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A complete algorithm is presented for the sharpening of imprecise information, based on the methodology of kernel esti-
mators and the Bayes decision rule, including conditioning factors. The use of the Bayes rule with a nonsymmetrical loss
function enables the inclusion of different results of an under- and overestimation of a sharp value (real number), as well
as minimizing potential losses. A conditional approach allows to obtain a more precise result thanks to using information
entered as the assumed (e.g. current) values of conditioning factors of continuous and/or binary types. The nonparamet-
ric methodology of statistical kernel estimators freed the investigated procedure from arbitrary assumptions concerning the
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here is universal and can be applied in a wide range of tasks in contemporary engineering, economics, and medicine.
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1. Introduction

Recently there has been a notable increase in research
in the area of imprecise information processing, and its
applications in various branches of science and technol-
ogy. This is often connected with the need for mathe-
matical modeling of complicated systems or poorly de-
fined intuitive notions, difficult to describe using conven-
tional methods. Imprecise information, common in natu-
ral language—such as “big changes” or “high quality”—
has been employed by people for a long time, and is often
the only available kind of information. It was not, how-
ever, applied in methods based on classical mathematics,
which lead to a loss, or a confusion, of the knowledge
held. Using models permitting a much more general class
of information created new, hitherto unknown possibili-
ties, although this required the development of original
mathematical tools for the representation of data.

One of the fundamental tasks in this type of approach
is obtaining a concrete sharp value (real number), based
on imprecise opinions, which best possibly characterizes
the aspect under consideration. The algorithms of sharp-
ening which are available in the literature do not take into
account different (in sign as well as size) effects of an
over- and underestimation of results. The method inves-
tigated in this paper, based on the Bayes decision rule,

allows for the consideration of this aspect, while the re-
sult obtained minimizes potential losses. Furthermore,
the proposed algorithm enables the influence of various
conditioning factors—of continuous and binary types—to
be taken into account. It is suited for all problems where
defining the characteristics of imprecision can be carried
out based on a series of opinions regarding concrete val-
ues. Mathematical tools originate from the theory of sta-
tistical kernel estimators, which frees the method from the
types of distributions of imprecise information as well as
conditioning factors.

The goal of this paper is to provide a complete algo-
rithm allowing to calculate the Bayes sharp value of im-
precise information for fixed values of conditioning fac-
tors, in a form which does not require the user to have a
deeper knowledge of theoretical aspects.

2. Mathematical Preliminaries

2.1. Elements of Decision Theory

The main aim of decision theory is to select one concrete
element from a set of all decisions possible to make, based
solely on the characteristics of the distribution of an im-
precision measure. Let then the following be given:

• S – a nonempty set of possible states of nature;
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• D – a nonempty set of allowable decisions;

• the mapping l : S × D → R being a loss function
whose values l(s, d) can be interpreted as losses in-
curred where the decision d has been made, while
the state s exists in reality.

Moreover, let a measure of imprecise states of nature s ∈
S, characterized by a distribution density denoted by μ, be
defined. If for every d ∈ D the integral

∫
S l(s, d)μ(s)ds

exists, then the mapping lb : D → R described by the
formula

lb(d) =
∫
S

l(s, d)μ(s)ds (1)

is called a Bayes loss function, and every element db ∈ D
fulfilling the condition

lb(db) = inf
d∈D

lb(d) (2)

becomes a Bayes decision, and the above procedure—a
Bayes rule. It requires the distribution of the measure of
the imprecision of states of nature to be identified, which
in the case of a probabilistic approach can be the density
of a probability distribution (Billingsley, 1989), as well as
a membership function for fuzzy logic (Kacprzyk, 1986).

2.2. Statistical Kernel Estimators

The concept of statistical kernel estimators of a distri-
bution density of the n-dimensional random variable Z
whose nc coordinates are continuous, while the remain-
ing nb are binary, is presented below. Variables of both
these types will be considered first separately, and then
together in one approach.

Let therefore (Ω, Σ, P ) be a probability space. Let
also the nc -dimensional continuous random variable X :
Ω → R

nc be given, with a distribution characterized
by the density fX . The corresponding kernel estima-
tor f̂X : R

nc → [0,∞), calculated using experimen-
tally obtained values for the m -element random sample
x1, x2, . . . , xm, is in its basic form defined as

f̂X(x) =
1

mhnc

m∑
i=1

Kc

(
x − xi

h

)
, (3)

where m ∈ N\{0}, the coefficient h > 0 is called
a smoothing parameter, while the measurable function
Kc : R

nc → [0,∞) of unit inegral
∫

Rnc
f̂X(x)dx = 1,

symmetrical with respect to zero and having a weak global
maximum at this point, takes the name of a kernel.

Let then the nb-dimensional binary random variable
Y : Ω → B

nb , where B = {0, 1}, be given. Its distri-
bution density kernel estimator f̂Y : B

nb → [0, 1], calcu-
lated on the basis of experimentally obtained values of the

random sample y1, y2, . . . , ym, takes the form

f̂Y (y) =
1
m

m∑
i=1

Kb(y, yi), (4)

where m ∈ N\{0}, and the kernel Kb : B
nb → [0, 1] is

defined by

Kb(y, yi) = λnb−d(y,yi)(1 − λ)d(y,yi), (5)

while λ ∈ [0.5, 1] fulfils the role of a smoothing pa-
rameter for the binary component, whereas the function
d : B

nb × B
nb → N, expressed as d(y1, y2) = (y1 −

y2)T(y1 − y2), refers to a number of coordinates of the
vectors y1 and y2 which are different.

Taking the above all together, consider the (nc+nb)-
dimensional random variable Z ≡ [X, Y ]T , being a com-
position of the nc-dimensional random variable X and
the nb-dimensional binary variable Y . The kernel K
used for the estimation of the distribution density of the
random variable Z takes the form

K(z, zi) = Kc

(
x − xi

h

)
Kb (y, yi) , (6)

where z ≡ [x, y]T and zi ≡ [xi, yi]T for i =
1, 2, . . . , m. Finally, the kernel estimator f̂Z of the den-
sity of the distribution of the random variable Z , calcu-
lated on the basis of the values of the m-element random
sample z1, z2, . . . , zm, can be defined as

f̂Z(z) =
1

mhnc

m∑
i=1

K(z, zi), (7)

where the kernel K is given by the formula (6).

The dependences (3), (4) and (7) constitute a funda-
mental form of the kernel estimator for the random vari-
ables: continuous X , binary Y , and their composition Z ,
respectively. The tasks concerning the choice of the form
of the kernel Kc, the smoothing parameters h and λ, as
well as additional procedures which improve the quality
of the estimator still need to be investigated.

The choice of the form of the kernel Kc and the fix-
ing of the smoothing parameter h are most often made
with the criterion of the mean integrated square error.

Thus, the choice of the kernel form has no practical
meaning and hence it is possible to take into account pri-
marily the properties of the obtained estimator (e.g. its
class of regularity, the boundary of a support) or aspects
of calculations advantageous from the point of view of the
applicational problem under study. This feature is partic-
ularly worth mentioning, as it seems to be especially con-
venient during practical investigations concerning kernel
estimators.
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The fixing of the smoothing parameters h and λ,
however, greatly influences the estimation quality. The
value of the former, applied to continuous coordinates,
can be calculated as a value realizing the minimum of the
function gc : (0,∞) → R of the form

gc(h) =
1

m2hnc

m∑
i=1

m∑
j=1

K̃c

(
xj − xi

h

)

+
2

mhnc
Kc(0), (8)

where
K̃c(x) = K∗2

c (x) − 2Kc(x), (9)

K∗2
c being the convolution square of the function Kc, i.e.

K∗2
c (x) =

∫
Rnc

Kc(u)Kc(x − u) du. (10)

Similarly, the smoothing parameter λ, used for binary co-
ordinates, is calculated in practice based on the maximum
likelihood criterion and given as a value realizing a mini-
mum of the function gb : [0.5, 1] → R defined as

gb(λ) = −
m∑

i=1

log f̂−i
Y (yi), (11)

where

f̂−i
Y =

1
m − 1

m∑
j=1
j �=i

Kb(y, yj). (12)

It is worth noting that even for multidimensional ran-
dom variables, the functions gc and gb are real (i.e. one-
dimensional).

In the case of the basic definition of the kernel es-
timator for the continuous random variable (3), the in-
fluence of the smoothing parameter on particular ker-
nels is the same. Particularly advantageous—in practical
applications—results are obtained thanks to the individu-
alization of this effect, which can be achieved through the
so-called modification of the smoothing parameter. This
relies on introducing the positive modifying parameters
s1, s2, . . . , sm mapped on particular kernels, described by
the formula

si =

(
f̂X(xi)

s̃

)−α

, (13)

where α ∈ [0, 1], while s̃ denotes the geometrical mean
of the numbers f̂X(x1), f̂X(x2), . . . , f̂X(xm) given in
the form of the logarithmic equation

log(s̃) =
1
m

m∑
i=1

log
(
f̂X(xi)

)
(14)

and, finally, defining the kernel estimator with the modifi-
cation of the smoothing parameter in the following form:

f̂X(x) =
1

mhnc

m∑
i=1

1
snc

i

Kc

(
x − xi

hsi

)
. (15)

Thanks to the above procedure, the areas in which the
kernel estimator assumes small values (e.g. in the range
of “tails”) are additionally flattened, while the areas con-
nected with large values are peaked. The result is an im-
provement in the characterization of the distribution under
investigation. Moreover, an estimator with the modifica-
tion of the smoothing parameter proves to be less sensi-
tive to the precision of the fixing of this parameter value,
and the difference in efficiency between particular types of
kernel is also lessened. Based on indications for the crite-
rion of the mean integrated square error, one can primarily
assume α = 0.5.

As regards the basic form of the kernel estimator of
the continuous random variable (3), the smoothing param-
eter has the same influence on particular coordinates of
this variable. Taking into account the possibility of sizable
differences in scales of the above coordinates, for some of
these the value of the parameter may turn out to be too
small, whereas for others—too big. Because of this, a lin-
ear transformation is applied:

X ≡ RY, (16)

where the matrix R is nonsingular. In practice it is most
often assumed that

R =
√

Cov(X), (17)

where the matrix Cov(X) denotes a covariance matrix
of the variable X . Following the transformation (16), the
kernel estimator takes the form

f̂X(x) =
1

mhnc det(R)

m∑
i=1

Kc

(
R−1 x − xi

h

)
. (18)

As a result, the scales of particular coordinates become
equal, and the shapes of kernels stretch out in a direction
defined by proper correlation coefficients.

The concepts of kernel estimators with the modifica-
tion of the smoothing parameter (15) and with the linear
transformation (18) can be joined in a natural manner.

The kernel estimator methodology can also be ap-
plied to other probabilistic characteristics. Below the con-
cept of kernel estimators for a regression function is pre-
sented. In this way, the arbitrary assumptions concern-
ing the form of this function, a necessary part of the
classical approach, may be avoided. Let m elements
(xi, yi) ∈ R×R with i = 1, 2, . . . , m be given, where xi

can denote any fixed numbers as well as the realizations
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of the one-dimensional random variable X , while yi are
realizations of the one-dimensional random variable Y . It
is assumed that the function g : R → R exists and that
the equality

yi = g(xi) + εi (19)

is true, where εi stand independent random variables with
zero expected value and finite variance. The concept of
kernel estimators for the regression function is based on
the use of the widely-known idea of a classic regression
function, while here as the weights of particular elements
(xi, yi), the proper values of the kernels mapped for the
arguments xi are taken. In the case most commonly used
in practice, the regression function kernel estimator ĝ :
R → R is thus given by

ĝ(x) =
1

mh

m∑
i=1

[ŝ2(x) − ŝ1(x)(xi − x)]yiKc

(
x−xi

h

)
ŝ2(x)ŝ0(x) − (ŝ1(x))2

,

(20)

where

ŝr(x) =
1

mh

m∑
i=1

(xi − x)rKc

(
xi − x

h

)
(21)

for r = 0, 1, 2.

Detailed information on kernel estimators can be
found in the monographs (Kulczycki, 2005; Silverman,
1986; Wand and Jones, 1995). Exemplary practical ap-
plications are presented in the papers (Kulczycki, 2000;
2002a; 2002b; Kulczycki and Wiśniewski, 2002). When
applying particular numerical procedures, it is worth using
the textbooks (Brandt, 1999; Dahlquist and Bjorck, 1983;
Kiełbasiński and Schwetlick, 1994; Stoer and Bulirsch,
1987).

3. Characteristics of Imprecise
Information

This section specifies the form of imprecise information
which will be investigated later in this paper. Let therefore
the n-dimensional random variable Z : Ω → R

n repre-
senting a random factor be given, and U = R

n+1 mean a
vector space whose first coordinate represents the impre-
cise quantity V and the remaining n components denote
further coordinates of the random variable Z (continuous
and binary). Let a measure connected with the imprecise
quantity V be given in the subspace of the first coordi-
nate, and a probabilistic measure of the random variable
Z in the subspace spanned by the following n coordi-
nates. Therefore, in the whole space U one can define
the product measure—it is assumed that its distribution

has the density M : R
n+1 → [0,∞). When this den-

sity is calculated on the basis of many concrete values ob-
tained successively for different realizations of the condi-
tioning variable Z , and when this is a summable function,
one can estimate it using the kernel estimators methodol-
ogy described in Section 2.2. The random sample required
there constitutes (n + 1)-dimensional vectors of the form
[vi,{wi}, zi,1, zi,2, . . . , zi,n]T for i = 1, 2, . . . , m. The
first coordinate vi,{wi} represents imprecise information,
where the notation used means that for the element vi

the opinion wi is achieved. The further n coordinates
zi,1, zi,2, . . . , zi,n denote the next components of the re-
alizations of the conditioning variable Z , for which the
above values vi and wi are obtained.

Such an approach will be illustrated using the task of
fixing a correct dosage of medicine with an imprecision
of a fuzzy type, which is typical in medical practice. The
opinion of particular sizes of the dose of medicine is in-
tuitive and expressed verbally—a type of data occurring
often in medical practice—and so it is represented here by
a fuzzy number V . In the example discussed now, for any
group of patients (indexed by i = 1, 2, . . . , m ) it will be
required to obtain a verbal opinion of the effectiveness for
the dose vi prescribed to particular persons, e.g. “very
good”, “good”, “acceptable”, “bad”. To these opinions,
the values of the constants wi can be mapped. A proper
dosage depends mainly on the age and body mass (contin-
uous variables), and gender (binary variable), which for
particular patients are zi,1, zi,2, zi,3. If the entire popula-
tion is considered, these factors are random, represented
by the three-dimensional random variable Z , with the co-
ordinates Z1, Z2, Z3. The product measure is defined on
the space of the form U ≡ [V, Z1, Z2, Z3]T and can be
characterized applying statistical kernel estimators. For
its calculation, one can make use of deterministic data of
the type [vi,{wi}, zi,1, zi,2, zi,3]T obtained on the basis of
m clinical cases.

If one particular patient is taken for whom a correct
dose of medicine is to be decided, then the realization
Z(ω) of the conditioning random variable becomes fixed.
It is worth noting that in the set of the obtained condition-
ing values [zi,1, zi,2, zi,3]T , there may not be a value equal
to the realization Z(ω), or their low number may not be
enough for responsible inference. On the other hand, the
kernel estimator allows proper averaging of the data col-
lected.

In practice, the patient must receive a fixed dose of
medicine. Underestimating the dose most often has quite
a different influence on the general cost of treatment from
overestimation. With regard to this, the applied proce-
dure should take an asymmetry of errors into account. The
procedure worked out in further parts of this paper fulfils
these demands.
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4. Bayes Sharpening of Imprecise
Information

The formula for the sharp value will be investigated below
based on the Bayes decision rule (Section 2.1). As an in-
tegration measure occurring in the definition of the Bayes
loss function (1), the productmeasure with the density M ,
considered in the previous section, with fixed realization
of the conditioning variable Z , is assumed. In practical
applications, such a density can be calculated using statis-
tical kernel estimators (Section 2.2).

Let therefore the following be given: the sets of states
of nature S = R and allowable decisions D = R, as well
as the loss function

l(v̂, v) =

{
−p(v̂ − v) for v̂ − v ≤ 0,
q(v̂ − v) for v̂ − v ≥ 0,

(22)

where v ∈ S and v̂ ∈ D, while the parameters p and q
are positive and—it is worth underling—not necessarily
equal. If the random factor ω ∈ Ω (and therefore also the
value of the random variable Z(ω)) is fixed, then for the
loss function (22), the Bayes loss function (1) takes the
form

lb(v̂) =

v̂∫
−∞

q(v̂ − v)M|Z(ω) (v) dv

−
∞∫

v̂

p(v̂ − v)M|Z(ω) (v) dv, (23)

where M|Z(ω) denotes the product measure density M
with a fixed random factor Z(ω). It is readily shown that
it attains a minimum for the value of the argument v̂ ful-
filling the following criterion:

v̂∫
−∞

M|Z(ω) (v)dv =
p

p + q

∞∫
−∞

M|Z(ω) (v) dv. (24)

As the parameters p and q are positive, then 0 <
p/(p + q) < 1. Therefore it is easy to see that, if the
function M|Z(ω) has a connected support, then thanks
to the continuity of the integral on the left-hand side of
the above formula, the solution of the equation (24) exists
and is unique. It is also worth noting that if the function
M|Z(ω) were to be multiplied by a nonzero constant, the
above solution would remain the same. Finally, the value
of the solution of the criterion (24) constitutes the desired
sharp value of imprecise information with the fixed ran-
dom factor Z(ω).

It is worth noting that, with respect to the equality

p

p + q
=

p/q

p/q + 1
, (25)

there is no need to define the values of the parameters p
and q separately, rather only the ratio p/q. In practical
applications one can make use of this property in a variety
of ways, e.g. assuming p = 1 and appropriately adapt-
ing the value of the parameter q, or, conversely, assum-
ing q = 1 and changing p, in relation to a more suitable
interpretation of a practical problem under investigation.
Thus, it is necessary to identify only one parameter: the
ratio p/q.

In the algorithm under investigation, the product
measure density M will be calculated using statistical
kernel estimators. There will be applied the main ker-
nel estimators formula (7) with the modification of the
smoothing parameter (15) as well as the linear transfor-
mation (18) taken into account, assuming therefore the
following form:

f̂Z

([
x

y

])
=

1
mhnc+1 det(R)

m∑
i=1

1
snc+1

i

× Kc

(
R−1 x − xi

hsi

)
Kb (y, yi) . (26)

What is more, for the needs of further investigations, this
dependence is generalized to

f̂Z

([
x

y

])
=

1

hnc+1 det(R)
m∑

i=1

wi

m∑
i=1

wi

snc+1
i

× Kc

(
R−1 x − xi

hsi

)
Kb (y, yi) , (27)

while the coefficients wi for i = 1, 2, . . . , m are non-
negative and not all equal to zero. It is worth noting that,
if wi ≡ 1, then the formula (27) reduces to the form (26).

Let therefore the (n + 1)-dimensional space U =
[V, Z]T be given, whose first coordinate represents the
imprecise information V , while the remaining n coor-
dinates constitute further components of the condition-
ing random variable Z = [X, Y ]T , where X is an
nc-dimensional continuous variable and Y — an nb-
dimensional binary variable. Introducing the natural nota-
tion z = [x, y]T , for any u ∈ U one can write

u =

[
v

z

]
=

⎡
⎢⎣ v

x

y

⎤
⎥⎦ . (28)

The product measure density M is characterized using
the kernel estimator calculated on the basis of m ele-
ments:

ui =

[
vi,{wi}

zi

]
=

⎡
⎢⎣ vi,{wi}

xi

yi

⎤
⎥⎦ (29)
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v̂0 =
1

m∑
i=1

wi

m∑
i=1

wivi, (33)

v̂k+1 = v̂k

+

p
p+q

1
hnc+1 det(R)

m∑
i=1

wi

snc+1
i

Kb

(
Y (ω), yi

) ∞∫
−∞

Kc

(
R−1

h v
X(ω)

i
−[ vi

xi
]

hsi

)
dv−

m∑
i=1

wiKb

(
Y (ω), yi

)
Ic

⎛
⎝R−1

»
v̂k

X(ω)

–
−[ vi

xi ]
hsi

⎞
⎠

1
hnc+1 det(R)

m∑
i=1

wi

snc+1
i

Kb

(
Y (ω), yi

)
Kc

⎛
⎝R−1

»
v̂k

X(ω)

–
−[ vi

xi ]
hsi

⎞
⎠

(34)

for k = 0, 1, . . .

for i = 1, 2, . . . , m, of which the particular values vi

(together with their opinions wi) are composed, obtained
for different values of the conditioning variable zi =
[xi, yi]T . According to the definition (27), the function
M̂ : R

nc+1 × B
nb → [0,∞) given as

M̂

([
v

z

])
= M̂

⎛
⎜⎝
⎡
⎢⎣ v

x

y

⎤
⎥⎦
⎞
⎟⎠

=
1

hnc+1 det(R)
m∑

i=1

wi

m∑
i=1

wi

snc+1
i

× Kc

⎛
⎜⎜⎜⎜⎝R−1

[
v

x

]
−
[

vi

xi

]

hsi

⎞
⎟⎟⎟⎟⎠Kb(y, yi) (30)

is the kernel estimator of the density M . The measur-
able function Kc : R

nc+1 → [0,∞) fulfils the condi-
tion

∫
Rnc+1 Kc([u, x]T )du dx = 1, which for any fixed

x ∈ R
nc guarantees the existence of its primitive Ic :

R → [0,∞) with respect to the first coordinate, i.e.

Ic

([
v

x

])
=

v∫
−∞

Kc

([
u

x

])
du. (31)

By applying kernel estimators to find the density

M|Z(ω) , the criterion (24) then takes the form

m∑
i=1

wiKb (Y (ω), yi) Ic

⎛
⎜⎜⎜⎜⎝R−1

[
v̂

X(ω)

]
−
[

vi

xi

]

hsi

⎞
⎟⎟⎟⎟⎠

=
p

p + q

1
hnc+1 det(R)

m∑
i=1

wi

snc+1
i

Kb

(
Y (ω), yi

)

×
∫ ∞

−∞
Kc

⎛
⎜⎜⎜⎜⎝R−1

[
v

X(ω)

]
−
[

vi

xi

]

hsi

⎞
⎟⎟⎟⎟⎠dv. (32)

The solution of the above equation constitutes at last the
desired sharp value of imprecise information with the
fixed random factor Z(ω) = [X(ω), Y (ω)]T . If a kernel
assuming positive values is used to construct the estima-
tor, then the left-hand side is a function of the argument v̂,
continuous and strictly increasing from zero to a positive
value, and, thanks to the dependence 0 < p/(p + q) < 1,
greater than the value of the right-hand side. The solution
of (32) thus exists and is unique.

In practice, this solution can be calculated effectively
based on Newton’s numerical method. The desired sharp
value is then given as a limit of the sequence {v̂k}∞k=0 de-
fined by the formulas (33) and (34), with the stopping con-
dition |v̂k − v̂k−1| ≤ 0, 01σ̂V , where σ̂V denotes an es-
timator of the standard deviation obtained for the sample
v1, v2, . . . , vm. The dependences presented above consti-
tute a fundamental version of Newton’s algorithm. De-
pending on the individual character of a concrete applica-
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tion, one can make use of many modifications available
in the literature (Dahlquist and Bjorck, 1983; Stoer and
Bulirsch, 1987).

In the following section, a comprehensive set of for-
mulas necessary for a direct application of the above algo-
rithm when using the Cauchy kernel is given.

5. Formulas for the Cauchy Kernel

5.1. Cauchy Kernel

As has been mentioned in Section 2.2, the assumed form
of the kernel Kc has no practical meaning from the sta-
tistical point of view and, thanks to this, in applications,
a suitable choice for the needs of a concrete task is possi-
ble. In the procedure investigated above, it is demanded
that the kernel Kc assumes positive values, and its prim-
itive with respect to the first coordinate is expressed by
a convenient analytical formula. These properties ensure
the Cauchy kernel defined as

Kc

([
v

x

])
= Kc

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

v

x1

x2

...

xnc

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

=
1
A

1
(1 + v2 + x2

1 + x2
2 + · · · + x2

nc
)a

,

(35)

while a = [(nc + 3)/2] and A =
Snc+1

∫∞
0 rnc/(1 + r2)adr, where [b] denotes the

integer part of the number b ∈ R, with Snc+1 being the
surface of the (nc + 1) -dimensional unit sphere. Con-
crete formulas for the Cauchy kernel (35) for particular
dimensions nc are included in Tab. 1.

The use of the algorithm investigated in this paper
also requires the calculation of the primitive Ic, for the
kernel Kc, with respect to the first coordinate v. The rel-
evant formulas are given in Tab. 2. Furthermore, Tab. 3
contains the values of the definite integral with respect to
this coordinate, within the limits from −∞ to +∞.

The above dependences are presented in Tabs. 1–3
for the basic form of the kernel estimator (3). In the gen-
eral case for the version (27), following the modification
of the smoothing parameter and the linear transformation,
it is necessary to make a proper change of variables. The
relevant formulas are presented in Sections 5.2 and 5.3,
for the cases of nc = 1 and nc ≥ 2, respectively.

Table 1. Forms of the Cauchy kernel for various dimensions nc.

nc a A Kc

0
B@

2
64

v
x1
x2

...
xnc

3
75

1
CA

1 2 π
1

π

1

(1 + v2 + x2
1)

2

2 2 π2 1

π2

1

(1 + v2 + x2
1 + x2

2)
2

3 3
π2

2

2

π2

1

(1 + v2 + x2
1 + x2

2 + x2
3)

3

4 3
π3

2

2

π3

1

(1 + v2 + x2
1 + x2

2 + x2
3 + x2

4)
3

5 4
π3

6

6

π3

1

(1 + v2 + x2
1 + x2

2 + x2
3 + x2

4 + x2
5)

4

6 4
π4

6

6

π4

1

(1 + v2 + x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6)
4

Table 3. Definite integral of the Cauchy kernel with respect
to the first coordinate from −∞ to +∞.

nc

∞Z
−∞

Kc

0
B@

2
64

v
x1
x2

...
xnc

3
75

1
CAdv

1
1

2(1 + x2
1)

3/2

2
1

2π(1 + x2
1 + x2

2)
3/2

3
3

4π(1 + x2
1 + x2

2 + x2
3)

5/2

4
3

4π2(1 + x2
1 + x2

2 + x2
3 + x2

4)
5/2

5
15

8π2(1 + x2
1 + x2

2 + x2
3 + x2

4 + x2
5)

7/2

6
15

8π3(1 + x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6)
7/2

5.2. Case of nc=1

Let the elements of the matrix inverse of the transforma-
tion matrix R be denoted thus:

R−1 = P =

[
p11 p12

p21 p22

]
, (36)
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Table 2. Primitive for the Cauchy kernel with respect to the first coordinate.

nc Ic

0
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xnc
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+
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"
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+
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6)
3

+
15π

16

–

moreover
djk =

pjk

hsi
(37)

for j = 1, 2 and k = 1, 2,

a0 = d2
11 + d2

21, (38)

b01 = 2d11d12 + 2d21d22, (39)

a1 = d2
12 + d2

22, (40)

as well as

E =
(

a1 − b2
01

4a0

)
(x1 − xi,1)2. (41)

It is readily shown that a0 > 0 and E ≥ 0. Then the
particular quantities occurring in the criterion (32) and the
Newton’s algorithm formulas (33)–(34) equal respectively

Kc

⎛
⎜⎜⎜⎜⎝R−1

[
v

x1

]
−
[

vi

xi,1

]

hsi

⎞
⎟⎟⎟⎟⎠

= Kc

([
d11(v − vi) + d12(x1 − xi,1)
d21(v − vi) + d22(x1 − xi,1)

])
, (42)
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Ic

⎛
⎜⎜⎜⎜⎝R−1

[
v

x1

]
−
[

vi

xi,1

]

hsi

⎞
⎟⎟⎟⎟⎠

=
1√
a0

Ic

(√
a0(v − vi)+

b01

2
√

a0
(x1−xi,1)

)
|x2

1 =E

(43)

∞∫
−∞

Kc

⎛
⎜⎜⎜⎜⎝R−1

[
v

x1

]
−
[

vi

xi,1

]

hsi

⎞
⎟⎟⎟⎟⎠dv

=
1√
a0

∞∫
−∞

Kc

([
v√
E

])
dv, (44)

while the expressions on the right-hand sides of the above
dependences can be sequentially read from Tabs. 1–3,
where the symbol Ic( · )|x2

1 =E in the formula (43) means

replacing x2
1, in the proper equality in Tab. 2, with the

value of E.

5.3. Case of nc≥2

Let the elements of the matrix inverse of R be denoted in
the following manner:

R−1 = P =
[
pjk

]
j=1,2,...,nc+1
k=1,2,...,nc+1

, (45)

moreover

djk =
pjk

hsi
(46)

for j = 1, 2, . . . , nc + 1 and k = 1, 2, . . . , nc + 1,

aj =
nc+1∑
k=1

d2
k j+1 (47)

for j = 0, 1, . . . , nc,

bpq =
nc+1∑
k=1

dk p+1dk q+1 (48)

for p = 0, 1, . . . , nc − 1 and q = 1, 2, . . . , nc,

as well as

E =
nc∑

j=1

aj(xj − xi,j)2

+ 2
nc−1∑
p=1

nc∑
q=p+1

bpq(xp − xi,p)(xq − xi,q)

− 1
a0

nc∑
j=1

b2
0j(xj − xi,j)2

− 2
a0

nc−1∑
p=1

nc∑
q=p+1

b0pb0q(xp−xi,p)(xq−xi,q). (49)

One can show that a0 > 0 and E ≥ 0. Here the par-
ticular quantities occurring in the criterion (32) and the
Newton’s algoritm formulas (33)–(34) equal respectively

Kc

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R−1

⎡
⎢⎢⎢⎣

v
x1
x2
...

xnc

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

v
xi,1
xi,2
...

xi,nc

⎤
⎥⎥⎥⎦

hsi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=Kc

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

√
a0(v−vi)

+ 1√
a0

nc∑
j=1

b0j(xj−xi,j)

x1
x2
...

xnc

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
|x2

1+x2
2+...+n2

nc
=E

(50)

Ic

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R−1

⎡
⎢⎢⎢⎣

v
x1
x2
...

xnc

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

v
xi,1
xi,2
...

xi,nc

⎤
⎥⎥⎥⎦

hsi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1√
a0

Ic

(√
a0(v − vi)

+
1√
a0

nc∑
j=1

b0j(xj − xi,j)
)
|x2

1+x2
2+...+n2

nc
=E

(51)
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∞∫
−∞

Kc

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R−1

⎡
⎢⎢⎢⎣

v
x1
x2
...

xnc

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

v
xi,1
xi,2
...

xi,nc

⎤
⎥⎥⎥⎦

hsi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

dv

=
1√
a0

∞∫
−∞

Kc

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

v
x1
x2
...

xnc

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠dv |x2

1+x2
2+···+n2

nc
=E , (52)

while the expressions on the right-hand sides of the above
dependences can be sequentially read from Tabs. 1–3,
where the symbol (·)|x2

1+x2
2+···+n2

nc
=E means replacing

x2
1 +x2

2 + · · ·+x2
nc

, in the proper equality in these tables,
with the value E.

6. Numerical Verification

The correct functioning of the algorithm worked out in the
previous section has been confirmed by numerical simu-
lations. In the trivial one-dimensional case, when nc = 0,
nb = 0 and wi ≡ 1, the investigated concept of the sharp-
ening of imprecise information is reduced to a procedure
which calculates the kernel estimator of a quantile. Mean
errors in kernel and classic estimators of a quantile were
compared in the work (Kulczycki, 2001), where the for-
mer seemed to be more precise. In the multidimensional
case treated in this paper, taking into account conditioning
variables of continuous and binary types, and also coeffi-
cients wi mapped to particular sample elements vi, the
concept of sharpening presented here becomes remark-
ably general. The numerical verification described below
was carried out for the case where imprecision is repre-
sented by a probabilistic measure, characterized by an as-
sumed density of a probability distribution.

In each field of Tab. 4, the results obtained for 100 in-
dependent samples are listed. These results are presented
giving

• a theoretical value for the sharp value, denoted by v;

• the mean of the obtained sharp values ¯̂v, calculated
on the basis of the aforementioned 100 random
samples;

• the standard deviation of the obtained sharp values ˜̂v
for the same 100 samples.

The last two quantities are expressed in particular fields
using the natural notation ¯̂v ± ˜̂v. The parameters wi

mapped onto the respective values vi are obtained using a
generator for the symmetrical triangular distribution with
the support [0, 1]. In this way verbal opinions expressed
by people, being vague and nonextreme by nature, are
characterized properly. In the description below, the fol-
lowing notation used for the parameter occurring in the
criterion (24) and its version (32) is introduced:

r =
p

p + q
. (53)

First, the intensity of the smoothing parameter mod-
ification procedure, defined by the value of the parameter
α ∈ [0, 1] introduced in the formula (13), was investi-
gated. The universal value α = 0.5 seemed to be sat-
isfactory in the majority of cases, particularly in real-life
problems, although changes in the value of this parame-
ter contribute to an improvement in the quality in extreme
cases. In particular when the conditioning variable value
deviates widely from the modal, one can propose the sig-
nificant decreasing of the parameter α value, even to zero.

Basic research was carried out for nc = 1 and
nb = 0, when in this case the two-dimensional random
variable [V, X ]T has the normal distribution with the ex-
pected value E([V, X ]T ) = [0, 0]T and the covariance
matrix Cov([ V, X ]T ) = [ 1 0.7

0.7 1 ]. The positive correla-
tion of the variables V and X indicates that an increase
in the values of the conditioning variable X should im-
ply the corresponding growth in the sharp values. The
obtained results are presented in Tab. 4. They confirm
the above expectation as well as the general correctness
of the algorithm worked out in this paper. As the sample
size increased, the obtained sharp values converged to the
theoretical ones, and the standard deviation to zero. The
above asymptotical features are of fundamental signifi-
cance from an applicational point of view, as they prove
that it is possible to obtain any precision of sharpening,
although this requires a sufficient random sample size.
Therefore, in practice, the necessity of a proper compro-
mise between these quantities is called for.

The convergence speed increased as the value of the
parameter r given by the formula (53) was closer to 0.5,
although even for extreme cases, i.e. when it neaved to 0
or 1, satisfactory results were achieved. The convergence
speed also increased, as the value of the conditioning vari-
able came within the range of its modal value. These facts
are rather intuitively clear. It is worth noting that the cases
where r = 0.1 or r = 0.9, and also when the value of
the conditioning variable appears in the neighborhood of
its second standard deviation, generally become very diffi-
cult problems, which are naturally associated with greater
demands, and for some classical methods they are actually
impossible to settle in practice.

Detailed results of numerical simulations, including
those for multimodal and nonsymmetrical distributions,
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Table 4. Results of a numerical simulation for the normal distribution with the expected value
E([V, X]T ) = [0, 0]T and the covariance matrix Cov([V, X]T ) = [ 1 0.7

0.7 1 ].

X(ω) = 0

r

m

0.1

(v = −0.92)

0.3

(v = −0.37)

0.5

(v = 0.00)

0.7

(v = 0.37)

0.9

(v = 0.92)

10 −1.151 ± 0.425 −0.460 ± 0.312 −0.025 ± 0.279 0.397 ± 0.285 1.108 ± 0.432

20 −1.028 ± 0.273 −0.387 ± 0.227 0.001 ± 0.239 0.377 ± 0.256 0.989 ± 0.289

50 −0.965 ± 0.188 −0.364 ± 0.182 −0.002 ± 0.185 0.365 ± 0.187 0.957 ± 0.185

100 −0.943 ± 0.145 −0.382 ± 0.144 −0.016 ± 0.144 0.352 ± 0.141 0.918 ± 0.150

200 −0.921 ± 0.112 −0.374 ± 0.119 −0.014 ± 0.122 0.347 ± 0.124 0.892 ± 0.119

500 −0.890 ± 0.081 −0.365 ± 0.089 −0.006 ± 0.095 0.366 ± 0.094 0.885 ± 0.090

1000 −0.887 ± 0.065 −0.365 ± 0.069 0.002 ± 0.073 0.369 ± 0.079 0.886 ± 0.074

X(ω) = 1

r

m

0.1

(v = −0.22)

0.3

(v = 0.33)

0.5

(v = 0.70)

0.7

(v = 1.07)

0.9

(v = 1.62)

10 −0.582 ± 0.539 0.171 ± 0.400 0.646 ± 0.355 1.130 ± 0.358 1.902 ± 0.504

20 −0.455 ± 0.371 0.233 ± 0.298 0.680 ± 0.262 1.127 ± 0.280 1.829 ± 0.339

50 −0.357 ± 0.258 0.286 ± 0.195 0.696 ± 0.194 1.107 ± 0.206 1.759 ± 0.260

100 −0.313 ± 0.186 0.299 ± 0.163 0.696 ± 0.152 1.091 ± 0.147 1.708 ± 0.175

200 −0.275 ± 0.141 0.307 ± 0.119 0.691 ± 0.112 1.083 ± 0.111 1.676 ± 0.137

500 −0.201 ± 0.099 0.333 ± 0.085 0.687 ± 0.093 1.047 ± 0.098 1.596 ± 0.101

1000 −0.229 ± 0.074 0.319 ± 0.064 0.692 ± 0.067 1.074 ± 0.068 1.623 ± 0.081

X(ω) = 2

r

m

0.1

(v = 0.48)

0.3

(v = 1.03)

0.5

(v = 1.40)

0.7

(v = 1.77)

0.9

(v = 2.32)

10 0.103 ± 0.846 0.804 ± 0.654 1.364 ± 0.590 1.910 ± 0.576 2.798 ± 0.726

20 0.107 ± 0.554 0.877 ± 0.475 1.379 ± 0.438 1.892 ± 0.401 2.672 ± 0.418

50 0.241 ± 0.417 0.959 ± 0.384 1.443 ± 0.318 1.908 ± 0.342 2.563 ± 0.375

100 0.308 ± 0.328 0.995 ± 0.276 1.460 ± 0.246 1.887 ± 0.263 2.528 ± 0.281

200 0.338 ± 0.301 0.986 ± 0.232 1.421 ± 0.229 1.853 ± 0.220 2.494 ± 0.253

500 0.394 ± 0.219 0.995 ± 0.161 1.396 ± 0.156 1.809 ± 0.157 2.413 ± 0.191

1000 0.378 ± 0.181 0.994 ± 0.118 1.394 ± 0.124 1.805 ± 0.131 2.366 ± 0.176
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taking into account binary conditioning factors, inference
for the lack of data from the neighborhood of a fixed value
of a conditioning variable, as well as an additional proce-
dure for boundaries of a support, can be found in the work
(Charytanowicz, 2005).

7. Summary

This paper proposes the concept of the sharpening of im-
precise information based on the Bayes decision rule and
the methodology of statistical kernel estimators, includ-
ing conditioning factors of continuous and binary nature.
A complete procedure for the algorithm was worked out,
consisting in part of defining analytical forms of relevant
functions and the fixing of parameter values. Thus, in
order to apply the algorithm investigated here, which al-
lows calculating the sharp value, the following steps are
required:

1. Obtain m opinions wi concerning the values vi,
achieved respectively for the values of the condition-
ing variables zi with the continuous xi and binary
yi coordinates.

2. Assume the quotient of losses resulting from an
under- and overestimation of a sharp value, i.e. the
quantity p/q, and then calculate the value p/(p + q)
from the dependency (25).

3. Using Tab. 1, find the appropriate formula for the
Cauchy kernel Kc for a given number of continuous
coordinates of the conditioning variable nc.

4. Based on the sample [vi, xi]T , compute the value
of the smoothing parameter h by the minimization
of the function (8), while the convolution square
K∗2

c present there can be defined using the kernel
estimator for the regression function (20)–(21).

5. Find the modification parameters si based on the
dependences (13)–(14).

6. Calculate the covariance matrix, where the linear
transformation matrix R is given by the for-
mula (17).

7. Assign the primitive of the kernel Kc with respect
to the coordinate v and the value of its definite
integral from −∞ to +∞, using Tabs. 2–3 and the
procedures investigated in Section 5.

8. As the parameter λ set the value which minimizes
the function (11).

9. Define the binary kernel Kb using the depen-
dence (5).

10. Apply the Newton’s algorithm (33)–(34), which
eventually results in the desired sharp value.

This paper is based on the work (Charytanowicz,
2005), where further information can be found, in partic-
ular, derivations of the formulas presented here.
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