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The classical Cayley-Hamilton theorem is extended to continuous-time linear systems with delays. The matrices
��� ��� � � � � �� � �

��� of the system with � delays �� ��� � ��� ����
�

�

���
��� ��� ��� ��� ��� satisfy 	��� alge-

braic matrix equations with coefficients of the characteristic polynomial 
 ����� � ���
�
����� ���� � � � � ����

�
�
,

� � ����.
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1. Introduction

The classical Cayley-Hamilton theorem (Gantmacher,
1974; Lancaster, 1969) says that every square matrix satis-
fies its own characteristic equation. The Cayley-Hamilton
theorem was extended to rectangular matrices (Kaczorek,
1995c), block matrices (Kaczorek, 1995b; Victoria, 1982),
pairs of commuting matrices (Chang and Chan, 1992;
Lewis, 1982; 1986; Mertizios and Christodoulous, 1986),
pairs of block matrices (Kaczorek, 1998), and standard
and singular two-dimensional linear (2-D) systems (Kac-
zorek, 1992/93, 1994; 1995a; Smart and Barnett, 1989;
Theodoru, 1989).

The Cayley-Hamilton theorem and its generaliza-
tions have been used in control systems, electrical circuits,
systems with delays, singular systems, 2-D linear systems,
etc., (Gałkowski, 1996; Kaczorek, 1992/93; 1995c; Lan-
caster, 1969).

In (Kaczorek, 2005), the Cayley-Hamilton theorem
was been extended to n-dimensional (n-D) real polyno-
mial matrices. An extension of the Cayley-Hamilton the-
orem to discrete-time linear systems with delay was given
in (Busłowicz and Kaczorek, 2004).

In this note the classical Cayley-Hamilton theorem is
extended to continuous-time linear systems with delays. It
will be shown that matrices of the �-th order system with
� delays satisfy ���� �� algebraic equations.

2. Main Result

Let ���� be the set of � � � real matrices and �� ��
�
��� . Consider the continuous-time linear system with �

delays described by the equation
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 (1)

where � ��� � �
� , 	 ��� � �

� are respectively the
state and input vectors, �� � �

��� , � � �
 �
 � � � 
 �,
� � �

��� 
 and � is the delay.

The characteristic polynomial of (1) has the form
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The coefficients ��� , � � �
 �
 � � � 
 � � � and
� � �
 �
 � � � 
 ��, depend on the entries of matrices
��
 ��
 � � � 
 ��.
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where
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 � � �

and

� ��� � �� ���� � � � �����
�� (5)

Using the well-known relation ���� � ��� �	
 �
between the adjoint matrix ���� , the inverse matrix
��� and its determinant �	
� , taken in conjuction
with (2) and (4), we can write
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Note the adjoint matrix ���� ��� is a polynomial
matrix in non-negative powers of . Thus equating the
coefficients at the same powers of �� of (6) yields
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From (7) for � � � we have (cf. the Cayley-Hamilton
theorem):
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with coefficients �� depending on �.

From (5) we have
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The substitution of (9) and (3) into (8) yields
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From (10) we have the following ��� � equations:
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Therefore, the following theorem has been proved:

Theorem 1. Matrices �� � �
��� , � � �
 �
 � � � 
 � of the

continuous-time linear system with � delays (1) satisfy the
��� � algebraic matrix equations (11).

Note that the first equation of (11) expresses the
Cayley-Hamilton theorem for the system (1) without de-
lay (� � �).

Example 1. Consider the system with

�� �

�
� �

� �

�

 �� �

�
� �

� �

�



�� �

�
� �

� �

�
�

(12)



Extension of the Cayley-Hamilton theorem to continuous-time linear systems with delays 233

In this case the characteristic polynomial (2) has the form
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Taking into account the fact that � � � � �, from
(11) we obtain the following equations:
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3. Concluding Remarks

The classical Cayley-Hamilton theorem was extended to
continuous-time linear systems with delays. It was shown
that the matrices �� � �

��� , � � �
 �
 � � � 
 � of
the system (1) satisfy the �� � � algebraic equations
(11) with coefficients ��� , � � �
 �
 � � � 
 � � � and
� � �
 �
 � � � 
 ��, of the characteristic polynomial (2).
The proposed extension can be generalized to rectangular
matrices and block matrices (Kaczorek, 1995b; Kaczorek,
1995c; Victoria, 1982). An open problem is the extension
of the theorem to singular continuous-time linear systems
with delays.
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