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This paper deals with the application of a variable structure observer developed for a class of nonlinear systems to solve
the trajectory tracking problem for rigid robot manipulators. The analyzed approach to observer design proposes a simple
design methodology for systems having completely observable linear parts and bounded nonlinearities and/or uncertainties.
This observer is basically the conventional Luenberger observer with an additional switching term that is used to guarantee
robustness against modeling errors and system uncertainties. To solve the tracking problem, we use a control law developed
for robot manipulators in the full information case. The closed loop system is shown to be globally asymptotically stable
based on Lyapunov arguments. Simulation results on a 3-DOF robot manipulator show the asymptotic convergence of the
vectors of observation and tracking errors.
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1. Introduction

The control problem for rigid robot manipulators has been
solved using several efficient classical and robust meth-
ods, and it has been shown that each control strategy en-
sures the stability of the trajectory tracking error in some
suitable sense. One basic assumption in these methods
is that full state information is available for feedback. In
fact, for robotic systems, state feedback control is based
on the exact knowledge of both the position and velocity
vectors. Unfortunately, the velocity vector cannot gener-
ally be available for feedback for several reasons. A solu-
tion to this is the design of nonlinear observers that give
the reconstruction of the missing velocity signal. Due to
the nonlinear and coupled structure of the robot dynami-
cal model, the problem of designing observers for robots
is a very complex one.

For nonlinear systems, several approaches have been
presented in the literature (Khelfi et al., 1998) to solve the
nonlinear observer design problem. The first possibility
consists in transforming a nonlinear problem into a lin-
ear one by the extended linearization technique (Baumann
and Rogh, 1986) or by the pseudo-linearization method
(Lawrence, 1992; Walcott and Żak, 1987a), which yields
constant eigenvalues of the reconstruction error dynam-

ics when linearized about any fixed equilibrium point.
We also have the exact linearization technique (Krener
and Respondek, 1985), which consists in transforming the
nonlinear system into a linear system with an output in-
jection to apply linear observation theory. A second pos-
sibility consists in designing an observer with the non-
linear observation error dynamics. In this context, some
techniques were established in the initial state coordinates
(Hammami, 1993), and others in the observable canon-
ical form (Bornard and Hammouri, 1991; Gauthier and
Bornard, 1981; Gauthier et al., 1991). All these methods
are available for nonlinear systems without uncertainties
or disturbances in their dynamic equations (for a survey
on nonlinear observers, we refer the reader to (Khelfi et
al., 1998; Misawa and Hedrick, 1989; Tsinias, 1989; Wal-
cott et al., 1987b)).

Motivated by the above developments, the control
problem of robots using partial knowledge of the state
variable (only joint measurements) has attracted increas-
ing interest. A straightforward approach to this problem
goes along a two-step design: first, construct a nonlinear
observer driven by the available inputs and outputs, which
reconstructs the lacking velocity signal. Second, design
a state feedback controller and replace the actual veloc-
ity with the one reconstructed from the observer. Indeed,
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based on this procedure, a number of conceptually differ-
ent methods for both regulation and tracking control of ro-
bots equipped with only position sensors have been devel-
oped (Berghuis, 1993a; Berghuis and Nijmeijer, 1993b;
Khelfi et al., 1996; Nicosia and Tomei, 1990). These ob-
servers guarantee the exponential and asymptotic stabil-
ity of the observation error, but do not take into consid-
eration system uncertainties, even though several studies
have shown that under suitable conditions some of them
present robustness properties, especially those based on
the passivity approach (Abdessameud and Khelfi 2003;
Berghuis, 1993a). A solution to this issue is the design
of robust observers.

The design of observers that take into consideration
system uncertainties have taken the interest of many re-
searchers (Berghuis, 1993a; Canudas et al., 1990; Daw-
son et al., 1992; Misawa and Hedrick, 1989; Slotine et
al., 1986; 1987; Walcott et al., 1987b).

Walcott et al. (1987a) presented a variable structure
observer for a class of nonlinear systems. They propose
a simple design methodology for systems having com-
pletely observable linear parts and bounded nonlinearities
or uncertainties. A minimum estimate for the rate of con-
vergence of the observer error was also given. This ob-
server is basically the conventional Luenberger observer
with an additional switching term that is used to guaran-
tee robustness against modeling errors and system uncer-
tainties. Due to this supplementary switching term, this
observer suffers from chattering, usually associated with
variable structure systems. To deal with this problem, the
original observer is modified and a boundary layer ap-
proach is considered. However, with this modification,
the asymptotic stability aspect of the observation error
dynamics is lost, and only the global uniform ultimate
boundedness stability of the observation error is obtained.
In (Dawson et al., 1992), an extension to the above vari-
able structure scheme was proposed, and a continuous ob-
server was used to ensure the global exponential stability
of the observation error system.

In this paper, we apply the variable structure ob-
server, as proposed by Walcott et al. (1987b), to the sys-
tem of n-DOF robot manipulators to solve the tracking
control problem with only position measurements. The
exponential stability of the observation error is shown un-
der the condition that system nonlinearities and uncertain-
ties can be bounded, which is generally guaranteed for
this class of systems. The main difference between the
proposed observer and other solutions is that in most non-
linear observer designs, the system dynamics and their es-
timates are entirely considered in the observer structure
with a correction term designed differently. Simultane-
ously, the proposed observer structure is mainly the Luen-
berger observer with an additional switching term used to
cope with system nonlinearities and guarantee robustness

against system uncertainties and disturbances. The main
drawback of the additional switching term is the occur-
rence of chattering. To deal with this situation, a boundary
Layer approach can be used to eliminate chattering, and
the observation error is ensured to be globally uniformly
ultimately bounded.

The estimated velocity vector is used in the trajectory
tracking control law proposed by Paden and Panja (1988),
which guarantees the global asymptotic stability of the
tracking error for the manipulator control system. Keep-
ing in mind that no separation principle exists for non-
linear systems, the study of the closed loop stability is
performed using a Lyapunov function that contains two
terms, one for the tracking error and the other for the es-
timation error. The asymptotic stability of the closed loop
system is shown under a suitable choice of the observer
and controller gains.

This paper is organized as follows: We first review
the literature on the variable structure observer design
method. Then, we apply this observer to the class of rigid
robot manipulators and show that under some assump-
tions, the exponential convergence of the observation error
is guaranteed. Section 4 is devoted to closed loop control,
where we use Lyapunov arguments to prove the closed
loop stability. Finally, simulation results of the proposed
scheme are illustrated on a 3-DOF robot manipulator (the
first three joints of the 6-DOF robot manipulator given by
Yoshikawa (1990)).

2. Variable Structure Observer

Consider the following nonlinear system:{
ẋ (t) = Ax (t) + f (x, u, t),
y (t) = C x (t),

(1)

where x(t) ∈ R
n is the state vector, y(t) ∈ R

p is the out-
put vector and u(t) ∈ R

m is the control input. The vec-
tor f(·, ·, ·), assumed to be continuous in x(t), is used to
represent nonlinearities and/or uncertainties in the plant.
The problem is to design an observer with inputs y (t) and
u (t), whose output x̂ (t) is the estimated state that is en-
sured to converge in finite time to the real state. Before
we give the observer structure, the following assumptions
should be made:

Assumption 1. The pair (A, C) is detectable, i.e., there
exists a matrix L of appropriate dimensions such that the
spectrum of Ao = A− L C is completely contained in the
open left half-plane.

Assumption 2. There exist a positive definite matrix Q ∈
R

n×n and a function h where h(·, ·) : R+ × R
n → R

p,
such that the following matching conditions hold:

f(t, x) = P−1CT h(t, x), (2)
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where P is the unique positive definite solution to the Lya-
punov equation

AT
o P + P Ao = −Q. (3)

Assumption 3. There exists a nonnegative function ρ,
where ρ (·, ·) : R+ × R

m → R+, such that

‖ h(t, x, u) ‖ ≤ ρ(t, u), (4)

∀x ∈ R
n, ∀u ∈ R

m and t ∈ R+.
If Assumptions 1–3 are satisfied, then the proposed

observer is described by the following differential equa-
tions:

˙̂x = A x̂ + L (y − C x̂) + ν0(t, x̂, y), (5)

where

ν0(t, x̂, y)

=

⎧⎪⎨
⎪⎩

−P−1CT C e

‖C e‖ ρ (t, u), ∀ ‖C e ‖ �= 0,

0, ∀ ‖C e ‖ = 0,

(6)

and L is a positive diagonal design matrix.
Let the observation error be defined as e = x̂ − x.

The observation error system will then be described by

ė = Aoe + ν0(t, x̂, y) − f(t, x, u). (7)

The exponential convergence of the estimation error is
stated by the following theorem:

Theorem 1. Given the nonlinear system described by (1)
and the observer governed by (5) and (6), if Assump-
tions 1–3 are satisfied, then the observation error e =
x̂ − x is globally exponentially stable.

The proof of this theorem can be found in (Walcott
et al., 1987b). It can be seen that this observer is the con-
ventional Luenberger observer with the additional switch-
ing term ν0(t, x̂, y), which ensures robustness against sys-
tem nonlinearities. Unfortunately, this discontinuous term
will cause the undesirable phenomenon of “chattering”.
Hence, it is advantageous to design a gain law that is con-
tinuous in the error and ensures that the estimated state
will converge at least asymptotically to some arbitrary
small neighborhood of the real state.

To satisfy these requirements, a boundary layer strat-
egy that offers a continuous gain function is proposed in
(Walcott et al., 1987b). This is done by replacing the dis-
continuous term given by (6) by the continuous term

ν̄0(t, x̂, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−P−1CT C e

‖C eρ‖ ρ2 if ‖C eρ‖ > ε,

−P−1CT C e

ε
ρ2 if ‖C eρ‖ ≤ ε,

(8)

with ε > 0. With the observer (5)–(8), the error system
satisfies

ė = Ao e + ν̄0(t, x̂, y) − P−1CT h (t, x, u). (9)

It can easily be shown that the error signal is globally uni-
formly ultimately bounded.

3. Application to Robot Manipulators

In order to apply the above variable structure observer to
robot manipulators, we consider the dynamics of an n-
DOF robot manipulator given by Yoshikawa (1990), writ-
ten in the following state space representation:{

ẋ = Ax + f(x, u, t) + B ηd(t),
y = C x,

(10)

with

x =

(
q

q̇

)
, A =

(
0 In

0 0

)
, (11a)

B =

(
0
In

)
, C =

(
In 0

)
, (11b)

and

f(x, u, t) = f1(x, t)u + f2(x, t), (11c)

with

f1(x, t) =

(
0

M−1(q)

)
,

f2(x, t) =

(
0

−M−1(q) (C(q, q̇) q̇ + G(q))

)
,

u = τ, (11d)

where q ∈ R
n is the vector of joint angular positions,

M(q) ∈ R
n×n is the positive definite inertia matrix,

C(q, q̇)q̇ ∈ R
n is the Coriolis and centrifugal torque vec-

tor, G(q) ∈ R
n is the gravity vector, and τ ∈ R

n is the
vector of applied joint torques. Here ηd(t) is the vector
representing external disturbances and friction terms.

At this point, it is important to present some of the
important structural properties of the inertia matrix and
the Coriolis vector, which will be used to derive robot con-
trol schemes (Berghuis et al., 1993a):

P1: For some strictly positive constants M1 and M2, we
have

M1 In ≤ M(q) ≤ M2 In. (12a)
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P2: For all x ∈ R
n (for a revolute joint robot), we have

‖C(q, x)x ‖ ≤ CM‖ x ‖2. (12b)

P3: The matrix C(q, q̇) satisfies the following relation:

C(q, x)y = C(q, y)x (12c)

for all x, y ∈ R
n.

P4: The gravity vector is bounded as follows:

G(q) ≤ GM , (12d)

where ‖·‖ denotes the Euclidean vector norm.

The first step to be considered in the design of the
variable structure observer for robot manipulators is to
satisfy Assumptions 1–3. From the expressions (11),
Assumption 1 can always be satisfied since the matrix
A0 = A − L C can be selected to be a stable matrix for
any positive gain matrix L, and hence P = P T > 0 is the
unique solution to the Lyapunov equation given in (3).

In addition, by exploiting the structural properties of
rigid robot manipulators given in (12), we can always ver-
ify that for every x ∈ R

2n we have

f(x, u, t) = P−1CT h(x, u, t), (13)

B ηd(t) = P−1CT w (t), (14)

where

‖ h(x, u, t) + w(t) ‖ = ‖ ζ(x, u, t) ‖ ≤ ρ (t), (15)

and w(t) is a parameterization of the disturbance vector
ηd(t).

The procedure to determine this nonlinearity bound
ρ(t) is similar to that used with saturating type controllers.
The observer is given by

˙̂x = A x̂ + L (y − C x̂) + ν0(t, x̂, y), (16)

with ν0(t, x, y) defined as in (6). The observation error
system is obtained as

ė = Aoe + ν0(t, x̂, y) − f(t, x) − B ηd(t), (17)

with e = x̂ − x =
(

e1 e2

)T

being the observation

error. We can see from (17) that the additional switching
term ν0(t, x̂, y) is used in the observer structure to cope
with the effects of nonlinearities and/or uncertainties in
the plant model and input disturbances.

To show the exponential convergence of the observa-
tion error, we consider the following Lyapunov function
candidate:

V =
1
2
eT P e, (18)

whose time derivative evaluated along the error dynam-
ics (17) is

V̇ = −1
2
eT Q e + eT P

(
ν0(t, x̂, y)

− P−1CT
(
h(t, x) + w(t)

))
. (19)

If we consider Assumptions 1–3 together with Eqns.
(6), (13) and (14), the last expression can be bounded as

V̇ ≤ −1
2
λmin(Q) ‖ e ‖2 − ‖Ce ‖ ρ

− eT CT ζ (t, x), (20)

where λmin(·) denotes the minimum eigenvalue of its ar-
gument. Using (15), we can finally write

V̇ ≤ −1
2
λmin(Q)‖ e ‖2 < 0. (21)

Therefore, the time derivative of the Lyapunov func-
tion candidate is negative definite, which implies that the
error converges exponentially to zero. Furthermore, from
bounds on the Lyapunov function, we can write

1
2
λmin(P ) ‖e‖2 ≤ V (e) ≤ 1

2
λmax(P ) ‖e‖2 (22)

and

V̇ ≤ −1
2
λmin(Q) ‖e‖2, (23)

where λmin(P ) and λmax(P ) denote the minimum and
maximum eigenvalues of the matrix P , respectively. Then
we can write

V̇ (e)
V (e)

≤ − λmin(Q)
λmax(P )

= ε1 (24)

or
V (e(t)) ≤ V (e(0)) e−ε1 t. (25)

Hence, the rate at which the error converges to zero
is determined as

‖e(t)‖2 ≤ λmax(P )
λmin(P )

‖e(0)‖2 e−ε1 t. (26)

This shows the exponential convergence of the observa-
tion error and the rate of convergence. Again, the switch-
ing term in the observer will cause “chattering”.

Remark 1. With the boundary layer approach we avoid
the occurrence of the chattering phenomena, but we lose
the asymptotic stability aspect of the observation error. In
(Dawson et al., 1992), the author extended the above re-
sult, and the global exponential stability was derived by
a modification of the additional observer gain ν0(t, x̂, y)
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given in (6). The modified observer law is given by (5)
with ν0(t, x̂, y) replaced by

ν′
0(t, x̂, y) = − P−1CT C e ρ2

‖C e‖ρ + ε e−βt
. (27)

We can notice from this that the additional term is
not discontinuous. Hence, the modified observer is not
of a variable structure type. The stability result can be
easily shown by taking the same Lyapunov function can-
didate (18). It can be verified that the time derivative of
the Lyapunov function using (27) evaluated along the er-
ror dynamics (17) can be bounded as

V̇ ≤ −1
2
λmin(Q) ‖ e ‖2 + ε e−βt, (28)

from which the global exponential stability of the obser-
vation error there results. It can be seen that the bounds
on the observation error performance from (28) relate the
transient response of the given observation error to the ob-
server parameters ε, β and L. We can therefore calculate
the transient response of the observer, from the initial ob-
servation error to zero, given specific choices of the ob-
server parameters.

4. Closed Loop Control

In order to use the above observer for the tracking problem
of robot manipulators, we consider the trajectory tracking
controller proposed by Paden and Panja (1988), with the
real velocity state vector replaced with the estimated one.
We have the control law given by

τ = M(q) q̈d + C(q, ˙̂q) q̇d + G(q)

− Kv( ˙̂q − q̇d) − Kpq̃, (29)

where q̃ = q − qd defines the position tracking error,
and Kp and Kv are positive design controller gains. We
should make the assumption that the desired velocity vec-
tor is bounded as ‖q̇d‖ ≤ VP , which is reasonable from
the implementation point of view. Using the robot dy-
namics, the closed loop system is governed by

M(q) ¨̃q + C(q, q̇) q̇ − C(q, ˙̂q) q̇d

= −Kpq̃ − Kv( ˙̃q + e2), (30)

where ˙̃q = q̇ − q̇d is the velocity tracking error and e2 =
˙̂q − q̇ is the velocity observation error.

Using the structural properties of the Coriolis and
centrifugal torque vector (Yoshikawa, 1990), we can write

C(q, q̇) q̇ − C(q, ˙̂q) q̇d = C(q, q̇) ˙̃q − C(q, q̇d) e2. (31)

Accordingly, consider the following result (Abdessameud
and Khelfi, 2005):

Main Result: Given the control law stated in (29) and
the observer (16) with (6), if Assumption 1 and the rela-
tions (13)–(15) are satisfied, then the closed loop system
described by (17) and (30) is globally asymptotically sta-
ble.

To investigate the stability of the closed loop dynam-
ics, consider the Lyapunov function candidate

V (e, q̃, ˙̃q, t) =
1
2
eT P e +

1
2

˙̃q
T
M(q) ˙̃q +

1
2
q̃T Kpq̃. (32)

The time derivative of this Lyapunov function eval-
uated along the trajectories of the error dynamics (17)
and (30) and using the relations (13)–(15) is obtained di-
rectly as

V̇ = −1
2
eT Q e + eT P

(
ν0 − P−1CT ζ

)
− ˙̃q

T
Kv

˙̃q − ˙̃q
T
Kve2 + ˙̃q

T
C(q, q̇d) e2. (33)

This can be bounded as, using the structural properties
of the Coriolis and centrifugal torque vector (Yoshikawa,
1990)

V̇ ≤ −1
2
λmin(Q)‖e‖2 − Kv,m‖ ˙̃q‖2

+ ‖ ˙̃q‖ ‖ e2‖ (Kv,M + CMVP ) , (34)

with Kv,m and Kv,M denoting the minimum and maxi-
mum eigenvalues of the matrix Kv respectively. Knowing
that ‖e2‖ ≤ ‖e‖, we can write

V̇ ≤ −
(

‖ ˙̃q‖
‖e‖

)T

×

⎛
⎜⎝ Kv,m −1

2
(Kv,M + CMVP )

−1
2

(Kv,M + CMVP )
1
2
λmin(Q)

⎞
⎟⎠

×
(

‖ ˙̃q‖
‖ e‖

)
. (35)

The matrix on the right-hand side of the above in-
equality is positive if

λmin(Q) >
(Kv,M + CMVP )2

2Kv,m
. (36)

Then, using Barballat’s lemma, we can con-
clude the asymptotic stability of the equilibrium point(
q̃, ˙̃q, e1, e2

)
= (0, 0, 0, 0).

Note that the above stability condition can always be
satisfied if the matrices Kv and Q are properly selected.
In all cases, Q should be maximized. Unfortunately, if
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the observer gain matrix L is fixed, increasing Q will give
large solutions for P in (3), which will cause a high gain
switching term and high chattering. On the other hand,
if P is fixed, large values for Q will lead to high observer
gains, L. In both situations, the system will be more sensi-
tive to measurement noise and high frequency-unmodeled
dynamics.

Remark 2. The design of the switching term in the
observer structure mainly depends on Eqns. (13) and
(14), and the bound on system nonlinearities and distur-
bances (15). In order to apply this technique, the bound
should be computed as much accurately as possible.

5. Simulation Results

In order to test the validity of our design, we
have considered a 3-DOF robot manipulator (the first
three joints of the 6-DOF robot manipulator given by
Yoshikawa (1990)). The objective of our simulation work
was to show that the tracking objective is achieved when
a robustly estimated velocity vector is used in the tracking
control law.

In order to implement the robust observer, we first
have to determine an upper bound on system nonlinear-
ities and uncertainties, where we have considered a ran-
domly additive term to the inertia matrix. To obtain this
bound, we conduct simulations in the full information
case, with the control law considered, and we take the
maximal norm of the nonlinearity and disturbance vectors
along a trajectory. We repeat this work with different tra-
jectories and we take the worst case as our upper bound
to be used in the switching term of the variable structure
observer.

Then, due to the complexity of the control system,
the control system gains should be carefully selected.
The controller gains are selected to be high enough such
that the tracking controller ensures the asymptotic conver-
gence of the tracking error in the case of full state infor-
mation. We encountered several problems during observer
gains tuning and noticed that if the gain matrix L is fixed,
increasing the matrix Q will give large solutions for the
matrix P , which will cause a high gain switching term,
and if the matrix P is fixed, increasing the matrix Q will
lead to a high observer gain matrix L. In both situations,
the system will be more sensitive to measurement noise
and high frequency unmodeled dynamics. Moreover, the
observer gains should be selected according to the condi-
tion (36).

The results obtained from the MATLAB simulation
of the proposed scheme with a 3 DOF robot manipulator
along a trajectory of order 5 and the upper bound on sys-
tem nonlinearities estimated at 32.5 are shown below. Fig-
ures 1–3 show the velocity observation errors of the three

velocity estimation error for the axis 1 

Fig. 1. Velocity estimation error of the axis 1.

velocity estimation error for the axis 2 

Fig. 2. Velocity estimation error of the axis 2.

velocity estimation error for the axis 3 

Fig. 3. Velocity estimation error of the axis 3.
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Fig. 4. Position tracking errors of the three axes.

Fig. 5. Velocity tracking errors of the three axes.

axes, where we can see the convergence of the error sig-
nals, high frequency oscillations caused by the switching
term and the high gain values used. To solve this problem,
we can consider the boundary layer approach to eliminate
chattering. Figures 4 and 5 show the position and veloc-
ity tracking errors of the three axes, respectively, when the
robustly estimated velocity vector is used in the tracking
control law (29) and asymptotic convergence is guaran-
teed.

6. Conclusion

In this paper, we have presented the application of a vari-
able structure observer, found in the literature, to the class
of rigid robot manipulators. The observer considered is
basically the Luenberger observer with an additive switch-

ing term used to cope with system nonlinearities and/or
uncertainties. The design of the robust observer is based
on the assumption that the linear part of the nonlinear sys-
tem is completely observable, and the system nonlineari-
ties and uncertainties are upper bounded and satisfy some
matching conditions. One drawback of this design is that
the presence of the switching term causes “chattering”. To
solve this problem, the use of a boundary layer is a solu-
tion. Another solution is to use a continuous term that
guarantees the global exponential stability of the observa-
tion error just as is done by Dawson et al. (1992).

The robustly estimated states are then used in a con-
trol loop with a trajectory tracking control law, which en-
sures the global asymptotic stability of the system in the
full information case, that is, both the velocity and po-
sition vectors are available for feedback. Under the as-
sumption that the desired velocity vector is bounded, the
extended error vector is proved to be globally asymptot-
ically stable under the condition that the desired velocity
vector is bounded. Through simulations, we illustrated the
feasibility of the designed control system.
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