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This paper presents direct model reference adaptive control for a class of nonlinear systems with unknown nonlinearities.
The model following conditions are assured by using adaptive neural networks as the nonlinear state feedback controller.
Both full state information and observer-based schemes are investigated. All the signals in the closed loop are guaranteed to
be bounded and the system state is proven to converge to a small neighborhood of the reference model state. It is also shown
that stability conditions can be formulated as linear matrix inequalities (LMI) that can be solved using efficient software
algorithms. The control performance of the closed-loop system is guaranteed by suitably choosing the design parameters.
Simulation results are presented to show the effectiveness of the approach.
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1. Introduction

Nonlinear control design can be viewed as a nonlinear
function approximation problem (see, e.g., (Billings et
al., 1992; Narendra and Parthasarathy, 1990)). On the
other hand, neural networks have been proved to be uni-
versal approximators for nonlinear systems (Cybenko,
1989; Cotter, 1990; Ferrari and Stengel, 2005; Park and
Sandberg, 1991). Neural networks are capable of learning
and reconstructing complex nonlinear mappings and have
been widely studied by control engineers in the identifica-
tion analysis and design of control systems. A large num-
ber of control structures have been proposed, including
direct inverse control (Plett, 2003), model reference con-
trol (Narendra and Parthasarathy, 1990; Patino and Liu,
2000), sliding mode control (Zhihong et al., 1998), inter-
nal model control (Rivals and Personnaz, 2000), feedback
linearization (Yesildirek and Lewis, 1995), backstepping
(Zhang et al., 2000), indirect adaptive control (Chang and
Yen, 2005; Narendra and Parthasarathy, 1990; Neidhoe-
fer et al., 2003; Poznyak et al., 1999; Patino and Liu,
2000; Seshagiri and Khalil, 2000; Yu and Annaswamy,
1997; Zhang et al., 2000), and direct adaptive control
(Ge et al., 1999; Huang et al., 2006; Sanner and Slo-
tine, 1992; Spooner and Passino, 1996; Zhihong et al.,
1998). The principal types of neural networks used for

control problems are the multilayer perceptron (MLP),
neural networks with sigmoidal units, and radial basis
function (RBF) neural networks.

Model reference adaptive control (Landau, 1979) is
a technique well established in the framework of linear
systems. In the direct model reference control approach,
the parameters of the linear controller are adapted di-
rectly either by gradient- or stability-based approaches to
drive the plant output to follow a desired reference model.
This structure can be extended by utilizing the nonlinear
function approximation capability of feedforward neural
networks, such as the multilayer perceptron (MLP), to
form a more general, flexible control law (Narendra and
Parthasarathy, 1990; Patino and Liu, 2000; Zhihong et al.,
1998). Such a network could be trained on-line within the
MRAC structure, to facilitate the generation of a nonlin-
ear control law that may be necessary to drive the output
of the plant to follow the desired linear reference model.

In this paper, we propose a new neural-network-
based model reference adaptive control scheme for a class
of nonlinear systems. Unlike in the cited works, neural
networks are not directly used to learn the system non-
linearities, but they are used to adaptively realize, like in
linear MRAC, the model following conditions. The idea
behind this approach is that activation functions play the
role of a continuous scheduler of local linear feedback,
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such that at each operating point there exists a controller
that achieves the model following objective. Both full
state information and observer-based approaches are de-
veloped. The stability in both cases is established using
Lyapunov tools. It is shown that this approach is robust
against external disturbances, and the tracking and ob-
servation errors are bounded. Compared with the previ-
ously developed direct adaptive approaches, this adaptive
scheme requires few assumptions, and its implementation
is much simpler, i.e., neither supervisory nor switching
control is needed to ensure stability, and no upper bound
on the high-frequency gain derivative is required. Simu-
lation results for an unstable inverted pendulum show the
capabilities of the proposed approach for both tracking a
reference model and estimating the system states.

The rest of the paper is organized as follows: Sec-
tion 2 introduces the neural networks used and states the
nonlinear systems direct model reference adaptive control
problem. Section 3 develops the full state information ap-
proach, based on neural network state feedback. Section 4
develops the observer-based approach using an adaptive
observer to estimate the system states. Section 5 presents
simulation results, and Section 6 concludes the paper.

2. Preliminaries

The following notation will be used throughout the paper:
The symbol |y| denotes the usual Euclidean norm of a vec-
tor y. In case y is a scalar, |y| denotes its absolute value.
If A is a matrix, then ‖A‖ denotes the Frobenius matrix
norm defined as

‖A‖2 =
∑
ij

a2
ij = tr

[
AT A

]
,

where tr[·] denotes the trace of the matrix.

2.1. Neural Networks. The general function of a one
hidden layer feedforward network can be described as a
weighted combination of N activation functions

y =
N∑

i=1

ϕi (x, θi) wi. (1)

Here the input vector x and ϕi(·) represent the i-th activa-
tion function (with its parameter vector θ i) connected to
the output by the weight wi. The number of the input and
output layers coincides with the dimension of the input
vector and the output information number, respectively.
The activation functions are chosen following the neural
network at hand. For example, the MLP uses generally
the sigmoid function defined as

ϕi (x, θi) =
1

1 + exp(−aix)
, (2)

or the logistic function defined by

ϕi (x, θi) =
1 − exp(−aix)
1 + exp(−aix)

. (3)

On the other hand, RBF networks use Gaussian functions
defined as

ϕi (x, θi) = exp

(
−|x − ci|2

2σ2
i

)
. (4)

Since the above neural networks will be trained on-line to
realise a control task, in order to reduce computation load,
we will assume that the parameters of the activation func-
tions θi are fixed, i.e., their number and shapes are fixed
a priori. The only adjustable parameters are the weights
wi. Then (1) is rewritten in the compact form

y = φ (x)w, (5)

where

φ (x) =
[

ϕ1 (x) · · · ϕN (x)
]

and
wT =

[
w1 · · · wN

]
.

From approximation theory it is known that the mod-
eling error can be reduced arbitrarily by increasing the
number N , i.e., the number of linear independent activa-
tion functions in the network. That is, a smooth function
f (x) , x ∈ Ωx ⊂ R

n can be written as

f (x) = φ (x)w∗ + ε (x) , (6)

where ε (x) is the approximation error inherent in the net-
work and w∗ is an optimal weight vector. Following the
universal approximation results, for the neural network (5)
there exist a finite set of w∗ and a constant ε∗ such that
(6) holds with |ε (x)| < ε∗.

2.2. Problem Statement. Consider the class of
continuous-time nonlinear systems given by

.
x = Ax + b [f(x) + g(x)u] , (7)

y = cT x, (8)

where xT = [ x1 x2 · · · xn ] ∈ R
n is the state vec-

tor, u, y ∈ R are the system input and output, respectively,
and f (x), g (x) are smooth nonlinear unknown functions.
Furthermore,

A =

[
0(n−1)×1 In−1

01×n

]
n×n

,
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b =

⎡⎢⎢⎢⎢⎣
0
...

0
1

⎤⎥⎥⎥⎥⎦
n×1

, c =

⎡⎢⎢⎢⎢⎣
1
0
...

0

⎤⎥⎥⎥⎥⎦
n×1

,

where In is the n × n identity matrix.
The nonlinear system (7)–(8) satisfies the following

assumptions:

P1. The high-frequency gain g (x) is strictly positive and
bounded by 0 < g (x) < g0, for some known con-
stant g0, in the relevant control space Ωx. The nega-
tive case can also be handled.

P2. The nonlinear function f(x) can be decomposed
as f (x) = a (x)x + a0 (x) with a (x) =
[ a1 (x) a2 (x) · · · an (x) ] ∈ R

n as an un-
known smooth nonlinear vector function, and a 0 (x)
as a bounded nonlinear function.

Note that P1 is a usual assumption in adaptive con-
trol, and P2 specifies the discussed class of nonlinear
systems. Note that, from a practical point of view, a
large class of real plants satisfies Assumption P2, e.g., ro-
bot manipulators, electrical drives, hydraulic rigs, power
plants and turbofan engines, etc.

The reference model is defined by the following sta-
ble LTI state equation:

.
xm = Amxm + bbmr, (9)

ym = cT xm, (10)

where xm ∈ R
n×1 is the state vector, ym is the reference

model output, r is a bounded reference input, Am is given
by

Am =

[
0(n−1)×1 In−1

−am

]
n×n

,

with am ∈ R
1×n and bm > 0.

Substracting (7) and (8) from (9) and (10), respec-
tively, and using P2 yield the following tracking error dy-
namic:

.
e = Ame + b

[− (am + a(x))x + bmr

− g(x)u − a0 (x)
]
, (11)

ey = cT e, (12)

where e = xm − x and ey = ym − y are the state and
output tracking errors, respectively.

The control problem can be stated as follows: Design
the control input u such that the reference model following
is achieved, under the condition that all involved signals in
the closed loop remain bounded.

3. Neuro-State Feedback Design

The neural adaptive controller to be designed consists of
three neural components (see Fig. 1) such that

u = φ
1
(x)K1x + φ

2
(x) k2 + φ

3
(x) k3r, (13)

where φ
1
(x) ∈ R

1×N1 , φ
2
(x) ∈ R

1×N2 and φ
3
(x) ∈

R
1×N3 are the vectors of activation functions in the three

networks of dimensions N1, N2 and N3, respectively.
K1 ∈ R

N1×n, k2 ∈ R
N2×1 and k3 ∈ R

N3×1 are ad-
justable parameters of the three networks. The first and
third terms in (13) are a nonlinear replica of the standard
reference model feedback control. The second term is
added to account for the nonlinearity a0 (x). As can be
seen from Fig. 1, the first term in (13) is realized by a sin-
gle multi-output (n outputs) network, and the others are
formed by single output networks.

Fig. 1. Neural state feedback structure.

Now, introducing (13) in (11) yields

.
e = Ame + b

[
−
(
am + a(x) + g(x)φ

1
(x)K1

)
x

−
(
a0(x) + g(x)φ

2
(x) k2

)
−
(
g(x)φ

3
(x) k3 − bm

)
r
]
. (14)

According to the universal approximation results, there
exist optimal parameters K∗

1 , k∗
2 and k∗

3 defined as

K∗
1 = arg min

K1∈Ω1

{
sup

x∈Ωx

∣∣∣am + a(x) + g(x)φ
1
(x)K∗

1

∣∣∣} ,

k∗
2 = arg min

k2∈Ω2

{
sup

x∈Ωx

∣∣∣a0(x) + g(x)φ
2
(x)k∗

2

∣∣∣} ,

k∗
3 = arg min

k3∈Ω3

{
sup

x∈Ωx

∣∣∣g(x)φ
3
(x)k∗

3 − bm

∣∣∣} ,

where Ω1, Ω2, Ω3 and Ωx are constraint sets for K1, k2,
k3 and x, respectively. Define the minimum approxima-
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tion errors

am + a(x) + g(x)φ
1
(x)K∗

1 = ε1 (x) , (15)

a0(x) + g(x)φ
2
(x) k∗

2 = ε2 (x) , (16)

g(x)φ
3
(x)k∗

3 − bm = ε3 (x) , (17)

where ε1 (x) ∈ R
1×n and ε2 (x) , ε3 (x) ∈ R are the min-

imum approximation errors achieved by the three neural
networks in (13) with the optimal parameters K ∗

1 , k∗
2 and

k∗
3.

The properties (15)–(17) can be viewed as a non-
linear version of the linear model following conditions,
where the activation functions play the role of schedul-
ing parameters, i.e., for every sample x (t), the activation
functions φ

1
(x) to φ

3
(x) quantify the contribution of the

linear feedback to the controller output.
The adaptive neural controller (13) satisfies the fol-

lowing assumptions:

C1. The activation functions in φ
3

(x) are such that

|
.

φ
3
(x) | < ϕ0, where ϕ0 is a known positive con-

stant, and φ
3
(x) k∗

3 > 0.

C2. Suitable upper bounds Ω1 = {K∗
1 | ‖K∗

1‖ < κ1} ,
Ω2 = {k∗

2 | |k∗
2| < κ2} and Ω3 = {k∗

3 | |k∗
3| < κ3},

with κ1, κ2, κ3 > 0, are given.

C3. The approximation errors are upper bounded by
|ε1 (x)| ≤ ε1, |ε2 (x)| ≤ ε2 and |ε3 (x)| ≤ ε3, for
some positive constants ε1, ε1 and ε3.

Assumption C1 indicates that the activation functions
in φ

3
(x) should be chosen as smooth functions with a

bounded rate of change. Note that
.

φ
3
(x) may not nec-

essarily be globally bounded, but it will have a constant
bound within Ωx due to the continuity of φ

3
(x). As-

sumption C2 is made to prevent any drift of the neural
controller parameters. Assumption C3 follows from the
universal approximation property of neural networks.

Hence, using (15)–(17) in (14), we obtain

.
e = Ame + b

[
g(x)φ

1
(x) K̃1x + g(x)φ

2
(x) k̃2

+ g(x)φ
3
(x) k̃3r − ε1 (x)x − ε2 (x)

− ε3 (x) r
]
, (18)

where K̃1 = K∗
1−K1, k̃2 = k∗

2−k2 and k̃3 = k∗
3−k3 are

the estimation errors of the neural networks parameters.

Further exploiting the property (17), (18) can be
rewritten as
.
e = Ame

+
bm

φ
3
(x)k∗

3

b
[
φ

1
(x) K̃1x + φ

2
(x) k̃2 + φ

3
(x) k̃3r

]
+

1
φ

3
(x)k∗

3

b [α1e + ξ] , (19)

with
ξ = −α1xm + α2 + α3r,

α1 = ε1 (x)φ
3
(x)k∗

3 − ε3 (x)φ
1
(x) K̃1,

α2 = ε3 (x)φ
2
(x)k̃2 − ε2 (x)φ

3
(x)k∗

3,

α3 = ε3 (x)φ
3
(x)k3.

Combining (12) and (19) yields the following transfer
function:

ey = G (s)
bm

φ
3
(x)k∗

3

×
[
φ

1
(x) K̃1x + φ

2
(x) k̃2 + φ

3
(x) k̃3r

]
+

G (s)
φ

3
(x)k∗

3

[α1e + ξ] , (20)

where G (s) = cT [sIn − Am]−1 b, and s is the Laplace
operator.

Define the polynomial H(s) = sn−1 + β2s
n−2 +

· · · + βn−2s + βn−1 such that H−1(s) is a proper stable
transfer function. Then, dividing and multiplying (20) by
H(s), we get

ey = G0 (s)
bm

φ
3
(x)k∗

3

×
[
φ

1f
(x) K̃1x + φ

2f
(x) k̃2 + φ

3f
(x) k̃3r

]
+

G0 (s)
φ

3
(x)k∗

3

[
α1f e + ξf

]
, (21)

with G0 (s) = H (s)G (s), α1f = H−1(s)α1, ξf =
H−1(s)ξ and φ

if
(x) = H−1(s)φ

i
(x) for i = 1, . . . , 3.

Hence, (21) can be rewritten in the following state
space form:

.
e = Ame +

bm

φ
3
(x)k∗

3

bc

×
[
φ

1f
(x) K̃1x + φ

2f
(x) k̃2 + φ

3f
(x) k̃3r

]
+

1
φ

3
(x)k∗

3

bc

[
α1fe + ξf

]
(22)

ey = cT e, (23)

where bT
c = [ 0 · · · 0 1 β2 · · · βn−1 ] ∈ R

n.
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Since G(s) is Hurwitz, and the pairs {Am, b} and
{Am, c} are controllable and observable, respectively,
H(s) can always be chosen such that G0 (s) is strictly
positive real (SPR). It follows that, for a given Q > 0,
there exists P = P T > 0 such that the following equa-
tions are satisfied (Landau, 1979):

AT
mP + PAm = −Q, (24)

bT
c P = cT . (25)

The parameters of the neural controller are updated
using the following projection algorithm (Sastry and Bod-
son, 1989):

.

K1 = γ1bmeyφT

1f
(x)xT

− I1γ1bmey tr
[
KT

1 φT

1f
(x)xT

](1+‖K1‖
κ1

)2

K1,

(26)

.

k2 = γ2bmeyφT

2f
(x) − I2γ2bmey

k2k
T
2 φT

2f
(x)

|k2|2
, (27)

.

k3 = γ3bmeyφT

3f
(x)r − I3γ3bmey

k3k
T
3 φT

3f
(x) r

|k3|2
, (28)

where

I1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if

⎧⎪⎪⎨⎪⎪⎩
‖K1‖ < κ1 or

‖K1‖ = κ1

and ey tr
[
KT

1 φT

1f
(x)xT

]
≤ 0,

1 if ‖K1‖ = κ1 and ey tr
[
KT

1 φT

1f
(x) xT

]
>0,

I2 =

⎧⎪⎪⎨⎪⎪⎩
0 if

{
|k2| < κ2 or

|k2| = κ2 and eyφ
2f

(x) k2 ≤ 0,

1 if |k2| = κ2 and eyφ2f
(x) k2 > 0,

I3 =

⎧⎪⎪⎨⎪⎪⎩
0 if

{
|k3| < κ3 or

|k3| = κ3 and eyφ
3f

(x) k3r ≤ 0,

1 if |k3| = κ3 and eyφ3f
(x) k3r > 0,

and γ1, γ2, γ3 > 0 are design parameters.
The update laws (26)–(28) ensure that ‖K1‖ ≤ κ1,

|k2| ≤ κ2 and |k3| ≤ κ3, ∀t ≥ 0, if the initial values of
the parameters are set properly.

To prove that ‖K1‖ ≤ κ1, let VK = 1
2 ‖K1‖2 =

1
2 tr[KT

1 K1]. Then

.

V K =
1
2

d ‖K1‖2

dt
= tr

[
KT

1

.

K1

]
.

If IK1 = 0, we have either ‖K1‖ < κ1 or ‖K1‖ = κ1,
and .

V K = γ1bmey tr
[
KT

1 φT

1f
(x)xT

]
≤ 0,

i.e., we always have ‖K1‖ ≤ κ1. If IK1 = 1, we have
‖K1‖ = κ1 and

.

V K = γ1bmey tr
[
KT

1

(
φT

1f
(x)xT − tr

[
KT

1 φT

1f
(x)xT

]

×
(

1 + ‖K1‖
κ1

)2

K1

)]

= γ1bmey

(
tr
[
KT

1 φT

1f
(x)xT

]
− tr

[
KT

1 φT

1f
(x)xT

]

×
(

1 + ‖K1‖
κ1

)2

tr
[
KT

1 K1

] )
= γ1bmey tr

[
KT

1 φT

1f
(x)xT

]
×
(

1 −
(

1 + ‖K1‖
κ1

)2

tr
[
KT

1 K1

])
. (29)

Since ey tr[KT
1 φT

1f
(x)xT ] > 0 and ‖K1‖ = κ1, we get

.

V K ≤ 0, which implies that ‖K1‖ ≤ κ1. Therefore, we
get ‖K1‖ ≤ κ1, ∀t ≥ 0 a similar analysis can be used to
show that |k2| ≤ κ2 and |k3| ≤ κ3 ∀t ≥ 0.

Now, consider the Lyapunov function

V =
1
2
φ

3
(x) k∗

3e
T Pe +

1
2γ1

tr
[
K̃T

1 K̃1

]
+

1
2γ2

k̃
T

2 k̃2 +
1

2γ3
k̃

T

3 k̃3, (30)

where, for a given Q > 0, P is the solution of (24)
and (25).

The differentiation of (30) along the trajectory of (22)
yields

.

V = −1
2
φ

3
(x) k∗

3e
T Qe +

1
2

.

φ
3
(x) k∗

3e
T Pe

+bmeT Pbc

[
φ

1f
(x) K̃1x+φ

2f
(x)k̃2+φ

3f
(x)k̃3r

]
+ eT Pbcα1fe + eT Pbcξf

+
1
γ1

tr
[
K̃T

1

.

K̃1

]
+

1
γ2

k̃
T

2

.

k̃2 +
1
γ3

k̃
T

3

.

k̃3. (31)

Further, using the facts that
.

K̃1 = −
.

K1,
.

k̃2 = −
.

k2 and
.

k̃3 = −
.

k3, we can arrange (31) as

.

V = −1
2
φ

3
(x)k∗

3e
T Qe +

1
2

.

φ
3
(x)k∗

3e
T Pe

+ eT Pbcα1fe + eT Pbcξf
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+
1
γ1

tr
[
K̃T

1

(
γ1bmeyφ

T

1f
(x)xT −

.

K1

)]
+

1
γ2

k̃
T

2

(
γ2bmeyφT

2f
(x) −

.

k2

)
+

1
γ3

k̃
T

3

(
γ3bmeyφT

3f
(x)r −

.

k3

)
. (32)

Then, introducing the update laws (26)–(28) in (32)
yields

.

V = −1
2
φ

3
(x)k∗

3e
T Qe +

1
2

.

φ
3
(x)k∗

3e
T Pe

+ eT Pbcα1fe + eT Pbcξf

+ I1 tr
[
K̃T

1 bmey tr
[
KT

1 φT

1f
(x)xT

]

×
(

1 + ‖K1‖
κ1

)2

K1

]

+ I2k̃
T

2

bmeyk2k
T
2 φT

2f
(x)

|k2|2

+ I3k̃
T

3

bmeyk3k
T
3 φT

3f
(x) r

|k3|2
. (33)

Further, (33) can be arranged as

.

V = −1
2
φ

3
(x)k∗

3e
T Qe +

1
2

.

φ
3
(x)k∗

3e
T Pe

+ eT Pbcα1fe + eT Pbcξf

+ I1bmey tr
[
K̃T

1 K1

]
tr
[
KT

1 φT

1f
(x)xT

]
×
(

1 + ‖K1‖
κ1

)2

+ I2k̃
T

2 k2

bmeyk
T
2 φT

2f
(x)

|k2|2

+ I3k̃
T

3 k3

bmeyk
T
3 φT

3f
(x)

|k3|2
r. (34)

We now prove that the last three terms in (34) are
always nonpositive. If I1 = I2 = I3 = 0, the re-
sult is trivial. If I1 = 1, then ‖K1‖ = κ1 and
ey tr[KT

1 φT

1f
(x)xT ] > 0. On the other hand, we have

tr
[
K̃T

1 K1

]
=

1
2

tr
[
K∗T

1 K∗
1

]− 1
2

tr
[
KT

1 K1

]
− 1

2
tr
[
K̃T

1 K̃1

]
. (35)

Since tr[K∗T
1 K∗

1 ] ≤ κ2
1, tr[KT

1 K1] = κ2
1 and tr[K̃T

1 K̃1]
≥ 0, we get tr[K̃T

1 K1] ≤ 0, which means that the fourth
term in (34) is always nonpositive. The same analysis can
be used to show that the last two terms in (34) are also
nonpositive.

Using the above result, (34) can be rewritten as

.

V ≤ −1
2
φ

3
(x)k∗

3e
T Qe +

1
2

.

φ
3
(x)k∗

3e
T Pe

+ eT Pbcα1fe + eT Pbcξf . (36)

Further, using the fact that eT Pbcξf ≤ 1
2eT Pbcb

T
c Pe +

1
2ξ2

f and ‖bcα1f‖ ≤ α0 (where α0 is a given upper bound)
in (36), we obtain

.

V ≤ −1
2
φ

3
(x)k∗

3e
T Qe +

1
2

.

φ
3
(x)k∗

3e
T Pe

+ α0e
T Pe +

1
2
eT Pbcb

T
c Pe +

1
2
ξ2
f , (37)

which, using C1 and the fact that |φ
3
(x)| ≤ 1, can be

upper bounded by

.

V ≤ −1
2
κ3e

T Qe +
1
2
ϕ0κ3e

T Pe

+ α0e
T Pe +

1
2
eT Pbcb

T
c Pe +

1
2
ξ2
f . (38)

Finally, (38) can be rearranged as

.

V ≤ −1
2
κ3e

T

(
Q −

(
ϕ0 + 2

α0

κ3

)
P − 1

κ3
Pbcb

T
c P

)
e

+
1
2
ξ2
f . (39)

If the matrices Q and P are chosen such that

Q −
(

ϕ0 + 2
α0

κ3

)
P − 1

κ3
Pbcb

T
c P ≥ Q1 (40)

for some positive definite matrix Q1, then (39) becomes

.

V ≤ −1
2
κ3e

T Q1e +
1
2
ξ2
f , (41)

which can be upper bounded by

.

V ≤ −1
2
κ3λQ1 |e|2 +

1
2
|ξf |2 , (42)

where λQ1 is the smallest eigenvalue of Q1.

Then
.

V ≤ 0 outside the bounded region defined by

|e| ≤ 1√
κ3λQ1

|ξf | . (43)
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Fig. 2. Full state-based adaptive neural control structure.

The properties of the proposed adaptive neural state
feedback approach are summarized by the following the-
orem:

Theorem 1. The control system of Fig. 2, composed by
the nonlinear system (7)–(8) satisfying P1–P2, the refer-
ence model (9)–(10), the neural controller (13) satisfying
C1–C3, the update laws (26)–(28), and the matrices P , Q
satisfying (24)–(25) and (40) guarantee the following:

(i)
|x| ≤ |xm| + c1 |ξf | , (44)

(ii)
|u| ≤ κ1 |xm| + κ3 |r| + c2 |ξf | , (45)

(iii) ∫ T

0

|e|2 dt ≤ c3 + c4

∫ T

0

|ξf |2 dt. (46)

Proof. (i) Using (43) and the fact that |x| ≤ |xm|+ |e|, we
have

|x| ≤ |xm| + 1√
κ3λQ1

|ξf | . (47)

Then (44) holds by setting c1 = 1/
√

κ3λQ1 .

(ii) From (13) and the parameter bounds, the control input
is bounded by

|u| ≤ κ1 |x| + κ2 + κ3 |r| , (48)

where the fact that |φ
i
(x) |i=1,...,3 ≤ 1 is used. Then,

introducing (47) in (48), we get

|u| ≤ κ1 |xm| + κ2 + κ3 |r| + κ1c1 |ξf | . (49)

Therefore, (45) is proved with c2 = κ1c1.

(iii) From (43) we have that e ∈ L∞, and since K1,
k2, k3 ∈ L∞, we obtain V ∈ L∞. Since all terms in (22)

are bounded,
.
e ∈ L∞ and, therefore, e is uniformly con-

tinuous. Integrating both sides of (42) yields∫ T

0

|e|2 dt ≤ 2
κ3λQ1

[ |V (0)| + |V (T )| ]
+

1
κ3λQ1

∫ T

0

|ξf |2 dt. (50)

Hence, setting c3 = 2
κ3λQ1

[|V (0)| + |V (T )|] and c4 =
1

κ3λQ1
yields (46).

Remarks:

1. The control law (13) is a nonlinear form of the lin-
ear MRAC control structure. Various terms may be
included, such as a term proportional to the tracking
error, or a switching control term. Note that different
control laws may be used in different control theory
frameworks, such as feedback linearization or adap-
tive sliding mode control.

2. In the proposed approach, RBF or MLP networks
may be used depending on the application context.
RBF networks are simple to design and rapid in the
training process, but they are not suitable for high di-
mensional systems since RBF suffers from the course
of dimensionality. MLP networks are more suitable
for highly nonlinear systems due to their parallelism
and approximation capabilities.

3. The bounds κ1, κ2 and κ3 are selected to force
the realization of (15)–(17), i.e., they should be
such that κ1 > max |(am + a(x)) /g(x)|, κ2 >
max |a0(x)/g(x)| and κ3 > max |bm/g(x)|. Since
the system’s nonlinearities are poorly known, these
bounds should be large enough to ensure that the
above limits are included.

4. It would be simpler to choose the same set of ac-
tivation functions in (13), i.e., φ

1
(x) = φ

2
(x) =

φ
3
(x) = φ(x). But, in practice, f(x) and g(x) may

depend on different state variables and, therefore, the
proposed approach provides a mean to design the
neural control input with a reduced number of acti-
vation functions and adjustable parameters.

5. Compared with the direct approach presented in
(Spooner and Passino, 1996), this approach is sim-
pler since only neural state feedback is used, and
no supervisory control term is required to ensure the
boundedness of variables.

6. Compared with (Ge et al., 1999; Spooner and
Passino, 1996), where an upper bound on

.
g(x) is re-

quired to achieve the control objective, this scheme

needs only an upper bound on
.

φ
3
(x), which is a user

designed parameter and, therefore, is available for
evaluation.
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P > 0, (51)⎡⎣ −AT
mP − PAm −

(
ϕ0 + 2

α0

κ3

)
P − 1

κ3
Pbcb

T
c P Pbc − cT

bT
c P − c 0

⎤⎦ > 0. (52)

7. Using Barbalat’s lemma (Sastry and Bodson, 1989),
it can be shown that if ξf ∈ L2, then the track-
ing error asymptotically converges to zero, i.e.,
limt→∞ e(t) = 0.

8. The stability conditions encountered in (24)–(25) and
(40) can be expressed in the LMI form (51) and (52),
where the LMI (51) is introduced to force the posi-
tivity of P . Then, an LMI-based stability analysis is
carried out to check whether the stability condition is
satisfied. In the case where (51) and (52) are not sat-
isfied, the reference model dynamics and/or the filter
H (s) should be modified so that the above LMIs are
feasible.

4. Observer-Based Design

The above design was based on full state information.
Since this is seldom the case in many practical situations,
the problem will be solved using only the system’s output
as the available information.

To estimate the system states, define the following
observer:

.

ê = Aê + l (ey − êy) , (53)

êy = cT ê, (54)

where ê = xm − x̂ is the estimated tracking error,
êy = ym − ŷ is the output estimated tracking error, x̂,
ŷ are the estimated states and output, respectively, and
lT = [ l1 l2 · · · ln ] ∈ R

n is selected such that[
A − lcT

]
is a Hurwitz matrix.

The observer (53)–(54) can be further arranged as

.

ê =
[
A − lcT

]
ê + lcT e, (55)

êy = cT ê. (56)

The control input is now defined, using the estimated
states, as

u = φ
1
(x̂)K1x̂ + φ

2
(x̂) k2 + φ

3
(x̂) k3r. (57)

Introducing the control input (57) in (11) and using (15)–
(17) yields

.
e = Ame

+
bm

φ
3
(x)k∗

3

b
[
φ

1
(x̂)K̃1x̂ + φ

2
(x̂)k̃2 + φ

3
(x̂)k̃3r

]
+

1
φ

3
(x)k∗

3

b [α4e + α5ê + ζ] , (58)

with

ζ = α6xm + α7 + α8r,

α4 = φ
3
(x)k∗

3g(x)φ
1
(x̂)K∗

1 − ε3 (x)φ
1
(x̂)K̃1,

α5 = φ
3
(x)k∗

3

(
ε1 (x) − g(x)

(
φ

1
(x)K∗

1 + φ
1
(x)K̃1

))
,

α6 = −(α4 + α5),

α7 = ε3 (x) φ
2
(x̂)k̃2

+ φ
3
(x)k∗

3

(
g(x)

(
φ̃

2
(x)k∗

2+φ
2
(x)k̃2

)
− ε2 (x)

)
,

α8 = ε3 (x) φ
3
(x̂)k̃3

+ φ
3
(x)k∗

3

(
g(x)

(
φ̃

3
(x)k∗

3+φ
3
(x)k̃3

)
− ε3 (x)

)
,

where φ̃
i
(x) = φ

i
(x) − φ

i
(x̂), i = 1, . . . , 3.

Then, dividing and multiplying (58) by H(s) yields

.
e = Ame

+
bm

φ
3
(x)k∗

3

bc

[
φ

1f
(x̂)K̃1x̂+φ

2f
(x̂)k̃2+φ

3f
(x̂)k̃3r

]
+

1
φ

3
(x)k∗

3

bc

[
α4f ê + α5e + ζf

]
, (59)

where ζf = H−1 (s) ζ, α4f = H−1 (s)α4 and α5f =
H−1 (s)α5.
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Using (12), (59) and (55)–(56), the augmented dy-
namics of the estimated error and tracking error is given
by

.
v = Aav

+
bm

φ
3
(x)k∗

3

ba

[
φ

1f
(x̂)K̃1x̂ + φ

2f
(x̂)K̃2r

]
+

1
φ

3
(x)k∗

3

ba

[
αfv + ζf

]
, (60)

ey = cT
a v, (61)

with vT = [ êT eT ], bT
a = [ 01×n bT

c ], ca =

[ 01×n cT ], αf = [ α4f α5f ] and

Aa =

[
A − lcT lcT

0n×n Am

]
.

Note that for the state space realization (60)–(61),
there exist two symmetric positive definite matrices Pa

and Qa such that

AT
a Pa + PaAa = −Qa, (62)

Paba = ca. (63)

This can be proved by observing that cT
a [sI2n − Aa] ba =

G0 (s) and, on the other hand, that G0 (s) can be always
made SPR by a proper choice of H (s), which means
that (62) and (63) are satisfied.

The parameters of the neural controller (57) are ad-
justed using the same update laws (26)–(28), except that
x and φ

if
(x) are replaced by x̂ and φ

if
(x̂), respectively.

It can be verified, using the same analysis, that the update
laws (26)–(28) (with the indicated changes) guarantee that
‖K1‖ ≤ κ1, |k2| ≤ κ2 and |k3| ≤ κ3 ∀t ≥ 0.

Consider the Lyapunov function

V =
1
2
φ

3
(x) k∗

3v
T Pav +

1
2γ1

tr
[
K̃T

1 K̃1

]
+

1
2γ2

k̃
T

2 k̃2 +
1

2γ3
k̃

T

3 k̃3, (64)

where Pa is the solution of (62) and (63) for a given posi-
tive definite matrix Qa.

The differentiation of (64) along the trajectory of (60)
yields

.

V = −1
2
φ

3
(x) k∗

3v
T Qav +

1
2

.

φ
3
(x) k∗

3v
T Pav

+ bmvT Paba

[
φ

1f
(x̂) K̃1x̂

+ φ
2f

(x̂) k̃2 + φ
3f

(x̂) k̃3r
]

+ vT Paba

[
αfv + ζf

]
+

1
γ1

tr
[
K̃T

1

.

K̃1

]
+

1
γ2

k̃
T

2

.

k̃2 +
1
γ3

k̃
T

3

.

k̃3. (65)

Then, exploiting (61), (65) can be arranged as

.

V = −1
2
φ

3
(x) k∗

3v
T Qav +

1
2

.

φ
3
(x) k∗

3v
T Pav

+ vT Paba

[
αfv + ζf

]
+

1
γ1

tr
[
K̃T

1

(
γ1bmeyφ

T

1f
(x̂) x̂T −

.

K1

)]
+

1
γ2

k̃
T

2

(
γ2bmeyφT

2f
(x̂) −

.

k2

)
+

1
γ3

k̃
T

3

(
γ3bmeyφT

3f
(x̂) r −

.

k3

)
. (66)

Further, using the update laws (26)–(28) and the same
analysis as that performed in the previous section, it can
be shown that the last three terms in (66) are always
nonpositive. Hence, (66) becomes

.

V ≤ −1
2
φ

3
(x) k∗

3v
T Qav +

1
2

.

φ
3
(x) k∗

3v
T Pav

+ vT Pabaαfv + vT Pabaζf , (67)

which is upper bounded by

.

V 2 ≤ −1
2
κ3v

T Qav +
1
2
ϕ0κ3v

T Pav

+ ρ0v
T Pav +

1
2
vT PababT

a Pav +
1
2
ζ2
f , (68)

where the upper bounds ‖baαf‖ ≤ ρ0 and |φ
3
(x) | ≤ 1

are used.
Further, (68) can be arranged as

.

V ≤ −1
2
κ3v

T

(
Qa−

(
ϕ0+2

ρ0

κ3

)
Pa− 1

κ3
PababT

a Pa

)
v

+
1
2
ζ2
f . (69)

Hence, if the matrices Qa and Pa are chosen such that

Qa −
(

ϕ0 + 2
ρ0

κ3

)
Pa − 1

κ3
PababT

a Pa ≥ Q2 (70)

for some positive definite matrix Q2, then

.

V ≤ −1
2
κ3v

T Q2v +
1
2
ζ2
f . (71)

Hence, (71) can be upper bounded by

.

V ≤ −1
2
κ3λQ2 |v|2 +

1
2
ζ2
f , (72)

where λQ2 is the smallest eigenvalue of Q2.
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Fig. 3. Observer-based neural adaptive control structure.

Then,
.

V ≤ 0 outside the bounded region defined by

|v| ≤ 1√
κ3λQ2

|ζf | . (73)

The properties of the observer-based neural adaptive
approach are summarized by the following result:

Theorem 2. The control system of Fig. 3, composed of the
nonlinear system (7)–(8) satisfying P1–P2, the reference
model (9)–(10), the neural controller (57) satisfying C1–
C3, the state observer (53)–(54), the matrices Pa and Qa

satisfying (62)–(63) and (70), and the update laws (26)–
(28) (with the indicated changes) guarantee the following:

(i)
|x̂| ≤ |xm| + c5 |ζf | , (74)

|x| ≤ |xm| + c6 |ζf | , (75)

(ii)

|u| ≤ κ1 |xm| + κ2 + κ3 |r| + c7 |ζf | , (76)

(iii) ∫ T

0

|̂e|2 dt ≤ c8 + c9

∫ T

0

|ζf |2 dt, (77)

∫ T

0

|e|2 dt ≤ c10 + c11

∫ T

0

|ζf |2 dt. (78)

Proof. (i) Define the following Lyapunov function:

Vo =
1
2
êT Poê, (79)

where, for some positive definite matrix Qo, Po is a solu-
tion of the equation[

A − lcT
]T

Po + Po

[
A − lcT

]
= −Qo. (80)

The differentiation of (79) along (55) yields

.

V o = −1
2
êT Qoê + êT Polc

T e (81)

which is upper bounded by

.

V o ≤ −1
2
λQo |ê|2 + λPo |l| |e| |̂e| , (82)

where λQo , λPo are the smallest and the largest eigenval-

ues of Qo and Po, respectively. Then,
.

V o ≤ 0 whenever
|ê| is outside the region defined by

|̂e| ≤ 2
λPo

λQo

|l| |e| . (83)

On the other hand, we have |v| =
√|e|2 + |̂e|2. If com-

bined with (83), this yields

|e| ≤ 1√
1 + 4

(
λPo

λQo
|l|
)2

|v| . (84)

Further, (73) and (84) yield the following upper bound:

|e| ≤ 1√
κ3λQ2

(
1 + 4

(
λPo

λQo
|l|
)2
) |ζf | . (85)

Then, introducing (85) in (83) gives

|̂e| ≤ 2λPo |l| /λQo√
κ3λQ2

(
1 + 4

(
λPo

λQo
|l|
)2
) |ζf | . (86)

From (86) and the fact that |x̂| ≤ |xm | + |̂e| we get

|x̂| ≤ |xm| + 2λPo |l| /λQo√
κ3λQ2

(
1 + 4

(
λPo

λQo
|l|
)2
) |ζf | , (87)

which yields (74), with

c5 =
2λPo |l| /λQo√

κ3λQ2

(
1 + 4

(
λPo

λQo
|l|
)2
) .

Now, from |x| ≤ |e| + |xm| and (85), it follows that

|x| ≤ |xm| + 1√
κ3λQ2

(
1 + 4

(
λPo

λQo
|l|
)2
) |ζf | . (88)

Then, (75) is satisfied for

c6 =
1√

κ3λQ2

(
1 + 4

(
λPo

λQo
|l|
)2
) .
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Pa > 0, (94)

⎡⎢⎣ −AT
a Pa − PaAa −

(
ϕ0 + 2

ρ0

κ3

)
Pa − 1

κ3
PababT

a Pa Paba − cT
a

bT
a Pa − ca 0

⎤⎥⎦ > 0. (95)

(ii) Using (87) and |u| ≤ κ1 |x̂| + κ2 + κ3|r|, we get

|u| ≤ κ1 |xm| + κ2 + κ3 |r| + κ1c5 |ζf | . (89)

Hence (76) is proved with c7 = κ1c5.

(iii) Introducing (85) in (82) gives

.

V 1 ≤ −1
2
λQo |̂e|2 +

1
2
λQoc

2
5 |ζf |2 . (90)

Then integrating both sides of (90) yields∫ T

0

|̂e|2 dt ≤ 2
λQo

[ |V1(0)| + |V1(T )| ]
+ c2

5

∫ T

0

|ζf |2 dt, (91)

which gives (77) with c8 = 2
λQo

[|V1(0)| + |V1(T )|] and

c9 = c2
5.

To prove (78), integrating both sides of (72) yields∫ T

0

|v|2 dt ≤ 2
κ3λQ2

[ |V (0)| + |V (T )| ]
+

1
κ3λQ2

∫ T

0

|ζf |2 dt. (92)

Further, using (84), we get∫ T

0

|e|2 dt ≤ 1

1 + 4
(

λPo

λQo
|l|
)2

∫ T

0

|v|2 dt. (93)

Then, combining (92) and (93) yields (78), with

c10 =
2 [|V (0)| + |V (T )|]

κ3λQ2

(
1 + 4

(
λPo

λQo
|l|
)2
)

and

c11 =
1

κ3λQ2

(
1 + 4

(
λPo

λQo
|l|
)2
) .

Remarks:

1. From (77) and (78) we have that if ζf ∈ L2 then, by
Barbalat’s lemma, the tracking and estimated track-
ing errors converge to zero.

2. Other observers such as a high gain observer may
be used, but in this case the control input should be
saturated to avoid the effect of large transient values
of the estimated states.

3. Parts (i)–(iii) of Theorem 1 and 2 point out the fol-
lowing facts: First, the tracking and estimation errors
are bounded and their bounds depend on some design
parameters that can be tuned by the designer. Sec-
ond, the input control is also bounded and the amount
of energy can be controlled by the design parameters.
Third, if the uncertainty terms are square integrable,
then the tracking and estimation errors converge to
zero.

4. The satisfaction of the stability conditions (62), (63)
and (70) can be expressed as an LMI problem of the
form (94) and (95). The feasibility of (94) and (95)
depends on the choice of the reference model (9)
and (10), the filter H(s) and the observer dynam-
ics (53) and (54). The reference model and observer
eigenvalues influence the magnitudes of the eigenval-
ues of matrix P , which affects the positivity of (95).
On the other hand, an increase in the norm of H(s)
reduces the norm of the uncertain terms α4f and α5f

which reduces the magnitude of ρ0 but increases the
filtering dynamics.

5. Simulation

The validity of the proposed neural adaptive control
scheme is verified on an inverted pendulum (Fig. 4), de-
scribed by

.
x1 = x2,

.
x2 = f(x1, x2) + g(x1)u + d,

(96)

with

f(x1, x2) =
(mc + m)g sin x1 − mlx2

2 cosx1 sin x1

l
(

4
3 (mc + m) − m cos2 x1

) ,



G. Debbache et al.230

Fig. 4. Inverted pendulum.

g(x1) =
cosx1

l
(

4
3 (mc + m) − m cos2 x1

) ,

where x1, x2 and u are the pendulum angular position,
velocity and input force, respectively. Moreover, d is an
uncertainty term. Remark that f(x) can be written as
f(x) = a(x)x, with xT = [ x1 x2 ] and

a1(x) =
(mc + m)g

l
(

4
3 (mc + m) − m cos2 x1

) sin x1

x1
,

a2(x) = − mlx2 cosx1 sin x1

l
(

4
3 (mc + m) − m cos2 x1

) .

For the simulation, the system parameters are chosen as
follows: mc = 1 Kg, m = 0.1 Kg, l = 0.5 m
and g = 9.8 m/s2. The reference model is given by
am = [ 1 2 ] and bm = 1. The control system is dis-
cretized using the sampling step T = 2 ms. We note that
since T is small, the stability conclusions drawn on the
continuous-time basis remain valid. If this is not the case,
the proposed approach should be redesigned in a discrete-
time framework.

The steps of the observer-based adaptive neural con-
trol design are as follows:

1. For the observer design, select lT = [ 8 16 ] and,
to ensure the SPR condition, select H(s) = (s + 2).

2. Regarding the reference model dynamics, the ref-
erence variables are bounded within the interval
[−1, 1]× [−2, 2] (along x1 and x2, respectively). As
for the form of f (x) and g (x1), the control input is
given by

u = φ
1
(x1, x̂2)K1x̂ + φ

3
(x1) , k3r, (97)

where the first term in (97) is constructed by a two-
output RBF network defined by nine RBF functions,
i.e., φ

1
(x1, x̂2) ∈ R

1×9, having standard deviations

of 1/
√

2 and
√

2 and using mesh spacings of 1 and 2
with respect to x1 and x2, respectively. The sec-
ond term in (97) is constructed by a single-output

RBF network with three RBFs, i.e., φ
3
(x1) ∈ R

1×3,

having standard deviation of 1/
√

2 and using mesh
spacings of 1 with respect to x1. K1 ∈ R

9×2 and
k3 ∈ R

3×1 are the two adjustable parameters of
neural networks. Note that the pendulum velocity x2

is replaced by the estimated one x̂2.

3. The required bounds are fixed as κ1 = 60 and
κ3 = 30, which implies |a1(x)| < 16, |a2(x)| < 0.5
and 0.98 < g(x1) < 1.47, respectively. The evalua-

tion of
.

φ3(x1) over the interval defined for x1 and x2

yields |
.

φ3(x1)| ≤ ϕ0 = 1.81. The upper bounds on
the approximation errors are fixed as ε1 = 0.05 and
ε3 = 0.01.

4. Using the above bounds, the solution of the LMIs
(94) and (95) yields

Pa

=

⎡⎢⎢⎢⎣
305.1491 −45.1804 153.2330 −76.6165
−45.1804 56.4105 −13.0517 6.5258

−153.2330 −13.0517 222.3894 −110.6947
76.6165 6.5258 −110.6947 55.3473

⎤⎥⎥⎥⎦>0,

which gives, with bT
a = [ 0 0 1 2 ] and ca =

[ 0 0 1 0 ], the following result:

bT
a Pa − ca

= 10−8
[

0.1340 0.0392 −0.1298 −0.0335
]
,

which is practically zero.

5. The free control parameters are adjusted using (26)
and (28), with γ1 = 500 and γ3 = 100.

The tracking performance for the nominal plant (i.e.,
no uncertainty is introduced) is shown in Fig. 5. It is
clear that the tracking errors are rapidly reduced, and the
control input is moderate and smooth. Further, the pen-
dulum position and velocity are rapidly estimated by the
observer used. Figure 6 shows the tracking performance
under the disturbance term d = 2sign(x2) + 2x2, where,
after a short transient period, the tracking errors converge
to small bounded values. Figure 7 illustrates the effect
of parametric uncertainties, where the masses and length
are reduced by 50% (Case (a)) and increased by 50%
(Case (b)). Finally, Fig. 8 shows the combined effect
of the disturbance term with two parametric uncertainty
cases (a) and (b). Those results illustrate the neural con-
troller robustness against disturbances and uncertainties,
and its effectiveness in both tracking the reference model
and estimating the pendulum state vector. As predicted by
theory, the evolution of the norms of the neural adaptive
controller parameters converges to bounded values.
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Fig. 5. Nominal plant tracking performance.

Fig. 6. Effect of disturbance.

6. Conclusion

This paper has presented an extension of the model refer-
ence control approach to nonlinear plants using adaptive
neural networks. Both full state and observer-based ap-
proaches were analyzed, and their stability was proved.
The advantages of this approach over the previously de-
signed ones are as follows: no supervisory control is
needed to ensure closed loop stability, and no knowledge
of a high-frequency gain derivative bound is required. The
simulation results conformed the effectiveness and sim-
plicity of the proposed algorithm. Future work is directed
to extend this control design to multivariable nonlinear
systems.
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