y0 ∈ H1/2(Ω), and
Ψ0 ∈ L2(Σ0). These assumptions are sufficient to ensure
the existence of a unique solution y1 ∈ H3/2,3/4(Q1).
In order to extend the result to Q2, we have to prove
that y1(·, a) ∈ H1/2(Ω), y1|Σ1

∈ L2(Σ1) and f2 ∈
H−1/2,−1/4(Q2). Indeed, from Theorems 2.1 and 2.2
of (Kowalewski, 1998) y1 ∈ H3/2,3/4(Q1) implies that
the mapping t → y1(·, t) is continuous from [0, a] into
H3/4(Ω) ⊂ H1/2(Ω). Thus, y1(·, a) ∈ H1/2(Ω). Then
using the trace theorem (Theorem 2.3 of (Kowalewski,
1998)) we can verify that y1 ∈ H3/2,3/4(Q1) implies
that y1 → y1|Σ1

is a linear, continuous mapping of
H3/23/4(Q1) into H1,1/2(Σ1). Thus, y1|Σ1

∈ L2(Σ1).
Also, it is easy to notice that the assumption (13) fol-
lows from the fact that y1 ∈ H3/2,3/4(Q1) and u ∈
H−1/2,−1/4(Q). Then, there exists a unique solution
y2 ∈ H3/2,3/4(Q2). The foregoing result is now sum-
marized for j = 3, . . . , K .

Theorem 1. Let y0, Φ0, Ψ0, v and u be given
with y0 ∈ H1/2(Ω), Φ0 ∈ H3/2,3/4(Q0),
Ψ0 ∈ L2(Σ0), v ∈ L2(Σ) and u ∈ H−1/2,−1/4(Q).
Then there exists a unique solution y ∈ H 3/2,3/4(Q)
for the mixed initial-boundary value problem (1)–(5).
Moreover, y(·, ja) ∈ H1/2(Ω) for j = 1, . . . , K .

3. Problem Formulation. Optimization
Theorems

Now, we shall formulate the time-optimal problem for
(1)–(5) in the context of Theorem 1, that is,

v ∈ U =
{
v ∈ L2(Σ) : | v(x, t) |≤ 1

}
. (16)

We shall define the reachable set Y such that

Y =
{
y ∈ L2(Ω) : ‖y − zd‖L2(Ω) ≤ ε

}
, (17)

where zd, ε are given with zd ∈ L2(Ω) and ε > 0 .
The solving of the stated time-optimal problem is

equivalent to hitting the target set Y in minimum time,
that is, minimizing the time t, for which y(t; v) ∈ Y and
v ∈ U .

Moreover, we assume that

there exists a T > 0 and v ∈ U with y(T ; v) ∈ Y. (18)

Theorem 2. If the assumption (18) holds, then the set Y is
reached in minimum time t∗ by admissible control v∗ ∈ U .
Moreover,

∫
Ω

(
zd−y(t∗; v∗)

)(
y(t∗; v)−y(t∗; v∗)

)
dx ≤ 0, ∀v ∈ U.

(19)

Outline of the proof. Let us define the following set:

t∗= inf{t : y(t; v) ∈ Y for some v ∈ U}. (20)

The minimum is well defined, as (18) guarantees that this
set is nonempty. By definition, we can choose tn ↓ t∗ and
admissible control {vn} such that

y(tn; vn) ∈ Y, n = 1, 2, 3, . . . . (21)

Each vn is defined on Γ × (0, tn) ⊃ Γ × (0, t∗). To
simplify the notation, we denote the restriction of vn to
Γ × (0, t∗) again by vn. The admissible control set then
forms a weakly compact, convex set in L2(Γ×(0, t∗), and
so we can extract a weakly convergent subset {vm} which
converges weakly to some admissible control v∗.

Consequently, Theorem 1 implies that y(t; v) ∈
H1/2(Ω) ⊂ L2(Ω) for each v ∈ L2(Σ) and t > 0. Then
using Theorem 1.2 of (Lions 1971, p. 102) and Theo-
rem 1 it is easy to verify that the mapping v → y(t∗; v),
from L2(Γ × (0, t∗)) into L2(Ω), is continuous. Since
any continuous linear mapping between Banach spaces
is also weakly continuous (Dunford and Schwartz 1958,
Thm. V. 3.15), the affine mapping v → y(t∗; v) must also
be weakly continuous. Hence

y(t∗; vm) → y(t∗; v∗) weakly in L2(Ω). (22)
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Moreover, dy(v)/dt ∈ L2([0, t∗], H0(Ω)), for each v ∈
U , by the definition of H 3/2,3/4(Ω × (0, t∗)), and

‖y(tm; vm) − y(t∗; vm)‖L2(Ω)

=
∥∥∥

tm∫
t∗

ẏ(σ; vm) dσ
∥∥∥

L2(Ω)

≤ √
tm − t∗

⎛
⎝

tm∫
t∗

‖ẏ(σ; vm)‖2
L2(Ω) dσ

⎞
⎠

1/2

. (23)

Applying Theorem 1.2 of (Lions, 1971) and The-
orem 1 again, the set {ẏ(vm)} must be bounded in
L2(0, t∗; H0(Ω)), and hence

‖y(tm; vm) − y(t∗; vm)‖L2(Ω) ≤ M
√

tm − t∗. (24)

Combining (22) and (24) shows that

y(tm; vm) − y(t∗; v∗)

=
(
y(tm; vm) − y(t∗; vm)

)

+
(
y(t∗; vm) − y(t∗; v∗)

)
(25)

converges weakly to zero in L2(Ω), and so y(t∗; v∗) ∈ Y
as Y is closed and convex, and hence weakly closed. This
shows that Y is reached in time t∗ by admissible control;
accordingly, t∗ must be the minimum time and v∗ optimal
control.

We shall now prove the second part of our theorem.
From Theorem 3.1 of (Lions and Magenes, 1972, Vol. 1,
p.19), y(v) ∈ H3/2,3/4(Q) implies that the mapping t →
y(t; v), from [0, T ] into H3/4(Ω) ⊂ H1/2(Ω) ⊂ L2(Ω),
is continuous for each fixed v, and so y(t∗; v) ∈/ int Y , for
any v ∈ U , by the minimality of t∗.

From our earlier remarks, the set

A(t∗) = {y(t∗; vx) : vx ∈ U} (26)

is weakly compact and convex in L2(Ω). Applying The-
orem 21.11 of (Choquet, 1969) to the sets A(t∗) and Y
shows that there exists a nontrivial hyperplane z ′ ∈ L2(Ω)
separating these sets, that is,∫

Ω

z′y(t∗; v) dx ≤
∫
Ω

z′y(t∗; v∗) dx ≤
∫
Ω

z′y dx, (27)

for all v ∈ U and y ∈ L2(Ω) with

‖y − zd‖L2(Ω) ≤ ε. (28)

From the second inequality in (27), z ′ must support
the set Y at y(t∗; v∗). Moreover, since L2(Ω) is a Hilbert
space, z′ must be of the form

z′ = λ
(
zd − y(t∗; v∗)

)
for some λ > 0. (29)

Subsequently, dividing (27) by λ gives the desired re-
sult (19).

4. Optimization Theorems

We shall apply Theorem 2 to the control problem of (1)–
(5). To simplify (19), we introduce the adjoint equation
and for, every v ∈ U , we define the adjoint variable p =
p(v) = p(x, t; v) as the solution of the equation

−∂p(v)
∂t

+ A∗(t)p(v) +

b∫
a

b(x, t + h)

×p(x, t + h; v) dh = 0,

x ∈ Ω, t ∈ (0, t∗ − b), h ∈ (a, b), (30)

− ∂p(v)
∂t

+ A∗(t)p(v) = 0,

x ∈ Ω, t ∈ (t∗ − b, t∗ − b + a) (31)

p(x, t∗; v) = zd(x) − y(x, t∗; v), x ∈ Ω, (32)

p(x, t; v) = 0, x ∈ Ω, t ∈ [t∗ − b + a, t∗), (33)

∂p(v)
∂ηA∗

(x, t) =

b∫
a

c(x, t + h)p(x, t + h; v) dh,

x ∈ Γ, t ∈ (t∗ − b), h ∈ (a, b), (34)

∂p(v)
∂ηA∗

(x, t) = 0,

x ∈ Γ, t ∈ (t∗ − b, t∗ − b + a), (35)

where

∂p(v)
∂ηA∗

(x, t) =
n∑

i,j=1

aji(x, t) cos(n, xi)
∂p(v)
∂xj

(x, t), (36)

and

A∗(t)p = −
n∑

i,j=1

∂

∂xj

(
aij(x, t)

∂p

∂xi

)
. (37)

The existence of a unique solution for the prob-
lem (30)–(35) on the cylinder Ω × (0, t∗) can be proved
using a constructive method. It is easy to notice that for
given zd and u, the problem (30)–(35) can be solved back-
wards in time starting from t = t∗, i.e., first, solving (30)–
(35) on the subcylinder QK and then on QK−1, etc., until
the procedure covers the whole cylinder Ω × (0, t∗). For
this purpose, we may apply Theorem 1 (with an obvious
change of variables). Hence, using Theorem 1, the fol-
lowing result can be proved:
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Theorem 3. Let the hypothesis of Theorem 1 be satisfied.
Then for given zd ∈ L2(Ω) and any v ∈ L2(Σ), there
exists a unique solution p(v) ∈ H 3/2,3/4(Ω × (0, t∗)) for
the adjoint problem (30)–(35).

We simplify (19) using the adjoint equation (30)–
(35). For this purpose, setting v = v∗ in (30)–(35), mul-
tiplying both sides of (30), (31) by y(v) − y(v ∗), then
integrating over Ω × (0, t∗ − b) and Ω × (t∗ − b, t∗), re-
spectively, and then adding both sides of (30), (31), we
get

t∗∫
0

∫
Ω

(
−∂p(v∗)

∂t
+ A∗(t)p(v∗)

)
(y(v) − y(v∗)) dxdt

+

t∗−b∫
0

∫
Ω

( b∫
a

b(x, t + h)p(x, t + h; v∗) dh
)

×
[
y(x, t; v) − y(x, t; v∗)

]
dxdt

= −
∫
Ω

p(x, t∗; v∗)
(
y(x, t∗; v) − y(x, t∗; v∗)

)
dx

+

t∗∫
0

∫
Ω

p(v∗)
∂

∂t

(
y(v) − y(v∗)

)
dxdt

+

t∗∫
0

∫
Ω

A∗(t)p(v∗)
(
y(v) − y(v∗)

)
dxdt

+

t∗−b∫
0

∫
Ω

b∫
a

b(x, t + h)p(x, t + h; v∗)

−
(
y(x, t; v) − y(x, t; v∗)

)
dh dxdt = 0. (38)

Then, applying (32), the formula (38) can be expressed as∫
Ω

(
zd − y(t∗; v∗)

)(
y(t∗; v) − y(t∗; v∗)

)
dx

=

t∗∫
0

∫
Ω

p(v∗)
∂

∂t

(
y(v) − y(v∗)

)
dxdt

+

t∗∫
0

∫
Ω

A∗(t)p(v∗)
(
y(v) − y(v∗)

)
dxdt

+

b∫
a

∫
Ω

t∗−b∫
0

b (x, t + h) p (x, t + h; v∗)

×
(
y(x, t; v) − y(x, t; v∗)

)
dt dxdh. (39)

Using Eqn. (1), the first integral on the right-hand side
of (39) can be rewritten as

t∗∫
0

∫
Ω

p(v∗)
∂

∂t

(
y(v) − y(v∗)

)
dxdt

= −
t∗∫

0

∫
Ω

p(v∗)A(t)
(
y(v) − y(v∗)

)
dxdt

−
t∗∫

0

∫
Ω

p(x, t; v∗)

×
( b∫

a

b(x, t)(y(x, t−h; v)−y
(
x, t−h; v∗)

)
dh

)
dxdt

= −
t∗∫

0

∫
Ω

p(v∗)A(t)
(
y(v) − y(v∗)

)
dxdt

−
t∗∫

0

∫
Ω

b∫
a

p(x, t; v∗)b(x, t)

× (
y(x, t − h; v) − y(x, t − h; v∗)

)
dh dxdt

= −
t∗∫

0

∫
Ω

p(v∗)A(t)
(
y(v)− y(v∗)

)
dxdt

−
b∫

a

∫
Ω

t∗∫
0

p(x, t; v∗)b(x, t)

× (
y(x, t − h; v) − y(x, t − h; v∗)

)
dt dxdh

= −
t∗∫

0

∫
Ω

p(v∗)A(t)
(
y(v)− y(v∗)

)
dxdt

−
b∫

a

∫
Ω

t∗−h∫
−h

p(x, t′ + h; v∗)b(x, t′ + h)

× (
y(x, t′; v) − y(x, t′; v∗)

)
dt′ dxdh

= −
t∗∫

0

∫
Q

p(v∗)A(t)
(
y(v) − y(v∗)

)
dxdt

−
b∫

a

∫
Ω

0∫
−h

p(x, t′ + h; v∗)b(x, t′ + h)

× (
y(x, t′; v) − y(x, t′; v∗)

)
dt′ dxdh
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−
b∫

a

∫
Ω

t∗−b∫
0

p(x, t′ + h; v∗)b(x, t′ + h)

× (
y(x, t′; v) − y(x, t′; v∗)

)
dt′ dxdh

−
b∫

a

∫
Ω

t∗−h∫
t∗−b

p(x, t′ + h; v∗)b(x, t′ + h)

× (
y(x, t′; v) − y(x, t′; v∗)

)
dt′ dxdh

=

t∗∫
0

∫
Ω

p(v∗)(u − v∗)dxdt

−
t∗∫

0

∫
Ω

p(v∗)A(t)
(
y(v) − y(v∗)

)
dxdt

−
b∫

a

∫
Ω

0∫
−h

p(x, t′ + h; v∗)b(x, t′ + h)

× (
y(x, t′; v) − y(x, t′; v∗)

)
dt′ dxdh

−
b∫

a

∫
Ω

t∗−b∫
0

p(x, t′ + h; v∗)b(x, t′ + h)

× (
y(x, t′; v) − y(x, t′; v∗)

)
dt′ dxdh

−
b∫

a

∫
Ω

t∗∫
t∗−b+h

p(x, t; v∗)b(x, t)

× (
y(x, t−h; v)−y(x, t−h; v∗)

)
dt dxdh. (40)

The second integral on the right-hand side of (39),
in view of Green’s formula, can be expressed as

t∗∫
0

∫
Ω

A∗(t)p(v∗)
(
y(v) − y(v∗)

)
dxdt

=

t∗∫
0

∫
Ω

p(v∗)A(t)
(
y(v) − y(v∗)

)
dxdt

+

t∗∫
0

∫
Γ

p(v∗)
(

∂y(v)
∂ηA

− ∂y(v∗)
∂ηA

)
dΓ dt

−
t∗∫

0

∫
Γ

∂p(v∗)
∂ηA∗

(
y(v) − y(v∗)

)
dΓ dt. (41)

Using the boundary condition (4), the second com-
ponent on the right-hand side of (41) can be written as

t∗∫
0

∫
Γ

p(v∗)
[∂y(v)

∂ηA
− ∂y(v∗)

∂ηA

]
dΓ dt

=

t∗∫
0

∫
Γ

p(x, t; v∗)

×
( b∫

a

c(x, t)
(
y(x, t−h; v)−y(x, t−h; v∗)

)
dh

)
dΓ dt

+

t∗∫
0

∫
Γ

p(x, t; v∗)(v − v∗) dΓ dt

=

t∗∫
0

∫
Γ

b∫
a

p(x, t; v∗)c(x, t)

× (
y(x, t − h; v) − y(x, t − h; v∗)

)
dh dΓ dt

+

t∗∫
0

∫
Γ

p(x, t; v∗)(v − v∗) dΓ dt

=

b∫
a

∫
Γ

t∗∫
0

p(x, t; v∗)c(x, t)

× (
y(x, t − h; v) − y(x, t − h; v∗)

)
dt dΓ dh

+

t∗∫
0

∫
Γ

p(x, t; v∗)(v − v∗) dΓ dt

=

b∫
a

∫
Γ

t∗−h∫
−h

p(x, t′ + h; v∗)c(x, t′ + h)

× (
y(x, t′; v) − y(x, t′; v∗)

)
dt′ dΓ dh

+

t∗∫
0

∫
Γ

p(x, t; v∗)(v − v∗) dΓ dt

=

b∫
a

∫
Γ

0∫
−h

p(x, t′ + h; v∗)c(x, t′ + h)

× (
y(x, t′; v) − y(x, t′; v∗)

)
dt′ dΓ dh

+

b∫
a

∫
Γ

t∗−b∫
0

p(x, t′ + h; v∗)c(x, t′ + h)

× (
y(x, t′; v) − y(x, t′; v∗)

)
dt′ dΓ dh
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+

b∫
a

∫
Γ

t∗−h∫
t∗−b

p(x, t′ + h; v∗)c(x, t′ + h)

× (
y(x, t′; v) − y(x, t′; v∗)

)
dt′ dΓ dh

+

t∗∫
0

∫
Γ

p(x, t; v∗)(v − v∗) dΓ dt

=

b∫
a

∫
Γ

0∫
−h

p(x, t′ + h; v∗)c(x, t′ + h)

× (
y(x, t′; v) − y(x, t′; v∗)

)
dt′ dΓ dh

+

b∫
a

∫
Γ

t∗−b∫
0

p(x, t′ + h; v∗)c(x, t′ + h)

× (
y(x, t′; v) − y(x, t′; v∗)

)
dt′ dΓ dh

+

b∫
a

∫
Γ

t∗∫
t∗−b+h

p(x, t + h; v∗)c(x, t)

× (
y(x, t − h; v) − y(x, t − h; v∗)

)
dt dΓ dh

+

t∗∫
0

∫
Γ

p(x, t; v∗)(v − v∗) dΓ dt. (42)

The last component in (41) can be rewritten as

t∗∫
0

∫
Γ

∂p(v∗)
∂ηA∗

(
y(v) − y(v∗)

)
dΓ dt

=

t∗−b∫
0

∫
Γ

∂p(v∗)
∂ηA∗

(
y(v) − y(v∗)

)
dΓ dt

+

t∗∫
t∗−b

∫
Γ

∂p(v∗)
∂ηA∗

(
y(v) − y(v∗)

)
dΓ dt. (43)

Substituting (42), (43) into (41) and then (40), (41)
into (39), we obtain∫

Ω

(
zd − y(t∗; v∗)

)(
y(t∗; v) − y(t∗; v∗)

)
dx

= −
t∗∫

0

∫
Ω

p(v∗)A(t)
(
y(v) − y(v∗)

)
dxdt

−
b∫

a

∫
Ω

0∫
−h

b(x, t + h)p(x, t + h; v∗)

× (
y(x, t; v) − y(x, t; v∗)

)
dt dxdh

−
b∫

a

∫
Ω

t∗−b∫
0

b(x, t + h)p(x, t + h; v∗)

× (
y(x, t; v) − y(x, t; v∗)

)
dt dxdh

+

t∗∫
0

∫
Ω

p(v∗)A(t)
(
y(v) − y(v∗)

)
dxdt

−
b∫

a

∫
Ω

t∗∫
t∗−b+h

p(x, t; v∗)b(x, t)

× (
y(x, t − h; v) − y(x, t − h; v∗)

)
dt dxdh

+

b∫
a

∫
Γ

0∫
−h

c(x, t + h)p(x, t + h; v∗)

× (
y(x, t; v) − y(x, t; v∗)

)
dt dΓ dh

+

b∫
a

∫
Γ

t∗−b∫
0

c(x, t + h)p(x, t + h; v∗)

× (
y(x, t; v) − y(x, t; v∗)

)
dt dΓ dh

+

t∗∫
0

∫
Γ

p(x, t; v∗)(v − v∗) dΓ dt

=

b∫
a

∫
Γ

t∗∫
t∗−b+h

p(x, t; v∗)c(x, t)

× (
y(x, t − h; v) − y(x, t − h; v∗)

)
dt dΓ dh

+

t∗∫
0

∫
Γ

p(x, t; v∗)(v − v∗) dΓ dt

−
t∗−b∫
0

∫
Γ

∂p(v∗)
∂ηA∗

(
y(x, t; v) − y(x, t; v∗)

)
dt dΓ dh

−
t∗∫

t∗−b

∫
Γ

∂p(v∗)
∂ηA∗

(
y(x, t; v) − y(x, t; v∗)

)
dΓ dt

+

b∫
a

∫
Ω

t∗−b∫
0

b(x, t + h)p(x, t + h; v∗)

× (
y(x, t; v) − y(x, t; v∗)

)
dt dxdh. (44)

Then, using the fact that y(x, t; v) = y(x, t; v∗) =
Φ0(x, t) for x ∈ Ω and t ∈ [−b, 0), and y(x, t; v) =
y(x, t; v∗) = Ψ0(x, t) for x ∈ Γ and t ∈ [−b, 0), we
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obtain∫
Ω

(
zd − y(t∗; v∗)

)(
y(t∗; v) − y(t∗; v∗)

)
dx

=

t∗∫
0

∫
Γ

p(v∗)(v − v∗) dΓ dt. (45)

Substituting (45) into (19) gives

t∗∫
0

∫
Γ

p(v∗)(v − v∗) dΓ dt ≤ 0, ∀v ∈ U. (46)

The foregoing result is now summarized.

Theorem 4. The optimal control v∗ is characterized by
the condition (46). Moreover, in particular,

v∗(x, t) = sign
(
p(x, t; v∗)

)
, x ∈ Γ, t ∈ (0, t∗), (47)

whenever p(v∗) is nonzero.

This property leads to the following result:

Theorem 5. If the coefficients of the operator A(t) and
the functions b(x, t) and c(x, t) are analytic, and Ω has
analytic boundary Γ, then there exists unique optimal con-
trol for the mixed initial-boundary value problem (1)–
(5). Moreover, the optimal control is bang-bang, that is,
|v∗(x, t)| ≡ 1, almost everywhere and the unique solution
of (1)–(5), (30)–(35), (47).

The idea of the proof of Theorem 5 is the same as in
the case of Theorem 3.4 in (Kowalewski and Krakowiak,
2000).

5. Conclusions and Perspectives

The results presented in the paper can be treated as a gen-
eralization of the results obtained by Knowles (1978), and
Kowalewski and Krakowiak (2000) onto the case of time-
optimal boundary control of parabolic systems with de-
viating arguments appearing in the integral form both in
state equations and in boundary conditions.

We considered a different type of control, namely,
the control function defined at the boundary of the spa-
tial domain. Sufficient conditions for the existence of a
unique solution of such parabolic equations with Neu-
mann boundary conditions are proved (Lemma 1 and The-
orem 1). The optimal control is characterized by using the
adjoint equation (Theorems 2 and 3). The uniqueness and
bang-bang properties of the optimal control are proved
(Theorems 4 and 5).

The condition (18) plays a fundamental role in con-
trollability problems for time-delay parabolic systems.
With regard to the controllability assumption (18), we can

investigate the exact controllability problem for the par-
abolic system (1)–(5).

In this paper, we considered the time-optimal bound-
ary control problem for parabolic systems with non-
homogeneous Neumann boundary conditions. We can
also consider an analogous minimum time problem for
systems with nonhomogeneous Dirichlet boundary con-
ditions. Finally, we can consider the time-optimal control
problem for discrete time delay distributed parameter sys-
tems. The ideas mentioned above will be developed in
forthcoming papers.
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