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This paper improves controller synthesis of discrete Takagi-Sugeno fuzzy systems based on non-quadratic Lyapunov func-
tions, making it possible to accomplish various kinds of control performance specifications such as decay rate conditions,
requirements on control input and output and disturbance rejection. These extensions can be implemented via linear matrix
inequalities, which are numerically solvable with commercially available software. The controller design is illustrated with
an example.
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1. Introduction

Fuzzy control systems have witnessed a strong growth
of industrial applications in the recent years, mainly due
to their reliability and satisfactory results in dealing with
highly nonlinear behavior with a good compromise be-
tween accuracy and simplicity.

Since Takagi-Sugeno fuzzy systems (TSFSs) were
described in (Takagi and Sugeno, 1985), they have been
largely considered as one of the most suitable tools for
modeling non-linear systems. Their structure facilitates
stability analysis via common quadratic Lyapunov func-
tions (Farinwata and Vachtsevanos, 1993; Tanaka and
Sugeno, 1990), and controller synthesis via parallel dis-
tributed compensation (PDC), including many perfor-
mance requirements like decay rate, input and output con-
straints, robustness and optimality (Tanaka and Sugeno,
1992; 1994; Tanaka et al., 1998; Tanaka and Wang, 2001;
Wang et al., 1996). In addition to that, all these results can
be stated as linear matrix inequalities (LMIs) that can be
efficiently implemented and solved.

Nevertheless, when a large number of subsystems
are involved, common Lyapunov functions are inade-
quate to establish stability or synthesize controllers, by
virtue of their conservativeness. Several approaches have
been developed to overcome these limitations. Piecewise
quadratic Lyapunov functions were employed to enrich
the set of possible Lyapunov functions used to prove sta-

bility (Bernal and Hušek, 2004a; 2004b; 2004c; Feng,
2004; Johansson et al., 1999; Rantzer and Johansson,
2000). Controller synthesis under this approach recently
appeared (Feng, 2003), but it is still limited to continuous-
time TSFSs (Bernal and Hušek, 2005a; 2005b).

A more general approach based on non-quadratic
Lyapunov functions was recently developed (Bernal and
Hušek, 2005c; Guerra and Vermeiren, 2004; Tanaka et
al., 2003), not only to establish stability, but to synthesize
controllers for a discrete TSFS. In contrast to the quadratic
piecewise approach, the non-quadratic one can deal with
non-linear premise variables, so the TSFS’s approxima-
tion capabilities can be fully exploited. In this work, de-
cay rate requirements, constraints on input and output and
disturbance rejection are incorporated in one of the non-
quadratic stabilizing controllers developed in (Guerra and
Vermeiren, 2004). These extensions can be implemented
via linear matrix inequalities (LMIs), which are numeri-
cally solvable with commercially available software.

This paper is organized as follows: Section 2 intro-
duces dynamical fuzzy systems and the non-quadratic ap-
proach this work is based on. Section 3 develops exten-
sions to the previous approach in order to include the un-
derlying performance requirements. Section 4 exemplifies
the results and, finally, Section 5 contains some conclud-
ing remarks.
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2. Fuzzy Dynamic Model and
the Non-Quadratic Approach

Consider the following discrete Takagi-Sugeno fuzzy sys-
tem (Tanaka and Wang, 2001):

Ri : If z1(t) is Mi1 and · · ·and zp(t) is Mip then

x(t + 1) = Aix(t) + Biu(t)

y(t) = Cix(t) i ∈ {1, . . . , r},
where Ri denotes the i-th rule, r is the number of
rules, Mij is a fuzzy set, x(t) ∈ R

n is the state vec-
tor, u(t) ∈ R

m is the control input, y(t) ∈ R
q is the

output vector, Ai, Bi, Ci are matrices of suitable dimen-
sions that represent the i-th local model of the fuzzy sys-
tem, and z(t) = [z1(t) . . . zp(t)] is the premise vector
which depends on the state vector x(t).

The previous rules can be compactly rewritten as fol-
lows:

x(t + 1) = Azx(t) + Bzu(t), y(t) = Czx(t), (1)

where

Az =
r∑

i=1

hi

(
z(t)

)
Ai,

Bz =
r∑

i=1

hi

(
z(t)

)
Bi,

Cz =
r∑

i=1

hi

(
z(t)

)
Ci.

When disturbances are considered, the TSFS is modified
as follows:

x(t + 1) = Azx(t) + Bzu(t) + Ezv(t),

y(t) = Czx(t), (2)

where

Ez =
r∑

i=1

hi(z(t))Ei, v(t) ∈ R.

The non-PDC control law

u(t) = −
( r∑

i=1

hi

(
z(t)

)
Fi

)( r∑
j=1

hj

(
z(t)

)
Pj

)−1

x(t)

= −FzP
−1
z x(t), (3)

with the Lyapunov function candidate

V (t) = xT (t)
( r∑

i=1

hi

(
z(t)

)
Pi

)−1

x(t)

= xT (t)P−1
z x(t), (4)

Pi = PT
i > 0,

is considered.

As in (Guerra and Vermeiren, 2004), in what follows,
if Yz = Yz(t), then Yz+ = Yz(t + 1), Y −1

z = (Yz)−1

and Y −T
z = (Y −1

z )T .

3. Control Performance Specifications

3.1. Decay Rate Specification

Definition 1. A discrete-time system is said to be glob-
ally exponentially stable if there exist positive constants
α, 0 < α < 1 and β > 0, such that

‖x(t)‖ ≤ αtβ‖x(0)‖. (5)

The number α is known as the decay rate.

Lemma 1. If there exists a Lyapunov function such that

ΔV (x(t)) ≤ (α2 − 1)V (x(t)) (6)

for all trajectories of the fuzzy system (1), then the system
is exponentially stable with a decay rate α.

Proof. Let λi [M ] denote the i-th eigenvalue of the ma-
trix M . From (6) we have

V
(
x(t + 1)

) ≤ α2V
(
x(t)

) ≤ α2tV
(
x(0)

)
. (7)

Thus,

inf
z

min
i

|λi

[
P−1

z

] |‖x(t)‖2

≤ min
i

|λi

[
P−1

z

] |‖x(t)‖2

≤ xT (t)P−1
z x(t)

≤ α2txT (0)P−1
z0

x(0)

≤ α2tmax
i

|λi

[
P−1

z0

] |‖x(0)‖2,

where Pz0 =
∑r

i=1 hi(z(0))Pi, which is equivalent to
(5) in the following form:

‖x(t)‖ ≤ αt

(
maxi |λi

[
P−1

z0

] |
infz mini |λi

[
P−1

z

] |
)1/2

‖x(0)‖. (8)

Defining Υk
ij as

Υk
ij =

[
α2Pi (∗)

AiPj − BiFj Pk

]
, (9)

i, j, k ∈ {1, . . . , r}
where the asterisk denotes the transpose of the corre-
sponding block below the main diagonal, the following
theorem can be formulated:
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Theorem 1. Consider the discrete TSFS (1) and the non-
PDC control law (3). With Υk

ij defined in (9), if there
exist matrices Pi > 0, Qk

i > 0, Qk
ij = (Qk

ij)
T , j > i

and matrices Fi such that

Υk
ii > Qk

i , i, k ∈ {1, . . . , r}, (10)

Υk
ij + Υk

ji > Qk
ij , j > i, i, j, k ∈ {1, . . . , r}, (11)

Ψk =

⎡
⎢⎢⎢⎢⎢⎣

2Qk
1 (∗) . . . (∗)

Qk
12 2Qk

2 . . .
...

...
...

. . . (∗)
Qk

1r . . . Qk
(r−1)r 2Qk

r

⎤
⎥⎥⎥⎥⎥⎦ > 0,

k ∈ {1, . . . , r}, (12)

then the closed-loop TSFS is globally asymptotically sta-
ble with a decay rate α, 0 < α < 1.

Proof. Consider the Lyapunov function candidate (4) for
the system (1) under the control law (3). Since ∀i, Pi >
0 and hi(z(t)) ≥ 0 have a convex sum property, then
Pz > 0 and P−1

z > 0 (Guerra and Vermeiren, 2004).
The variation of the Lyapunov function according to (6)
can be rewritten as follows:

ΔV (x(t)) − (α2 − 1)V (x(t))

= V (x(t + 1)) − α2V (x(t))

= xT (t + 1)P−1
z+ x(t + 1) − α2x(t)T P−1

z x(t)

= xT (t)((Az − BzFzP
−1
z )T P−1

z+ (Az − BzFzP
−1
z )

−α2P−1
z )x(t)

= xT (t)Rx(t) ≤ 0.

The previous inequality holds if R < 0. Premultiplying
and postmultiplying R by Pz yields

(PzA
T
z − FT

z BT
z )P−1

z+ (AzPz − BzFz) − α2Pz < 0.

Now, taking the Schur complement of the previous ex-
pression gives[

α2Pz (∗)
AzPz − BzFz Pz+

]
> 0

which is equivalent to the conditions (10) and (11) under
the definitions (12) and (9) (Guerra and Vermeiren,
2004).

Remark 1. Note that the lowest upper bound on the de-
cay rate can be found by solving the following generalized
eigenvalue problem (GEVP): Minimize α subject to the
LMIs (10)–(12) under the definition (9).

3.2. Constraints on the Input and Output

Without loss of generality, assume that for the Lyapunov
function (4) the inequality

V (x(t)) ≤ V (x(0)) ≤ 1, t ≥ 0 (13)

holds, which can be guaranteed by a proper choice of
the initial conditions. Also, recall that V (x(t)) ≤
V (x(0)), t ≥ 0, holds for every Lyapunov function since
it is, by definition, a positive monotonically decreasing
function.

This condition can be expressed via LMIs, since

V (x(0)) ≤ 1 ⇐⇒ 1 − xT (0)P−1
z0

x(0) ≥ 0

is equivalent to [
1 (∗)

x(0) Pz0

]
> 0

via the Schur complement, which is implied by[
1 (∗)

x(0) Pi

]
> 0, i ∈ {1, . . . , r}. (14)

Theorem 2. Consider the discrete TSFS (1) and the non-
PDC control law (3). Assume that the initial condition
x(0) is known. The condition ‖u(t)‖ ≤ μ, ∀t ≥ 0 holds
if so do the LMIs (14) and[

Pi (∗)
Fj μ2I

]
> 0, i, j ∈ {1, . . . , r}. (15)

Proof. Recalling (13) and (14), it is clear that the condition
‖u(t)‖ ≤ μ can be rewritten by means of (3) as follows:

uT (t)u(t) = xT (t)P−T
z FT

z FzP
−1
z x(t) ≤ μ2

⇐⇒ 1
μ2

xT (t)P−T
z FT

z FzP
−1
z x(t) ≤ 1.

Recalling (13), it is clear that the previous inequality holds
if

1
μ2

xT (t)P−T
z FT

z FzP
−1
z x(t)

≤ xT (t)P−1
z x(t) = V (x(t)).

This condition is equivalent to

1
μ2

xT (t)P−T
z FT

z FzP
−1
z x(t) − xT (t)P−1

z x(t)

= xT (t)
[

1
μ2

P−T
z FT

z FzP
−1
z − P−1

z

]
x(t) ≤ 0,
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from which we get

1
μ2

P−T
z FT

z FzP
−1
z − P−1

z ≤ 0.

Pre- and postmultiplying it by Pz and rearranging some
terms, we obtain

Pz − 1
μ2

FT
z Fz ≥ 0,

and, by the Schur complement,[
Pz (∗)
Fz μ2I

]
> 0,

which is implied by LMIs (15).

Theorem 3. Consider the discrete TSFS (1) and the non-
PDC control law (3). Assume that the initial condition
x(0) is known. The condition ‖y(t)‖ ≤ λ, ∀t ≥ 0 holds
if so do the LMIs (14) and[

Pj (∗)
CiPj λ2I

]
> 0, i, j ∈ {1, . . . , r}. (16)

Proof. As before, (13) implies (14). The condition
‖y(t)‖ ≤ λ can be rewritten by means of (1) as follows:

yT (t)y(t) = xT (t)CT
z Czx(t) ≤ λ2

⇐⇒ 1
λ2

xT (t)CT
z Czx(t) ≤ 1.

Recalling (13), it is clear that the previous inequality holds
if

1
λ2

xT (t)CT
z Czx(t) ≤ xT (t)P−1

z x(t) = V (x(t)),

which is equivalent to

1
λ2

xT (t)CT
z Czx(t) − xT (t)P−1

z x(t)

= xT (t)
[

1
λ2

CT
z Cz − P−1

z

]
x(t) ≤ 0,

which yields

1
λ2

CT
z Cz − P−1

z ≤ 0.

Pre- and postmultiplying this result by Pz and rearrang-
ing some terms, we get

Pz − 1
λ2

PT
z CT

z CzPz ≥ 0,

and, by the Schur complement,[
Pz (∗)

CzPz λ2I

]
> 0,

which is implied by the LMIs (16).

3.3. Disturbance Rejection

Consider the TSFS (2), where v(t) is the disturbance.
In the sequel, disturbance rejection will be considered as
minimizing γ > 0 subject to

sup
‖v(t)‖2 �=0

‖y(t)‖2

‖v(t)‖2
≤ γ, (17)

where ‖ · ‖2 stands for the �2 norm.

Theorem 4. Consider the discrete TSFS (2) and the non-
PDC control law (3). The condition (17) holds if so do the
LMIs (10)–(12) and[

γ2I (∗)
Ei Pj

]
> 0, i, j ∈ {1, . . . , r}, (18)

under the definition

Υk
ij =

⎡
⎢⎣ Pi (∗) (∗)

AiPj − BiFj Pk 0
CiPj 0 I

⎤
⎥⎦ , (19)

i, j, k ∈ {1, . . . , r}.
Proof. With no loss of generality, consider the Lyapunov
function candidate (4) and γ > 0 such that, for all t,

ΔV (x(t)) + yT (t)y(t) − γ2vT (t)v(t) ≤ 0. (20)

This condition implies

Tf∑
t=0

[
ΔV (x(t)) + yT (t)y(t) − γ2vT (t)v(t)

] ≤ 0.

Assuming that x(0) = 0, we obtain

V (x(Tf )) +
Tf∑
t=0

[
yT (t)y(t) − γ2vT (t)v(t)

] ≤ 0.

Since V (x(Tf )) ≥ 0, this implies (17).

The condition (20) can be transformed as follows:

ΔV (x(t)) + yT (t)y(t) − γ2vT (t)v(t)

= V (x(t + 1)) − V (x(t))

+ xT (t)CT
z Czx(t) − γ2vT (t)v(t)

= xT (t + 1)P−1
z+ x(t + 1) − xT (t)P−1

z x(t)

+ xT (t)CT
z Czx(t) − γ2vT (t)v(t)



Non-quadratic performance design for Takagi-Sugeno fuzzy systems 387

= xT (t)(Az − BzFzP
−1
z )T P−1

z+ (Az − BzFzP
−1
z )x(t)

+ vT (t)ET
z+P−1

z+ Ezv(t) − xT (t)P−1
z x(t)

+ xT (t)CT
z Czx(t) − γ2vT (t)v(t)

= xT (t)
[
(Az − BzFzP

−1
z )T P−1

z+ (Az − BzFzP
−1
z )

− P−1
z + CT

z Cz

]
x(t)

+ vT (t)
[
ET

z P−1
z+ Ez − γ2I

]
v(t) ≤ 0,

which can be achieved if

P−1
z − CT

z Cz

− (Az − BzFzP
−1
z )T P−1

z+ (Az − BzFzP
−1
z ) > 0,

γ2I − ET
z P−1

z+ Ez > 0,

or, equivalently, by pre- and postmultiplying the first in-
equality by Pz , if

Pz − PT
z CT

z CzPz

− (AzPz − BzFz)T P−1
z+ (AzPz − BzFz) > 0,

γ2I − ET
z P−1

z+ Ez > 0.

Taking the Schur complements of the previous expres-
sions gives

[
γ2I(∗)
EzPz+

]
> 0,

⎡
⎢⎣ Pz(∗)(∗)

AzPz − BzFzPz+0
CzPz0I

⎤
⎥⎦ > 0,

which is implied by the LMIs (10)–(12) and (18) under
the definition (19) (Guerra and Vermeiren, 2004).

Remark 2. Recall that it is possible to find the lowest
upper bound on γ via a generalized eigenvalue problem
(GEVP): Minimize γ subject to the LMIs (10)–(12) and
(18) under the definition (19).

Remark 3. Since the developed designs are specified
in terms of LMIs, they can be combined without further
adaptations. However, note that the more conditions are
imposed on a certain plant, the more conservative the re-
sults can be.

4. Example

This section presents an example to illustrate the effect of
decay rate design, constraints on the input and output and
disturbance rejection. Every set of LMIs was solved via
the MATLAB LMI toolbox.

Consider the following system (Guerra and Ver-
meiren, 2004):

R1 : If x1 is F 1
1 (x1(t)) then

x(t + 1) =

[
−0.5 2
−0.1 0.5

]
x(t) +

[
4.1
4.8

]
u(t),

y(t) = [ 0 1 ]x(t),

R2 : If x1 is F 2
1 (x1(t)) then

x(t + 1) =

[
−0.9 0.5
−0.1 −1.7

]
x(t) +

[
3

0.1

]
u(t),

y(t) = [ 0 1 ]x(t), (21)

with the membership functions F 1
1 (x1(t)) = (x1(t) +

1.3)/2.6 and F 2
1 (x1(t)) = 1 − F 1

1 (x1(t)).
Decay rate: Employing Theorem 1 it is possible to find
a controller for the system (21) to achieve a decay rate
α = 0.77, since the LMIs (10)–(12) were found feasible
under the definition (9). The non-PDC control law (3)
with the gains

P1 =

[
8687.5 −252.3
−252.3 34.4

]
,

P2 =

[
4243.3 −341.7
−341.7 32.5

]
,

F1 = [−265.3943 11.0817],

F2 = [−355.1544 13.4394]

can be applied to stabilize the system with the given decay
rate specification. When no decay rate is specified (α =
1), the following gains are obtained:

P1 =

[
203.9358 −12.0539
−12.0539 6.9228

]
,

P2 =

[
176.6025 −15.0991
−15.0991 1.8509

]
,

F1 = [−7.2354 1.2357],

F2 = [−10.7477 − 0.7677].

Figures 1 and 2 show the evolution of the states x1 and
x2, respectively, from the initial condition [0 − 3]T with
the previous decay rate specification (the solid line) and
with no prescribed decay rate (the dashed line). The speed
of the response can be increased by a decay rate specifi-
cation at the expense of higher gains in the control law as
well as higher transient responses.
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Fig. 1. Decay rate design: state x1.
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Fig. 2. Decay rate design: state x2.

Constraints on the input: Consider again the system (21)
and the condition ‖u(t)‖ ≤ 0.15, ∀t ≥ 0. With μ =
0.15, the LMIs (10)–(12) and (14)–(15) were found feasi-
ble under the definition (9). The non-PDC control law (3)
with the gains

P1 =

[
7.9452 −1.3043
−1.3043 0.2538

]
,

P2 =

[
4.8357 −0.5722
−0.5722 0.0777

]
,

F1 = [−0.4144 0.0731],

F2 = [−0.0408 − 0.0101]

can be employed to stabilize the system and meet the re-
quired control input constraint. Figure 3 shows the control
input signal (the dashed line) when no constraints on it are
considered, whilst the solid line represents the control in-
put signal under the underlying constraint.
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Fig. 3. Constraints on the input.

Constraints on the output: As for the system (21) subject
to the condition ‖y(t)‖ ≤ 0.14, ∀t ≥ 0, the LMIs (10)–
(12) and (14)–(16) are feasible under the definition (9),
where λ = 0.14. The non-PDC control law (3) with the
gains

P1 =

[
21.9561 0.0307
0.0307 0.0195

]
,

P2 =

[
4.5025 −0.2065
−0.2065 0.0195

]
,

F1 = [−0.5411 0.0018],

F2 = [−0.7417 − 0.0052]

stabilizes the system under consideration and meets the
underlying output constraint. Figure 4 shows the output
signal (the dashed line) when no constraint on it was ap-
plied, whilst the solid line is the output signal under the
output constraint scheme.

Combining constraints on the input and output: As was
mentioned before, combinations of the previous designs
are possible up to the feasibility of the LMIs. When
the system (21) is considered, subject to the conditions
‖y(t)‖ ≤ 0.4, ‖u(t)‖ ≤ 0.16, ∀t ≥ 0, then with
μ = 0.15 and λ = 0.14 the LMIs (10)–(12) and (14)–
(16) were found feasible under the definition (9). The
non-PDC control law (3) with the gains

P1 =

[
5.4941 −0.8212
−0.8212 0.1658

]
,

P2 =

[
4.6619 −0.5324
−0.5324 0.0708

]
,
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Fig. 4. Constraints on the output.

F1 = [−0.2895 0.0494],

F2 = [−0.0709 − 0.0076]

stabilizes the system under consideration and meets the
underlying constraints. Figure 5 shows the output signal
(the dashed line) when no constraint on it was applied,
whilst the solid line is the output signal under the output
and input constraint scheme. Figure 6 shows the input sig-
nal (the dashed line) when no constraint on it was applied
and with the output signal under the output and input con-
straint scheme (the solid line).

Disturbance rejection: Consider the following modified
version of the system (21):

R1 : If x1 is F 1
1 (x1(t)) then

x(t + 1) =

[
−0.5 2
−0.1 0.5

]
x(t) +

[
4.1
4.8

]
u(t)

+

[
0
1

]
v(t),

y(t) = [ 0 1 ]x(t),

R2 : If x1 is F 2
1 (x1(t)) then

x(t + 1) =

[
−0.9 0.5
−0.1 −1.7

]
x(t) +

[
3

0.1

]
u(t)

+

[
0
1

]
v(t),

y(t) = [ 0 1 ]x(t), (22)

where v(t) is a random disturbance with uniform distri-
bution in the interval [−0.01, 0.01].
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Fig. 5. Combining constraints on the input and output.
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Fig. 6. Combining constraints on the input and output.

Applying Theorem 4 to the system (22) with γ =
2.5, a feasible solution to the LMIs (10)–(12) and (18)
under the definition (19) was found, providing the control
law (3) with the following gains:

P1 =

[
379.6033 2.2591
2.2591 0.6821

]
,

P2 =

[
93.5625 −4.3447
−4.3447 0.3697

]
,

F1 = [−9.0012 0.0251],

F2 = [−14.2197 − 0.0923].

In Figures 7 and 8, the evolution of the states under dis-
turbance rejection is shown with solid lines, while the
states under a simpler stabilizing controller are marked
with dashed lines.
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Fig. 7. Disturbance rejection: state x1.
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Fig. 8. Disturbance rejection: state x2.

5. Conclusion

The paper develops some extensions for a non-quadratic
fuzzy design, which permit us to specify the decay rate,
meet constraints on the input and output and reject dis-
turbances. The design employed uses a non-quadratic
Lyapunov function with a non-PDC control law, which is
proved to reduce conservativeness. Simulation examples
are provided to illustrate the design procedure and perfor-
mance.
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