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In this paper, we present a simple algorithm for the reduction of a given bivariate polynomial matrix to a pencil form which
is encountered in Fornasini-Marchesini’s type of singular systems. It is shown that the resulting matrix pencil is related to
the original polynomial matrix by the transformation of zero coprime equivalence. The exact form of both the matrix pencil
and the transformation connecting it to the original matrix are established.
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1. Introduction

Polynomial systems theory for constant linear differen-
tial or difference systems is a well-established and ef-
ficient tool for the analysis and design of control sys-
tems (Blomberg and Ylinen, 1983; Rosenbrock, 1970;
Wolovich, 1974). The approach utilizes algebraic prop-
erties of polynomial matrices with real or complex coeffi-
cients. The key for the success of this theory seems to be
its computational nature, i.e., the ring R[s] of polynomials
over a field R in an indeterminate s is a division algorithm
which can be used to find common factors and to manip-
ulate polynomial matrices into suitable canonical forms.
Later on, polynomial systems theory was generalized to
the so-called behavioral systems, where the variables are
not a-priori divided into inputs and outputs (Polderman
and Willems, 1998). The extension of polynomial sys-
tems theory to multidimensional (n-D) systems was pro-
posed, e.g., in (Oberst, 1990). The resulting structure is a
ring R[z1, . . . , zn] of polynomials over a field R in two or
more indeterminates z1, . . . , zn acting on a given signal
space.

In 1-D systems theory, matrix pencils play an impor-
tant role, see, for example, (Hayton et al., 1990; Karam-
petakis et al., 1995; Rosenbrock, 1970; Verghese, 1978).
In the 2-D case, matrix pencils arise in the description of
2-D singular state space systems such as those studied by
Kaczorek (1988).

One of the most basic procedures in systems theory
is the transformation of a given system of differential or
difference equations to a low order. In 2-D polynomial
systems theory, this is related to the reduction of a bivari-

ate polynomial matrix to a pencil form. The zeros of a
polynomial matrix encapsulate the relevant properties of a
system, such as controllability, observability and minimal-
ity. The reduction transformation must therefore preserve
the zero structure of the original polynomial matrix.

The reduction of an arbitrary bivariate polynomial
matrix to a pencil form was first studied by Pugh et al.
(1998a). Their procedure consists in applying a two-stage
algorithm which involves the removal of factors from cer-
tain matrices to ensure that the transformations linking
the original matrix with the final matrix pencil are poly-
nomial. The method gives a priori the form of neither
the resulting pencil nor the transformation linking it to the
original polynomial matrix. Pugh et al. (2005a) gave an-
other two-step algorithm for the reduction of an arbitrary
bivariate polynomial matrix to a pencil which is encoun-
tered in Roesser’s type of singular 2-D systems.

In the present work, we propose a simple and di-
rect procedure for the reduction of an arbitrary bivariate
polynomial matrix to a pencil form which is encountered
in Fornasini-Marchesini’s type of 2-D singular systems.
We will establish the exact nature of both the matrix pen-
cil in terms of the coefficient matrices of a given matrix,
and the transformation linking it to the original polyno-
mial matrix. The paper further highlights the relevance
of the transformation of zero coprime equivalence in n-
D systems theory. This type of equivalence was studied
by Levy (1981), Johnson (1993), and Pugh et al. (1998a).
Pugh et al. (1998b) showed that it provides a basis for a
2-D generalization of Rosenbrock’s least order character-
ization.
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2. Preliminaries

Consider the following 2-D discrete system in a general-
ized state space form as given by Kaczorek (1988):

Ex(i + 1, j + 1) = A1x(i + 1, j) + A2x(i, j + 1)

+A0x(i, j) + B1u(i + 1, j)

+B2u(i, j + 1) + B0u(i, j),

y(i, j) = Cx(i, j) + Du(i, j),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1)

where x(i, j) is the state vector, u(i, j) is the input vector,
y(i, j) is the output vector, E, A0, A1, A2, B0, B1, B2, C,
D are constant real matrices of appropriate dimensions,
and E may be singular. Then, taking the 2-D z-transform
of (1) and assuming zero boundary conditions, we get[
szE − sA1 − zA2 − A0 sB0 + zB1 + B0

−C D

][
x(s, z)

−u(s, z)

]

=

[
0

−y(s, z)

]
. (2)

The polynomial matrix

szE − sA1 − zA2 − A0 (3)

over R[s, z] in (2) is called a matrix pencil and can be
regarded as an extension from 1-D of the matrix pencil
sE − A.

The following definitions are needed for the results
of the paper:

Definition 1. Two polynomial matrices P1(s, z) and
S1(s, z) of appropriate dimensions are said to be zero left
coprime if the matrix[

P1(s, z) S1(s, z)
]

(4)

has a full rank for all (s, z) ∈ C2. Similarly, P2(s, z)
and S2(s, z) of appropriate dimensions are said to be zero
right coprime if the matrix[

PT
2 (s, z) ST

2 (s, z)
]T

(5)

has a full rank for all (s, z) ∈ C2.

Following the results of (Youla and Gnavi, 1979), we
obtain that the polynomial matrices P1(s, z) and S1(s, z)
are zero left coprime if and only if there exist zero right
coprime polynomial matrices X(s, z) and Y (s, z) of ap-
propriate dimensions satisfying Bezout’s relation

P1(s, z)X(s, z) + S1(s, z)Y (s, z) = I. (6)

One immediate result given by Sontag (1980) is
that a necessary and sufficient condition for the matri-
ces P1(s, z) and S1(s, z) to be zero left coprime is that

the matrix in (4) is unimodular equivalent to the matrix
[ I 0 ]. Similar results can be stated for zero right co-
prime matrices.

Definition 2. Given a p × q polynomial matrix P (s, z),
the i-th order invariant polynomial Φ i(s, z) of P (s, z) is
defined by

Φi(s, z) =

⎧⎨
⎩

Di(s, z)
Di−1(s, z)

if 1 ≤ i ≤ t,

0 if t ≤ i ≤ min(p, q),
(7)

where t is the normal rank of P (s, z), d0(s, z) = 1 and
Di(s, z) is the greatest common divisor of all the i × i
minors of the given matrix P (s, z).

As in the 1-D case, the zero structure of a bivariate
polynomial matrix is a crucial indicator of system behav-
ior. Zerz (1996) showed that the controllability and ob-
servability of a system in the behavioral setting is con-
nected to the zero structure of the associated polynomial
matrix. However, unlike in the 1-D case, the zero structure
of a multivariate polynomial matrix is not completely cap-
tured by invariant polynomials. Therefore, the following
concept of invariant zeros as given by Pugh et al. (2005b)
is introduced.

Definition 3. Given a p × q polynomial matrix P (s, z),
the i-th order invariant zeros of P (s, z) are the elements

of the varietyVR(I [P ]
i ) defined by the ideal I [P ]

i generated
by the i × i minors of P (s, z).

An extension of Fuhrmann’s strict system equiva-
lence (Fuhrmann, 1977) from the 1-D to the 2-D setting
is zero coprime equivalence and is defined by the follow-
ing:

Definition 4. Let P(m, n) denote the class of (r + m) ×
(r+n) polynomial matrices where m, n are fixed positive
integers and r > −min(m, n). Two polynomial system
matrices P1(s, z) and P2(s, z) are said to be zero coprime
equivalent if there exist polynomial matrices S1(s, z),
S2(s, z) of appropriate dimensions such that

S2(s, z)P1(s, z) = P2(s, z)S1(s, z), (8)

where P1(s, z), S1(s, z) are zero left coprime and
P2(s, z), S2(s, z) are zero right coprime.

The transformation of zero coprime equivalence can
be generated by the classical unimodular equivalence cou-
pled with a trivial expansion or deflation of matrices. Pugh
et al. (1996; 2005b) showed that zero coprime equivalence
exhibits fundamental algebraic properties amongst its in-
variants.

Lemma 1. (Pugh et al., 1996) Suppose that two polyno-
mial matrices P (s, z) and Q(s, z) ∈ P(m, n) are related
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by zero coprime equivalence and let Φ[P ]
1 , Φ[P ]

2 , . . . , Φ[P ]
h ,

where h = min(r[P ] + m, r[P ] + n), denote the invariant

polynomials of P (s, z) and Φ[Q]
1 , Φ[Q]

2 , . . . , Φ[Q]
k , where

k = min(r[Q] + m, r[Q] + n), denote the invariant poly-
nomials of Q(s, z). Then

Φ[P ]
h−i = ciΦ

[Q]
k−i for i = 0, 1, . . . , max(k − 1, h − 1),

(9)
where

Φ[P ]
j = 1, Φ[Q]

j = 1 for any j < 1, ci ∈ R\{0}.
Lemma 2. (Pugh et al., 2005b) Suppose that two poly-
nomial matrices P (s, z) and Q(s, z) ∈ P(m, n) are re-

lated by zero coprime equivalence and let I [P ]
j for j =

1, . . . , h = min(r[P ] + m, r[P ] + n) denote the ideal

generated by the j × j minors of P (s, z) and I [Q]
i , for

i = 1, . . . , k = min(r[Q] + m, r[Q] + n), denote the ideal
generated by the i × i minors of Q(s, z). Then

I [P ]
h−i = I [Q]

k−i, i = 0, . . . , h̄, (10)

where
h̄ = min(h − 1, k − 1)

and for any i > h,

I [P ]
h−i = 〈1〉 or I [Q]

k−i = 〈1〉 in case i < h or i < k.

3. Bivariate Polynomial Matrix Reduction
Procedure

A given P (s, z) ∈ Rm×n[s, z] can be written as

P (s, z) =
p∑

i=0

q∑
j=0

Pi,js
izj

= P0,0s
0z0 + P0,1s

0z1 + P0,2s
0z2

+ · · · + Pp,qs
pzq, (11)

where Pi,j , i = 0, 1, . . . , p, j = 0, 1, . . . , q, are m × n
real constant matrices: Now construct the following block
real matrices,

E =

[
0n(pq−1),npq

Eq Eq−1 · · · E1

]
, (12)

where

Ej =
[
Pp,j Pp−1,j · · · P1,j

]
, j = 1, 2, . . . , q, (13)

A0 = Diag(−In(pq−1), P0,0), (14)

A1 =

⎡
⎢⎣ 0np(q−1),npq

0n(p−1),n(pq−p+1) In(p−1)

0m,np(q−1) −Pp,0 −Pp−1,0 · · · −P1,0

⎤
⎥⎦ , (15)

and

A2 =

⎡
⎢⎣ 0np(q−1),np Inp(q−1)

0n(p−1),npq

A2,q A2,q−1 · · · A2,1

⎤
⎥⎦ , (16)

where

A2,j =
[

0m,n(p−1) −P0,j

]
, j = 1, 2, . . . , q. (17)

Then the [n(pq − 1) + m] × npq polynomial matrix

Q(s, z) = szE − sA1 − zA2 − A0 (18)

in the form (3) is the matrix pencil associated with the
polynomial matrix P (s, z).

Theorem 1. Let P (s, z) ∈ R
m×n[s, z] be an arbi-

trary polynomial matrix as in (11), and let Q(s, z) ∈
Rr̄×npq[s, z] be the corresponding matrix pencil as
in (18), where r̄ = n(pq − 1) + m. Then P (s, z) and
Q(s, z) are related by the following zero coprime equiva-
lence transformation:

M(s, z)P (s, z) = Q(s, z)N(s, z), (19)

where

M(s, z) =

[
0n(pq−1),m

Im

]
, N(s, z) =

⎡
⎢⎢⎢⎢⎣

N1

N2

...

Nq

⎤
⎥⎥⎥⎥⎦⊗In,

(20)
the symbol ‘⊗’ denotes the Kronecker matrix product, and

Nj =
[

sp−1zq−j sp−2zq−j · · · zq−j
]T

,

j = 1, 2, . . . , q. (21)

Proof. The matrix Q(s, z) in (18) can be represented in
the form

Q(s, z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Inp −zInp · · · 0 0
0 Inp · · · 0 0
...

...
. . .

...
...

0 0 · · · Inp −zInp

Qq Qq−1 · · · Q2 Q1

⎤
⎥⎥⎥⎥⎥⎥⎦ , (22)

where the submatrices Qj are given by (23) and (24), and
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Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

In −sIn · · · 0
0 In · · · 0
...

...
. . .

...

0 0 · · · −sIn

szPp,1 + sPp,0 szPp−1,1 + sPp−1,0 · · · szP1,1 + sP1,0 + zP0,1 + P0,0

⎤
⎥⎥⎥⎥⎥⎥⎦, (23)

Qj =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
szPp,j szPp−1,j · · · szP2,j szP1,j + zP0,j

⎤
⎥⎥⎥⎥⎥⎥⎦ , j = 2, 3, . . . , q. (24)

the matrix N(s, z) is given by

N(s, z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sp−1zq−1In

...

zq−1In

sp−1zq−2In

...

zq−2In

...

...

sp−1In

...

In

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

It follows that

M(s, z)P (s, z) = Q(s, z)N(s, z) ≡
[

0n(pq−1),n

P (s, z)

]
.

(26)
Now it remains to prove that the matrices Q(s, z),

M(s, z) are zero left coprime and the matrices P (s, z),
N(s, z) are zero right coprime.

The matrix
[

Q(s, z) M(s, z)
]

is given by

⎡
⎢⎢⎢⎢⎢⎢⎣

Inp −zInp · · · 0 0 0
0 Inp · · · 0 0
...

...
. . .

...
...

...

0 0 · · · Inp −zInp 0
Qq Qq−1 · · · Q2 Q1 Im

⎤
⎥⎥⎥⎥⎥⎥⎦ . (27)

It can be easily seen that the minor obtained by deleting
the columns n(pq−1)+1, . . . , npq from the matrix in (27)
is equal to ±1.

Similarly,

[
P (s, z)
N(s, z)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P (s, z)
sp−1zq−1In

...

zq−1In

sp−1zq−2In

...

zq−2In

...

...

sp−1In

...

In

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

and it is clear that the matrix in (28) contains a block iden-
tity matrix In and, therefore, it has an n×n highest order
minor, which is equal to 1.

The zero coprime equivalence of P (s, z) and Q(s, z)
implies that P (s, z) and Q(s, z) have the same invariant
polynomials and invariant zeros in the sense described by
Lemmas 1 and 2, respectively.

With a slight modification in the transformation ma-
trix M(s, z) and using the normalized form of the system
matrix associated with Q(s, z), the above procedure can
be extended to polynomial system matrices, thereby ob-
taining a reduction of a given bivariate polynomial system
matrix by zero coprime system equivalence to a system
matrix associated with the Fornasini-Marchesini singular
2-D systems.
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P =

⎡
⎢⎢⎣

−2(z + 1)s2 + (3z + 2)s − z + 2 (z − 4)s − z + 4 s2 − 2

3s2 − 1 −zs− 2z (z + 1)s2 − (z − 3)s − 3z + 1

(z − 1)s2 − (z − 2)s (z + 2)s2 − 4z − 1 −2zs2 − (5z + 2)s − 2z + 3

⎤
⎥⎥⎦ . (29)

4. Example

Consider the polynomial matrix P (s, z) ∈ R3×3[s, z]
given by (29). Here m = n = 3, p = 2 and q = 1. Us-
ing a Maple procedure, the invariant polynomials of the
matrix P (s, z) are calculated as follows:

Φ[P ]
1 = Φ[P ]

2 = 1,

Φ[P ]
3 = 2z3 + 8z2 + 13z + 10)s6

− (8z3 + 12z2 + 24z − 12)s5

− (25z3 + 25z2 + 115z + 55)s4

+ (29z3 + 14z2 + 60z + 16)s3

+ (29z3 + 61z2 + 160z − 3)s2

− (35z3 + z2 + 31z + 4)s

+ 8z3 − 9z2 − 30z + 12. (30)

The ideals generated by the minors of the matrix P (s, z)
are given by

I [P ]
1 = I [P ]

2 =
〈
1〉,

I [P ]
3 =

〈 − (2z3 − 5z2 − 12z − 10)s6

− (8z3 + 20z2 + 25z − 12)s5

− (12z3 − 6z2 − 101z + 55)s4

+ (21z3 − z2 + 42z + 16)s3

+ (26z3 + 63z2 + 160z − 3)s2

− (33z3 + 8z2 + 25z + 4)s

+ 8z3 − 9z2 − 30z + 12
〉
. (31)

Now,

P (s, z) =

⎡
⎢⎣ 2 4 −2
−1 0 1

0 −1 3

⎤
⎥⎦

︸ ︷︷ ︸
P0,0

s0z0 +

⎡
⎢⎣−1 −1 0

0 −2 −3
0 −4 −2

⎤
⎥⎦

︸ ︷︷ ︸
P0,1

s0z1

+

⎡
⎢⎣2 −4 0
0 0 3
2 0 −2

⎤
⎥⎦

︸ ︷︷ ︸
P1,0

s1z0 +

⎡
⎢⎣2 −4 0
0 0 3
2 0 −2

⎤
⎥⎦

︸ ︷︷ ︸
P1,1

s1z1

+

⎡
⎢⎣ −2 0 1

3 0 1
−1 2 0

⎤
⎥⎦

︸ ︷︷ ︸
P2,0

s2z0 +

⎡
⎢⎣ −2 0 0

0 −1 1
1 1 −2

⎤
⎥⎦

︸ ︷︷ ︸
P2,1

s2z1 (32)

gives the matrix pencil Q(s, z) = szE−sA1−zA2−A0,
where the matrices E, A0, A1 and A2 corresponding to
(13)–(15) and (17) are given by

E ≡
[

03,6

E1

]
≡

[
03,3 03,3

P2,1 P1,1

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−2 0 0 3 1 0
0 −1 1 0 0 −1
1 1 −2 −1 0 −5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (33)

A0 ≡
[

−I3 0
0 −P0,0

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −2 −4 2
0 0 0 1 0 −1
0 0 0 0 1 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (34)

A1 ≡
[

03,3 I3

−P2,0 −P1,0

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
2 0 −1 −2 4 0

−3 0 −1 0 0 −3
1 −2 0 −2 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (35)
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A2 ≡
[

03,6

A2,1

]
≡

[
03,3 03,3

03,3 −P0,1

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 1 0
0 0 0 0 2 3
0 0 0 0 4 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(36)

By virtue of Theorem 1, the polynomial matrix
P (s, z) in (29) and the associated matrix pencil Q(s, z)
are related to the zero coprime equivalence transformation

M(s, z)P (s, z) = Q(s, z)N(s, z), (37)

where

M(s, z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, N(s, z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s 0 0
0 s 0
0 0 s

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (38)

In fact, using polynomial matrix multiplication in Maple,
it can be easily verified that

M(s, z)P (s, z) = Q(s, z)N(s, z). (39)

The matrices Q(s, z) and M(s, z) are zero left coprime
and the matrices P (s, z) and N(s, z) are zero right co-
prime since the matrices

[
Q(s, z) M(s, z)

]
,

[
P (s, z)
N(s, z)

]
(40)

have respectively a 6 × 6 and a 2 × 2 minor equal to 1.

The invariant polynomials of the matrix Q(s, z) are
given by

Φ[Q]
1 = Φ[Q]

2 = Φ[Q]
3 = 1,

Φ[Q]
4 = 1 = Φ[P ]

1 ,

Φ[Q]
5 = 1 = Φ[P ]

2 ,

Φ[Q]
6 = 2z3 + 8z2 + 13z + 10)s6

− (8z3 + 12z2 + 24z − 12)s5

− (25z3 + 25z2 + 115z + 55)s4

+ (29z3 + 14z2 + 60z + 16)s3

+ (29z3 + 61z2 + 160z − 3)s2

− (35z3 + z2 + 31z + 4)s

+ 8z3 − 9z2 − 30z + 12

= Φ[P ]
3 , (41)

which agrees with Lemma 1.

The ideals generated by the minors of the matrix
Q(s, z) are given by

I [Q]
1 = I [Q]

2 = I [Q]
3 = 〈1〉,

I [Q]
4 = 〈1〉 = I [P ]

1 ,

I [Q]
5 = 〈1〉 = I [P ]

2 ,

I [Q]
6 =

〈 − (2z3 − 5z2 − 12z − 10)s6

− (8z3 + 20z2 + 25z − 12)s5

− (12z3 − 6z2 − 101z + 55)s4

+ (21z3 − z2 + 42z + 16)s3

+ (26z3 + 63z2 + 160z − 3)s2

− (33z3 + 8z2 + 25z + 4)s

+ 8z3 − 9z2 − 30z + 12
〉

= I [P ]
3 ,

which is also in accordance with Lemma 2.

5. Conclusions

In this paper, a simple algorithm is presented for the com-
putation of a matrix pencil which is equivalent to a given
bivariate polynomial matrix. The resulting matrix pencil
arises in the context of the theory of singular 2-D linear
systems. The type and exact form of the equivalence link-
ing the original matrix with its associated pencil were set
out and shown to be of zero coprime equivalence. This
transformation preserves the zero structure of the origi-
nal polynomial matrix, making it possible to analyze the
polynomial matrix in terms of its associated pencil form.
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