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The article is the first part of a series concerned with the modelling of reactive powder 

concrete by using a numerical homogenization technique. This technique is a multi-scale 

modelling approach. Specifically, in this paper a two scale modelling concept was applied. 

A model of reactive powder concrete (RPC) is considered whose behaviour on the macro 

scale is described on the basis of the phenomena occurring in the microstructure of the 

material. This approach provides the ability to take into account some complex phenomena 

occurring in the microstructure and their influence on the macroscopic physical and 

mechanical properties of the material. The method does not require  knowledge of the 

constitutive equation parameters at the macro level. These are determined implicitly for 

each load increment on the basis of numerical model of a representative volume element 

(RVE), which reflects the geometrical layout of particular material phases, their 

constitutive relations and mutual interactions. In this paper the linearly elastic behaviour 

of each constituent material is assumed within the small strain range. In solving the 

boundary value problems formulated on the RVE for RPC, the finite element method was 

utilized. A number of numerical test examples were solved which illustrate the influence 

of inhomogeneities on the overall response. 

Keywords: multiscale modelling, RPC, micro-scale, macro-scale, RVE, 

computational homogenization, FEM  

1. INTRODUCTION 

Reactive powder concrete (RPC) is currently one of the most modern building 

materials created on the basis of cement [2]. RPC is included in the class of 
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ultrahigh value concretes with the resistance to compression compared to steel.  

They are also classified as composites with cement matrix of ultrahigh resistance 

properties, and are often called the low-temperature ceramics. Thanks to the high 

resistance and ductility of RPC concrete, we can significantly reduce the weight 

and cross-sectional dimensions of structures built from it, while simultaneously 

the designer is given a larger freedom in providing the structure with the fine  

architectural expression and in overcoming significant spans. By virtue of the 

good physical and mechanical properties of reactive powder concrete, it finds a 

wide interest not only as the construction material, but also as the cladding 

material for houses and other buildings, and even as a material for furniture 

making (Fig.1).  

 
Fig. 1. Examples of applications of reactive powder concrete [9]: a) elevation of the Bus 

Centre in Thiais  France, b) roofing at the railway station in Calgary, c) a table 

As an effective compuatational tool for determing and testing the material 

properties of RPC concrete and for the needs of the static-strength analysis of 

building and engineering constructions made of RPC, we have developed a two-

scale model of reactive powder concrete.  The modelling approach used is based 

upon the concept of representative volume element (RVE) and numerical 

homogenization and leads to a complex computational procedure, so we decided 
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to divide its presentation into two parts. In this first part, we shall discuss the 

fundamental features of the microstructure of reactive powder concrete (Sect. 3) 

and shall present the algorithm of numerical homogenization in the context of 

solving the boundary value problem formulated for the RVE of RPC. Here all the 

constituents of RVE are assumed to behave linearly elastic.   

In Section 2 we skatch out the idea of computational homogenization. In 

Sections 3 and 4 the characteristic properties of the RPC microstructure and the 

corresponding RVE are outlined. The FEM approximation and the BVP posed on 

the RVE are defined in Sections 5 and 6, and numerical results in Section 7.   

2. COMPUTATIONAL HOMOGENIZATION 

The concept of computational homogenization is diagrammatically illustrated in 

Fig. 2. In the method of two-scale numerical homogenization, one determines the 

response of a material at the macro-scale through an analysis of the material’s 

micro-structure. On the micro-scale level the distributions of micro-stresses and 

micro-strains are calculated, which via homogenization provide information on 

the distributions of overaged macroscopic quantities. The whole micro-analysis is 

carried out on the so-called representative volume element. This is the volume 

assigned to a material point that is representative for a small surrounding of the 

point. When the characteristic microscopic length is one order smaller than the 

characteristic macroscopic length, we can take into consideration only effects of 

the first order. In case of the RPC concrete, this condition is fulfilled. We can 

assume that the characteristic dimension in micro-scale is that of the fraction of 

ground quartz of 0.2 mm. While in the macro-scale it is the dimension of the cross-

section of the construction element, e.g. 0.2 x 0.2 m. The numerical 

homogenization procedure is multistage and computationally complicated [3,4].  

  
Fig. 2. Idea of two-scale numerical homogenization 
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3. MICROSTRUCTURE OF REACTIVE POWDER CONCRETE 

Reactive powder concrete is invented with the aim of eliminating the faults of the 

traditional concrete, which is especially achieved by minimizing its porosity to the 

level of about 4%, by: 

 using aggregates with granulation enabling the maximal packaging of 

components, 

 potentially maximal reduction of the water-cement index, with simultaneous 

application of super-plasticizers, 

 applying treatments of pressing in the initial period of the adhesive bonding 

process. 

The improvement of physical and mechanical properties is also obtained by 

modifying the microstructure of the adhesive matrix by using the proper heat 

treatment and thanks to using fillers of very small grains, e.g., ground quartz and 

silica dust. Contrary to the traditional concrete, where the aggregate is the 

reinforcing element but usually a chemically passive component, the micro-

aggregate in RPC concrete, which are usually quartz powders, exhibits the 

pozzolanic activity. Two characteristic features of the RPC microstructure should 

be mentioned [6]: 

 very compact microstructure of the C-S-H phase 

 very good adhesion of the C-S-H phase to mineral inclusions in the form of 

powder grains and quartz sand and fibers 

 
Fig. 3. Microstructure of reavtive powder concrete zoom 200x [6] 
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4. REPRESENTATIVE VOLUME ELEMENT 

In order to model the microstructure of RPC concrete with the composition as in 

Table 1, in the first approximation step a two-dimensional representative volume 

element (RVE) was assumed. RVE is modelled with the help of the finite element 

method. In the calculations we have divided a square RVE into 2500 finite 

elements, each with the size of 0.2 x 0.2 mm, i.e. each side of RVE of the length 

of 10 mm is split into 50 equal finite intervals. A representative composition of 

reactive powder concrete is listed in Tab. 1.   

 
 

Fig. 4. Representative Volume Element (2D): cement matrix (red colour), sand of grain 

size to 0.6 mm (cyan colour), crushed quartz of grain size to 0.2 mm (blue colour),  

pores (yellow green colour)  

Table 1. Representative composition of RPC concrete  

Component Volume [kg/m3] Mass percentage [%] 

Cement 705 28,20  

Silica fume 230 9,20 

Crushed quartz 210 8,40 

Sand 1013 40,52 

Superplasticizer 17 0,68 

Steel fibers 140 5,60 

Water 185 7,40 
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Because of the random character of the arrangement of concrete’s components, a 

stochastic approach to generating the RVE structure was applied (Fig. 4). Building 

the structure consists of the random selection of an element (from the 50x50 grid) 

and then also of the random assignment of a component (pores, crushed quartz, 

sand, cement matrix) to the selected position. The basic size of the RVE 

component was assumed to be equal of 0.2 mm. In case of drawing the sand 

component, the process of arranging elements of the grid takes place according to 

the scheme shown in Fig. 5, which takes into account the maximal size of the grain 

of 0.6 mm. The extreme locations correspond to the smaller grains of the same 

component. 

 
Fig. 5. Principle of generating a RVE structure  

For generating the total pseudo-random integer number 1n  from the 

intervals of <1,4> (number of component) and of <1,50> (position of component) 

there was applied a generator 

))1((int 11   nn Xxyx
 

(4.1) 

where x is the left endpoint of the range of drawing and y is the right endpoint of 

the range of drawing, and  
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It is the affine generator of pseudo-random numbers from the range of <0,1>. The 

whole procedure of building the structure of the represented volume element is 

performed by a computer programme written in the FORTRAN 90 language in 

which the libraries [7,8] were used. 

5. FINITE ELEMENT METHOD IN COMPUTATIONAL 

HOMOGENIZATION 

For solving the boundary value problems at the macro and micro scales, the 

classical displacement version of the finite element method was applied. The 2D 

domain under consideration   was discretized by means of the four node finite 

element Q4 with two degrees of freedom at each node. The horizontal ),( uu   

and vertical ),( vv   components of displacement field u  are approximated 

with the bilinear shape functions 
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Fig. 6. Bilinear shape functions 
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The relation between the components of deformation within a finite element and 

its nodal displacements is described by the formula  

BqNqε 
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in which  is the matrix operator of partial derivatives, B is the matrix of 

deformation compatibility consisting of the derivatives of shape functions Ni, and 

 44332211 ,,,,,,, vuvuvuvuT q  is a vector of nodal displacements of the finite 

element. The displacement field within an element e  is expressed as   

Nqu 

 

(5.3) 

wherein 











4321

4321

0000

0000

NNNN

NNNN
N  (5.4) 

In modelling the components of microstructure, the linear elastic model of 

isotropic material was applied. For the isotropic elastic material being in the plain  

state of stress, the element stiffness matrix is defined by the formula 
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(5.6) 

and i = 1,2,3 is the number of the particular component of microstructure assigned 

to the finite element e .  

The element stiffness matrix ED  of the material on the macro scale is 

calculated by Eq. (5.5), in which a matrix D  is used instead of iD . The elasticity 

matrix D  of the homogenized material on the macro scale are determined by 

solving the boundary value problem on the micro scale for imposed components 
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of macro strain ε . A finite element formulation of the boundary value problem 

on the micro scale is considered next.  

6. BOUNDARY VALUE PROBLEM 

The boundary value problem of mechanics for the specified RVE after the FEM 

discretization is solved by the minimization of the elastic strain energy function 

with additional constraints 

0gCufuKuuuu  ..
2

1
)(min TT ts  (6.1) 

The minimization problem (6.1) can be solved by using the Lagrange multiplier 

method. However, due to a large computational complexity of the numerical 

homogenization method the approach based on Lagrange multipliers is too time 

consuming. Hence we follow an alternative approach [1, 3] that brings down to 

the solution of the equations: 
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In Eqns. (6.3) and (6.4) the symbol A
e

 means the finite element aggregation of 

matrices. To enforce deformations of RVE in accordance with the macro-

deformations  ε  there were applied the displacement boundary conditions of the 

first type 

e

u

e

u

e

u gεDuC   (6.7) 

where 




 dT

u

e

u NNHC  (6.8) 



50 Arkadiusz Denisiewicz, Mieczysław Kuczma 

 
 




 dT

u

e

u XNHD  (6.9) 

The matrices 
e

u

e

u DC , and others involved in Eqns. (6.8) and (6.9) are given in 

explicit form in the Appendix. The master finite element )1,1()1,1( e   

together with definition of its boundary   used in analysis is presented in Fig. 7, 

whereas the way of integrating along the boundary in Eqn. (6.10). 

 

 

Fig. 7. Master finite element Q4  
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7. NUMERICAL EXAMPLES 

In this section we present the results of numerical tests we obtained as the solution 

of the boundary value problem on micro-scale for the RVE shown in Fig. 14. 

However, let us begin with tests checking the response of homogeneous isotropic 

material to some imposed macro-strains. The forms of deformation (lighter line) 

of one homogeneous element due to the enforced macro-deformations ε , with 
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values given therein, are displayed in Fig. 8. Test results for a homogenous 

isotropic material and 5x5 finite element mesh are shown in Figs. 9 – 12 

(deformed grids in darker line). As can be seen the obtained results confirm the 

expected deformation modes of RVE. Figure 13 shows the distribution of micro-

stresses induced by sheering  100T ε  for three microstructures of two-

component material with isotropic components of parameters E1=20 GPa, ν1=0.4, 

E2=200 GPa, ν2=0.4, and the 10x10 grid RVE.  

 

 

Fig. 8. Deformation tests on single-element homogeneous cell 
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Fig. 9. Tensile test for a homogenous material, deformed finite element mesh in dark line  

Finally, Fig. 14 shows the distribution of stresses in a randomly generated 

microstructure of RPC composed of cement matrix (47.08%), crushed quartz 

(8.4%), sand (40.52%) and pores (4%).  The used values of material parameters: 

cement matrix E=30 GPa, ν=0.16, crushed quartz and sand  E=75 GPa, ν=0.3. 

The RVE was divided into 50x50 finite elements. The macro-strain imposed on 

the boundary of RVE was }0,2.0,1{ε .     
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Fig. 10. Compressive test for a homogenous material, deformed finite element mesh in 

dark line  
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Fig. 11. Hydrostatic pressure test for a homogenous material, deformed finite element 

mesh in dark line 
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Fig. 12. Shear test for a homogenous material 
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 Fig. 13. Shear test for a heterogeneous material 
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Fig. 14. Microstructure of the RVE, a) micro-stress distribution and  

b) smoothed micro-stress distribution induced by macro-strain }0,2.0,1{ε  
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8. CLOSING REMARK  

A two-scale numerical approach to the modelling of reactive powder concrete 

(RPC) was presented, in which the layout of microstructure (2D case) is generated 

randomly for a given composition of RPC. The boundary value problem on 

representative volume element (RVE) was solved for the case of imposed (given) 

macro-strains on the boundary of RVE. A computer program was developed and 

herein results of some numerical tests are included. In the next part of the work, 

results of a fully two-scale analysis will be presented as well as results of our own 

laboratory tests curried out on cubes and beams made of RPC. 
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DWUSKALOWY MODEL BETONU Z PROSZKÓW REAKTYWNYCH.  

CZĘŚĆ I: REPREZENTATYWNY ELEMENT OBJĘTOŚCIOWY (RVE)  

I ROZWIĄZANIE ZAGADNIENIA BRZEGOWEGO NA RVE 

S t r e s z c z e n i e  

Artykuł jest pierwszą częścią pracy dotyczącej modelowaniu betonów z proszków 

reaktywnych przy zastosowaniu numerycznej homogenizacji. Technika ta jest podejściem 

wielkoskalowego modelowania. W tym konkretnym przypadku modelowania 

dwuskalowego. Zachowanie modelu betonu typu RPC w skali makro (skala punktu 

materialnego, poziom opisu fenomenologicznego) opisywane jest na podstawie zjawisk 

zachodzących w mikrostrukturze materiału (mikroskala). Takie podejście daje możliwość 

uwzględnienia szeregu zjawisk zachodzących w mikrostrukturze na właściwości fizyczne 

i mechaniczne materiału. Na przykład wpływ mikropęknięć na wytrzymałość betonu. Nie 

bez znaczenia jest fakt, że metoda nie wymaga znajomości równań konstytutywnych w 

skali makro, związki te są wyznaczane w sposób niejawny dla każdego przyrostu 

obciążenia na podstawie numerycznego modelu reprezentatywnego elementu 

objętościowego RVE. Do wyznaczenia niejawnych związków fizycznych w makroskali 

niezbędna jest znajomość geometrii mikrostruktury, równań konstytutywnych na 

poziomie skali mikro oraz ich parametrów. W tej pierwszej części pracy ograniczono się 

do sformułowania i rozwiązania zagadnienia brzegowego na poziomie mikroskali dla 

zadanych makronaprężeń na brzegu RVE. Opracowano własny program komputerowy, 

który generuje w sposób losowy mikrostrukturę RPC i rozwiązuje problem brzegowy 

zdyskretyzowany metodą elementów skończonych. Praca zawiera wyniki obliczeń zadań 

testowych.   

APPENDIX 
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1

24
((𝑥1 + 𝑥4)(𝑦2 − 𝑦3) + 𝑥3(𝑦1 − 2𝑦2 + 𝑦4) − 𝑥2(𝑦1 − 2𝑦3 + 𝑦4)) 

𝐶6 =
1

24
(𝑥4(𝑦1 + 6𝑦2 − 7𝑦3) + (𝑥1 − 7𝑥3)(𝑦2 − 𝑦4) − 𝑥2(𝑦1 − 7𝑦3 + 6𝑦4)) 

𝐶7 =
1

24
(𝑥4(𝑦1 + 𝑦2 − 2𝑦3) + (𝑥1 + 𝑥2)(𝑦3 − 𝑦4) − 𝑥3(𝑦1 + 𝑦2 − 2𝑦4)) 

𝐶8 =
1

24
(7𝑥4𝑦1 + 𝑥1𝑦2 + 6𝑥1𝑦3 − 7𝑥4𝑦3 + 𝑥2(𝑦3 − 𝑦1) − 7𝑥1𝑦4 − 𝑥3(6𝑦1 + 𝑦2

− 7𝑦4)) 
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𝐷1 =
1

12
(−4𝑥4𝑦1 − 3𝑥1𝑦2 + 3𝑥4𝑦2 − 𝑥1𝑦3 + 𝑥4𝑦3 + 3𝑥2(𝑦1 − 𝑦4) + 𝑥3(𝑦1 − 𝑦4)

+ 4𝑥1𝑦4) 

𝐷2 =
1

12
((3𝑥1 + 𝑥4)(𝑦2 − 𝑦3) + 𝑥3(3𝑦1 − 4𝑦2 + 𝑦4) − 𝑥2(3𝑦1 − 4𝑦3 + 𝑦4)) 

𝐷3 =
1

12
((𝑥1 + 3𝑥4)(𝑦2 − 𝑦3) + 𝑥3(𝑦1 − 4𝑦2 + 3𝑦4) − 𝑥2(𝑦1 − 4𝑦3 + 3𝑦4)) 

𝐷4 =
1

12
(−4𝑥4𝑦1 − 𝑥1𝑦2 + 𝑥4𝑦2 − 3𝑥1𝑦3 + 3𝑥4𝑦3 + 𝑥2(𝑦1 − 𝑦4) + 3𝑥3(𝑦1 − 𝑦4)

+ 4𝑥1𝑦4) 

𝐷5 =
1

12
(−3𝑥4𝑦1 − 4𝑥1𝑦2 + 3𝑥4𝑦2 + 𝑥3(𝑦2 − 𝑦1) + 𝑥1𝑦3 + 3𝑥1𝑦4

+ 𝑥2(4𝑦1 − 𝑦3 − 3𝑦4)) 

𝐷6 =
1

12
(−𝑥4𝑦1 − 3𝑥3(𝑦1 − 𝑦2) − 4𝑥1𝑦2 + 𝑥4𝑦2 + 3𝑥1𝑦3 + 𝑥2(4𝑦1 − 3𝑦3 − 𝑦4)

+ 𝑥1𝑦4) 

𝐷7 =
1

12
(𝑥4(𝑦1 + 3𝑦2 − 4𝑦3) + (𝑥1 + 3𝑥2)(𝑦3 − 𝑦4) − 𝑥3(𝑦1 + 3𝑦2 − 4𝑦4)) 

𝐷8 =
1

12
(𝑥4(3𝑦1 + 𝑦2 − 4𝑦3) + (3𝑥1 + 𝑥2)(𝑦3 − 𝑦4) − 𝑥3(3𝑦1 + 𝑦2 − 4𝑦4)) 



 




