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Thin linear-elastic cylindrical shells having a micro-periodic structure along two 
directions tangent to the shell midsurface (biperiodic shells) are objects of 
considerations. The aim of this contribution is to formulate a new mathematical non-
asymptotic model for the analysis of dynamic problems for such shells. The model is 
derived by applying the combined modelling procedure presented in [11]. The combined 
modelling includes both the asymptotic as well as the non-asymptotic (tolerance) 
modelling techniques. The resulting combined model has constant coefficients and takes 
into account the length-scale effect. An important advantage of the proposed model is 
that it makes it possible to separate the macroscopic description of special dynamic 
problems from their microscopic description. Application of the resulting model 
equations to the analysis of a certain micro-vibration problem is presented. 

Keywords: biperiodic cylindrical shells, dynamics, mathematical modelling, 
averaging of integral functionals, length-scale effect. 

1. INTRODUCTION 

Thin linear-elastic Kirchhoff-Love-type cylindrical shells with a periodically 
inhomogeneous structure along two directions tangent to the shell midsurface 
are analysed. By periodic inhomogeneity we shall mean periodically variable 
shell thickness and/or periodically variable inertial and elastic properties of the 
shell material. Shells of this kind are termed biperiodic. As an example we can 
mention cylindrical shells with periodically spaced families of thin stiffeners as 
shown in Fig. 1. The period of inhomogeneity is assumed to be very large 
compared with the maximum shell thickness and very small as compared to the 
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midsurface curvature radius as well as the smallest characteristic length 
dimension of the shell midsurface. 

Because properties of such shells are described by highly oscillating and 
non-continuous periodic functions, the exact equations of the shell theory are 
too complicated to apply to investigations of engineering problems. That is why 
a lot of different approximate modelling methods for shells of this kind have 
been proposed. Periodic cylindrical shells (plates) are usually described using 
homogenized models derived by means of asymptotic methods, cf. [3, 5, 10]. 
Unfortunately, in models of this kind the effect of a cell size (called the length-
scale effect) on the overall shell behaviour is neglected. 

The periodically densely stiffened shells are also modelled as 
homogeneous orthotropic structures, cf. [2, 6]. The orthotropic model equations 
with coefficients independent of the period length cannot be used to the analysis 
of phenomena related to the existence of microstructure length-scale effect (e.g. 
the dispersion of waves, the occurrence of additional higher-order free vibration 
frequencies and higher-order critical forces). 

In order to analyse the length-scale effect in dynamic or/and stability 
problems, the new averaged non-asymptotic models of thin cylindrical shells 
with a periodic micro-heterogeneity either along two directions tangent to the 
shell midsurface (biperiodic structure) or along one direction (uniperiodic 
structure) have been proposed by Tomczyk in a series of papers, e.g. [14, 15, 
16, 17, 18, 19, 22, 25], and also in the books [20, 21, 23, 24]. These, so called, 
the tolerance models have been obtained by applying the non-asymptotic 
tolerance modelling technique, proposed and discussed in the monographs [1, 
11, 26, 28], to the known governing equations of Kirchhoff-Love theory of thin 
elastic shells (partial differential equations with functional highly oscillating 
non-continuous periodic coefficients). Contrary to starting equations, governing 
equations of the tolerance models have coefficients which are constant or 
slowly-varying and depend on the period length of inhomogeneity. Hence, these 
models make it possible to investigate the effect of a cell size on the global shell 
dynamics and stability. This effect is described by means of certain extra 
unknowns called fluctuation amplitudes and by known fluctuation shape 
functions which represent oscillations inside the periodicity cell. Moreover, it 
was shown that the tolerance models of uniperiodically and densely stiffened 
shells describe selected problems of the micro-dynamics of such shells, cf. [22, 
23, 24]. It means that contrary to equations derived by using the asymptotic 
homogenised methods, the tolerance model equations make it possible to 
investigate the micro-dynamics of periodic shells independently of their macro-
dynamics. In the papers and books, mentioned above, the applications of the 
proposed models to analysis of special problems dealing with dynamics as well 
as stationary and dynamical stability of periodically densely stiffened 
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cylindrical shells have been presented. It was shown that the length-scale effect 
plays an important role in these problems and cannot be neglected. 

It has to be emphasized that the non-asymptotic tolerance models of shells 
with uni- and biperiodic structure have to be led out independently, because they 
are based on different modelling assumptions. The governing equations for 
uniperiodic shells are more complicated. It means that contrary to the 
asymptotic approach, the uniperiodic shell is not a special case of biperiodic 
shell. 

The application of the tolerance averaging technique to the investigations 
of selected dynamic problems for periodic plates can be found in many papers, 
e.g. in [4] and [7, 8], where dynamics of Hencky-Bolle-type plates and of 
Kirchhoff-type plates is analysed, respectively, in [12] and [13], where 
dynamics of wavy-type plates and of densely stiffened Kirchhoff-type plates is 
investigated, respectively. For review of application of the tolerance approach to 
the modelling of different periodic and also non-periodic structures the reader is 
referred to [1, 11, 26, 28]. 

The main aim of this contribution is to formulate a new mathematical 
non-asymptotic model for the analysis of special dynamic problems for 
biperiodic shells under consideration. The model is derived by applying the 
combined modelling procedure, presented in [11], to the known Euler-Lagrange 
equations which explicit form coincides with the governing equations of the 
simplified Kirchhoff-Love shell theory. The combined modelling technique is 
realized in two steps. In the first step the macroscopic model equations, being 
independent of the microstructure size, are derived by means of the consistent 
asymptotic procedure. Assuming that in the framework of the macroscopic 
model the solution to the problem under consideration is known, we can pass to 
the second step, which is based on the tolerance (non-asymptotic) modelling. 
The Euler-Lagrange equations derived in the second step depend on the cell size 
and hence, they are referred to as the superimposed microscopic model 
equations. Coefficients of the resulting equations are constant. The main 
advantage of the combined model is that it makes it possible to separate the 
macroscopic description of some special problems from their microscopic 
description. 

The second aim of this contribution is to apply the obtained model to 
determine the new additional higher order free micro-vibration frequencies, 
occurring in periodic shells and depending on the cell length dimensions, 
independently of the lower (classical) free macro-vibration frequencies being 
independent of the period lengths. 

Note, that the combined model for analysis of dynamic and/or stability 
problems for uniperiodic cylindrical shells has been proposed and discussed in 
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[24]. However, this model cannot be used to analysis of dynamic problems of 
biperiodic shells, being object of considerations in this paper. 

It should be mentioned that the periodic cylindrical shells investigated 
here are widely applied in civil engineering, most often as roof girders and 
bridge girders. They are also widely used as housings of reactors and tanks. 
Periodic shells having small length dimensions are elements of air-planes, ships 
and machines. 

In the subsequent section the basic denotations, preliminary concepts and 
starting equations will be presented. 

2. FORMULATION OF THE PROBLEM 

In this paper we investigate linear-elastic thin circular cylindrical shells. The 
shells are reinforced by families of ribs, which are periodically and densely 
distributed in circumferential and axial directions. Shells of this kind are termed 
biperiodic. Example of such shell is shown in Fig. 1. 

In order to describe the shell geometry define ),(),( 21 00 LL ×=Ω  as a set 

of points ),( 21 xx≡x  in 2R ; 21 xx ,  being the Cartesian orthogonal coordinates 

parametrizing region 2R⊂Ω .  Let 321 xxxO  stand for a Cartesian orthogonal 

coordinate system in the physical space 3E . Points of 3E  will be denoted by 

),,( 321 xxx≡x . A cylindrical shell midsurface M is given by its parametric 

representation ( ) ( ){ }Ω∈=∈≡ 21213 xxxxEM ,,,: rxx , where )(⋅r  is the 

smooth function such that 021 =∂∂⋅∂∂ xx /r/r , 111 =∂∂⋅∂∂ xx /r/r , 

122 =∂∂⋅∂∂ xx /r/r . It means that on M we have introduced the orthonormal 

parametrization and hence 21 LL ,  are length dimensions of M. It is assumed that 
1x  and 2x  are coordinates parametrizing the shell midsurface along the lines of 

its principal curvature and along its generatrix, respectively, cf. Fig. 1. 
Subsequently, sub- and superscripts ,,βα … run over sequence 1, 2 and 

are related to midsurface parameters 21 xx , ; summation convention holds. The 

partial differentiation related to αx  is represented by α∂ . Moreover, it is 

denoted δαδα ∂∂≡∂ ...... . Differentiation with respect to time coordinate 

],[ 10 ttt ∈  is represented by the overdot. Denote by αβa  and αβa  the covariant 

and contravariant midsurface first metric tensors; respectively. For the 

introduced parametrization αβαβ
αβ δ== aa  are the unit tensors. 

Let )(xd  and r  stand for the shell thickness and the constant midsurface 
curvature radius, respectively. 



ON THE MODELLING OF DYNAMIC PROBLEMS FOR BIPERIODICALLY… 183 

 
 

Denote by αβb  the covariant midsurface second metric tensor. For the 

introduced parametrization 0211222 === bbb  and 1
11

−−= rb . 

Let 1λ  and 2λ  be the period lengths of the stiffened shell structure 

respectively in 1x - and 2x -directions, cf. Fig. 1. Define the basic cell ∆  and 

the cell distribution ),( ∆Ω  assigned to 2
21 00 RLL ⊂×=Ω ),(),(  by means of: 

]/,/[]/,/[ 2222 2211 λλ−×λλ−≡∆ , 

}),(,),(),({),( Ω∈∆+≡∆≡∆Ω 212121 xxxxxx , 

where point ),( 21 xx  is a centre of a cell ),( 21 xx∆  and Ω  is a closure of Ω . 

The diameter 2
2

2
1 )()( λ+λ≡λ  of ∆  is assumed to satisfy conditions: 

,/ max 1>>λ d  1<<λ r/  and 121 <<λ ),min(/ LL . Hence, the diameter will be 

called the microstructure length parameter. In every cell )(x∆  we introduce 

local coordinates 21 zz ,  along the 1x - and 2x -directions, respectively, with the 
0-point at the centre of the cell. It means that the cell ∆  has two symmetry axes: 

for 01 =z  and 02 =z . Hence, inside the cell, the geometrical, elastic and 
inertial properties of the stiffened shell are described by symmetric (i.e. even) 

functions of ]/,/[]/,/[),( 2222 2211
21 λλ−×λλ−∈≡ zzz . 
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Fig. 1. A fragment of periodically stiffened cylindrical shell 
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A function )(xf  defined on Ω  will be called ∆ -periodic if for arbitrary 

points ),(),,(),,(),,( 2
2

1
1

2
212

1
121 λ±λ±λ±λ± xxxxxxxx  it satisfies 

condition: 

),(),(),(),( 2
2

1
1

2
212

1
121 λ±λ±=λ±=λ±= xxfxxfxxfxxf  in the whole 

domain of its definition and it is not constant. 
Denote by ),( tuu xαα = , ),( tww x= , Ω∈x , ),( 10 ttt ∈ , the midsurface 

shell displacements in directions tangent and normal to M , respectively. Elastic 

properties of the shell are described by shell stiffness tensors )(xαβγδD , 

)(xαβγδB . Let )(xµ  stand for a shell mass density per midsurface unit area. In 

the problem considered here the external forces will be neglected. 

Functions )(xµ , )(xαβγδD , )(xαβγδB  and )(xd , Ω∈x , are assumed to 

be ∆-periodic with respect to arguments 21 xx , . 
It is assumed that the behaviour of the stiffened shell under consideration 

is described by the action functional 

 ,),,,,,(),( ∫ ∫ ∫ αβααβα ∂∂=
1

0

2

0

1

0

12
L L t

t

dxdtdxwwwuuLwuA &&x  (2.1) 

where lagrangian ),,,,,( wwwuuL && αβααβ ∂∂x  is highly oscillating function with 

respect to x  and has the well-known form, cf. [2, 27] 
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Obviously, in the above formula it has been taken into account that 1
11

−−= rb . 

Moreover, we recall that under the orthonormal parametrization introduced on 

the shell midsurface, the contravariant midsurface first metric tensor αβa  takes 

the following values: 0=αβa  for β≠α  and 1=αβa  for β=α . 

The principle of stationary action applied to A  leads to the following 
system of Euler-Lagrange equations 
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After combining (2.3) with (2.2) the above system can be written in the 
form 
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 (2.4) 

It can be observed that equations (2.4) coincide with the well-known governing 
equations of simplified Kirchhoff-Love theory of thin elastic shells, cf. [27]. In 
the above equations the displacements ),( tuu xαα = , ),( tww x=  are the basic 

unknowns. For periodic shells coefficients of lagrangian L  and hence also of 
equations (2.4) are highly oscillating non-continuous functions depending on x  
with a period λ . That is why equations (2.3) (or their explicit form (2.4)) cannot 
be directly applied to investigations of engineering problems. Our aim is to 
“replace” these equations by equations with constant coefficients depending on 
the microstructure size. To this end the combined modelling technique given in 
[11] will be applied. To make the subsequent analysis more clear, in the next 
Section we shall outline the basic concepts and the main assumptions of this 
approach, following the book [11] together with some results presented in [26]. 

3. MODELLING CONCEPTS AND ASSUMPTIONS 

The combined modelling technique is based on two modelling procedures. The 
first of them is called the consistent asymptotic modelling. The second one is 
termed the tolerance modelling. 

3.1. Basic concepts 
The fundamental concepts of the tolerance modelling are those of tolerance 
determined by tolerance parameter, cell distribution, tolerance periodic function 
and its two special cases: slowly-varying and highly-oscillating functions. The 
tolerance approach is based on the notion of the averaging of tolerance periodic 
function. 

The main statement of the modelling procedure is that every measurement 
as well as numerical calculation can be realized in practice only within a certain 
accuracy defined by tolerance parameter δ  being a positive constant. 

The concept of cell distribution ),( ∆Ω  assigned to ),(),( 21 00 LL ×=Ω  

has been introduced in the previous Section. 
A bounded integrable function )(⋅f  defined on ],[],[ 21 00 LL ×=Ω  

(which can also depend on t  as a parameter) is called tolerance periodic with 
respect to cell ∆  and tolerance parameter δ , if roughly speaking, its values in 
an arbitrary cell )(x∆  can be approximated, with sufficient accuracy, by the 
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corresponding values of a certain ∆ -periodic function Ω∈∆∈ xxzzx ),(),(f . 

Function xf  is a ∆ -periodic approximation of f  in )(x∆ . This condition has 

to be fulfilled by all derivatives of f  up to the R-th order, i.e. by all its 

derivatives which occur in the problem under consideration; in the problem 
analysed here R is equal either 1 or 2. In this case we shall write 

),( ∆Ω∈ δ
RTPf . It has to be emphasized that for periodic structures being object 

of considerations in this paper function Ω∈∆∈ xxzzx ),(),(f  has the same 

analytical form in every cell )(x∆ , Ω∈x . Hence, )(⋅xf  is independent of x . 

In the general case, i.e. for tolerance periodic structures (i.e. structures which in 
small neighbourhoods of )(x∆  can be approximately regarded as periodic), 

Ω∈∆∈= xxzzxxx ),(),,(ff . 

Subsequently we will denote by ),( 21 ∂∂≡∂  the gradient operator in Ω  

and by )(⋅∂ fk , Rk ,..,,10= , the k-th gradient of function )(⋅f  defined in Ω , 

where )()( ⋅≡⋅∂ ff0 . Let )()( zx
kf , )(xz ∆∈  be a periodic approximation of 

),( ∆Ω∈∂ δ
Rk TPf  in cell )(x∆ , Ω∈x , Rk ,..,,10= , )()( ⋅≡⋅ xx ff 0 . 

A continuous bounded differentiable function )(xv  defined on 

],[],[ 21 00 LL ×=Ω  (which can also depend on t  as a parameter) is called 

slowly-varying with respect to cell ∆  and tolerance parameter δ , if 

 
,,)(,,...,,,)()(
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)( Ω∈∆∈=∂=

∆Ω∈ δ
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It means that periodic approximation )(kvx  of )(⋅∂ vk  in )(x∆  is a constant 

function for every Ω∈x . Under the above conditions we shall write 

),( ∆Ω∈ δ
RSVv . 

Function )(xh  defined in ],[],[ 21 00 LL ×=Ω  is called the highly 

oscillating function with respect to cell ∆  and tolerance parameter δ , 

),( ∆Ω∈ δ
RHOh , if  
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In the problem considered here we also deal with the highly-oscillating 
functions which are ∆ -periodic, i.e. they are special cases of the highly-
oscillating tolerance ∆ -periodic functions, defined above. Let 

),()( ∆Ω∈ δ
RHOh x  be a λ -periodic function defined in Ω  which is continuous 

together with its gradients ,,...,, 11 −=∂ Rkhk  and has either continuous or a 

piecewise continuous bounded gradient hR∂ . Function )(⋅h will be called the 

fluctuation shape function, if it depends on λ  as a parameter and satisfies 

conditions 223 ).(  and 423 ).( , (in 423 ).(  )(zxhk∂  is replaced by )(zhk∂ ), 

together with conditions: 
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x
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 (3.3) 

where µ  is a certain positive valued λ -periodic function defined in Ω . 

Let ),()( ∆Ω∈⋅ δ
RTPf . By the averaging of tolerance periodic function 

ff 0∂≡ and its derivatives Rkfk ,...,,, 21=∂ , we shall mean function 

)(x>∂< fk , Ω∈x , defined by 

 .,)(,,...,,,),()(
)(

)( Ω∈∆∈=
∆

≡>∂< ∫
∆

xzzzxx
x

x xRkdff kk 10
1

 (3.4) 

For periodic media periodic approximation )(kfx  of fk∂  in )(x∆  is 

independent of argument x  and >∂< fk  is constant. For tolerance periodic 

media >∂< fk  is a smooth slowly-varying function of x . 

Let Rkgf k ,...,,,))(,( 10=∂ xx  be a composite function defined in Ω  

such that ),()(),,())(,( ∆Ω∈∆Ω∈∂ δδ
Rk TPgHOgf xxx 0 . The tolerance 

averaging of this function is defined by 

 .,)(,),(,,()()(,(
)(

)( Ω∈∆∈
∆

≡>∂< ∫
∆

xzzzxzxxzz
x

xx xdgfgf kk 1
 (3.5) 
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For periodically microheterogeneous shells under consideration function xf  is 

independent of x  and >⋅∂⋅< )(,( gf k  is constant. It can be seen, that definition 

(3.4) is a special case of definition (3.5). 
In the tolerance modelling of dynamic problems for periodic shells we 

also deal with mean (constant) value >< f  of ∆ -periodic integrable function 

)(⋅f  defined by 

 .,)(,)()(
)(

Ω∈∆∈
∆

>≡< ∫
∆

xzzzz
x

xdff
1

 (3.6) 

On passing from tolerance averaging to the asymptotic averaging we 
retain only the concept of highly-oscillating function. In the asymptotic 
approach we deal with mean (constant) value >< f  of ∆ -periodic function 

)(⋅f  defined by (3.6). 
More general definitions of these concepts are given in [11, 26] and also 

in [1]. 

3.2. Modelling assumptions 
The fundamental assumption imposed on the lagrangian under consideration in 
the framework of the tolerance averaging approach is called the micro-macro 
decomposition. It states that the displacement fields occurring in this lagrangian 
have to be the tolerance periodic functions in x . Hence, they can be 
decomposed into unknown averaged displacements being slowly-varying 
functions in x  and fluctuations represented by known highly-oscillating 
functions called fluctuation shape functions and by unknown fluctuation 
amplitudes being slowly-varying in x . 

The fundamental assumption imposed on the lagrangian under 
consideration in the framework of the consistent asymptotic averaging 
approach is called the consistent asymptotic decomposition. It states that the 
displacement fields occurring in this lagrangian have to be replaced by families 
of fields defined in an arbitrary cell and depend on small parameter 

,...,,/ 211 ==ε nn . These families of displacements are decomposed into part 

described by unknown functions being continuously bounded in Ω  and highly-
oscillating part depending on ε  and represented by known fluctuation shape 
functions and by unknown functions being continuously bounded in Ω . 

For details the reader is referred to [11, 26]. 
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4. COMBINED MODELLING 

A new mathematical model for the analysis of dynamic problems for 
biperiodically stiffened cylindrical shells under considerations will be 
formulated. In order to derive this model the new so-called the combined 
modelling procedure, proposed in [11], will be applied 

The combined modelling includes both the asymptotic as well as the non-
asymptotic modelling procedures. 

The combined modelling technique is realized in two steps. The first step 
is based on the consistent asymptotic procedure which leads from starting 
equations (2.3) to the Euler-Lagrange equations with constant coefficients being 
independent of the microstructure cell size. Hence the model obtained in the 
first step is referred to as the macroscopic model. Assuming that in the 
framework of the macroscopic model the solution to the problem under 
consideration is known, we can pass to the second step, which is based on the 
tolerance (non-asymptotic) modelling. The Euler-Lagrange equations derived in 
the second step have constant coefficients which depend on the cell size. Hence, 
the model obtained in the second step is referred to as the superimposed 
microscopic model. 

4.1. Step 1. Consistent asymptotic modelling 
We start with the consistent asymptotic averaging of lagrangian L  occurring in 
(2.1). To this end let us introduce two systems of the linear independent highly-

oscillating periodic fluctuation shape functions, ),()( ∆Ω∈⋅ δ
1HOha , na ,..,1=  

and ),()( ∆Ω∈⋅ δ
2HOgA , NA ,..,1= . These functions are assumed to be 

postulated a priori in every problem under consideration. They can be obtained 
by a certain periodic discretization of the cell. Now, we have to introduce the 
consistent asymptotic decomposition of displacements ),( tuu zαα = , 

),( tww z= , )(),( xz ∆∈≡ 21 zz , ),( 10 ttt ∈ , in an arbitrary cell )(x∆ , Ω∈x  

 

,),(),(

,,..,,),()(),(),/(),(

,,..,,),()(),(),/(),(

10

2 1

1

ttt

NAtgtwtwtw

nathtututu
A

a

∈∆∈
=ε+=ε≡

=ε+=ε≡

ε

εε

αεααεα

xz

zzzzz

zzzzz
A

a

W

U

 (4.1) 

where summation convention over a and A holds, and ,...,,,/ 211 ==ε mm  

),/,/( 22 ελελ−≡∆ε  ,,)( Ω∈∆+≡∆ εε xxx  )/()( ε≡ε zz aa hh , 

)/()( ε≡ε zz AA gg . Unknown functions aU αα ,u  in (4.1) are assumed to be 
continuous and bounded together with their first derivatives. Unknown 
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functions AW,w  in (4.1) are assumed to be continuous and bounded together 
with their derivatives up to the second order. 

Moreover Aa WwUu ,,, αα  are assumed to be independent of ε . This is the 

main difference between the asymptotic approach under consideration and 
approach which is used in the homogenisation theory, cf. [5, 9]. 

Due to the fact that lagrangian L  defined by (2.2) is highly oscillating 
with respect to x  there exists for every ,Ω∈x  lagrangian 

),,,,,( wwwuuL && αβααβ ∂∂zx  which constitutes a ∆ -periodic approximation of 

lagrangian L  in )(x∆ , )(xz ∆∈ . Let εxL  be a family of functions given by 
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Substituting the right-hand sides of (4.1) into (4.2) and taking into account that 
if 0→ε  then every continuous and bounded function ),(tf z , )(xz ε∆∈ , 

),( 10 ttt ∈ , tends to function ),( tf x , Ω∈x , as well as after neglecting terms 

)(εO , )( 2εO  we arrive at  
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Moreover, if 0→ε  then, by means of a property of the mean value, cf. [9], the 

obtained result tends weakly to ),,,,,,( wwwuUuL a && AWαβαααβ ∂∂0 , where 

∫
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∆

=
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x

x zz dwwwuUuLL a && AW
1

0 , )(xz ∆∈ , Ω∈x . It follows 

that  
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where denotation (3.6) has been used. 

Function 0L , given above, is the averaged form of lagrangian L  defined 

by (2.2) under consistent asymptotic averaging. 
In the framework of consistent asymptotic modelling we introduce the 

consistent asymptotic action functional defined by  

 12
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where 0L  is given by (4.3). 

Under assumption that )(/),(/ wLuL αβαβ ∂∂∂∂∂∂ 00  are continuous, from 

the principle of stationary action for 0hgA , we obtain 
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 (4.4) 

Combining (4.4) with (4.3) we arrive at the explicit form of the consistent 

asymptotic model equations for Aa WUwu ,,, αα  
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It can be shown that linear transformations EG,  given by 

>∂∂=< δ
αβγδ

βαγ
baab hDhG , >∂∂=< γδ

αβγδ
αβ

BAAB gBgE , respectively, are 

invertible. Hence, solutions Ab WU ,γ  to (4.5)3,4 can be written in the form 
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where 1−G  and 1−E  are the inverses of the linear transformations EG, , 
respectively. Substituting (4.6) into (4.5)1,2 and setting 
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we arrive finally at the following form of Euler-Lagrange equations for wu ,β  
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Since functions ),(),,( twtu ⋅⋅α  have to be uniquely defined in ),( 10 tt×Ω , 

we conclude that ),(),,( twtu ⋅⋅α  have to take the form 
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 (4.9) 

with Aa WU ,α  given by (4.6). 
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Equations (4.8) together with formula (4.9) represent the consistent 
asymptotic model of Euler-Lagrange equations (2.4) derived from lagrangian 
(2.2). Coefficients in equations (4.8) are constant in contrast to coefficients in 
equations (2.4) which are discontinuous, highly oscillating and periodic. The 
above model is not able to describe the length-scale effect on the overall shell 
dynamics being independent of the microstructure cell size. That is why the 
model derived in the first step of combined modelling is referred to as the 
macroscopic model for the problem under consideration. 

In the first step of combined modelling it is assumed that functions wu ,α  

obtained as solution to a certain boundary-initial value problem for consistent 
asymptotic equations (4.8) are known. Hence, there are also known functions 
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where Aa WU ,α  are given by means of (4.6). 

4.2. Step 2. Superimposed modelling-tolerance approach 
The second step of the combined modelling will be realized by means of the 
tolerance procedure, cf. [1, 11, 26, 28]. To this end we assume that α0u  and 0w  

given by (4.10) are the known tolerance periodic functions, i.e. 

),(),( ∆Ω⊂ δα
1

0 TPtu x , ),(),( ∆Ω⊂ δ
2

0 TPtw x , Ω∈x , ),( 10 ttt ∈ . 

Let functions mkck ,..,,),( 21=x  and MKbK ,..,,),( 21=x  be the new 

known λ -periodic in x  fluctuation shape functions, ),()( ∆Ω∈⋅ δ
1HOck , 

),()( ∆Ω∈⋅ δ
2HObK , such that )(),( λ∈∂λλ∈ α OcOc kk , 

)(),( 22 λ∈∂λλ∈ α ObOb KK , )( 22 λ∈∂λ αβ ObK , 0>=µ>=<µ< Kk bc  and 

0>=µ>=<µ< PKpk bbcc  for PKpk ≠≠ , , where )(⋅µ  is the shell mass 
density being a λ -periodic function with respect to x . In dynamic problems, 

the fluctuation shape functions Kk bc ,  introduced in the second step of 
combined modelling represent either the principal modes of free periodic 
vibrations of the cell )(x∆  or physically reasonable approximation of these 
modes. Hence, they can be obtained as solutions to certain periodic eigenvalue 
problems describing free periodic vibrations of the cell, cf. [21]. Let functions 

),( tQk xα , mk ,..,,21=  and ),( tV K x , MK ,..,,21=  be the new unknowns called 

fluctuation (microscopic) amplitudes which are slowly-varying in x , 

),(),(),( ∆Ω⊂∆Ω∈ δδα
11 TPSVtQk x , ),(),(),( ∆Ω⊂∆Ω∈ δδ

22 TPSVtV K x . 
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We shall introduce the extra decomposition superimposed on 00 wu ,α  
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Summation convention over mk ,..,,21=  and MK ,..,,21=  holds. If α0u  and 

0w  are known then the above formula will be referred to as decomposition 

superimposed on the first step of combined modelling. 

Due to the fact that ),(),( ∆Ω∈⋅ δα
1TPtuc  and ),(),( ∆Ω∈⋅ δ

2TPtwb  there 

exist periodic approximations of these functions and of their pertinent 
derivatives in every )(x∆ . 

Bearing in mind properties of the slowly-varying and highly-oscillating 
functions, cf. (3.1), (3.2), the periodic approximations of ),( tuc zα , ),( tuc zαβ∂  

and ),( tuc zα&  in )(x∆ , )(xz ∆∈ , Ω∈x , have the form 
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for every Ω∈x , almost every )(xz ∆∈  and every ),( 10 ttt ∈ . 

The periodic approximations of ),(twb z , ),,( twb ξ∂αβ z  and ),( twb z&  in 

)(x∆ , )(xz ∆∈ , Ω∈x , have the form 
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for every Ω∈x , almost every )(xz ∆∈  and every ),( 10 ttt ∈ . 

Setting wwuu bc ≡≡ αα , , we obtain from (2.2) lagrangian 

),(),,,,,( ∆Ω∈∂∂ δαβααβ
0HOwwwuuL bbbcccb &&x , Ω∈x . Since cbL  is highly 

oscillating with respect to x  then there exists a periodic approximation 
),,)(,,)(,( xxxxxx z bbbcccb wwwuuL && αβααβ ∂∂ , )(xz ∆∈ , of cbL  in every )(x∆ , 

where functional arguments of xcbL  are given by means of (4.12), (4.13). 

Lagrangian xcbL  has the form of lagrangian (2.2) in which 



ON THE MODELLING OF DYNAMIC PROBLEMS FOR BIPERIODICALLY… 195 

 
 

wwwwwwuuuu bbbcc &&&& ≡≡∂≡∂≡∂≡∂ αβαβαααβαβ ,,,,  are replaced by 

xxxxx bbbcc wwwuu && ,,)(,,)( αβααβ ∂∂ , respectively. Substituting the right hand 

sides of approximations (4.12), (4.13) into lagrangian xcbL  and using tolerance 

averaging formula (3.5) we arrive at the tolerance averaging of lagrangian cbL  
in )(x∆  under superimposed decomposition (4.11). Introducing the extra 
approximation 11 ≈λ+ r/ , the obtained result has the form 
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 (4.14) 

Due to periodic structure of the shell averages >⋅<  on the right-hand side of 
(4.14) are constant and calculated by means of (3.6). 

Functional 
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where >< cbL  is given by (4.14), is called the tolerance averaging of functional 

),( wuA α  defined by (2.1) under superimposed decomposition (4.11). The 

underlined terms in (4.14) depend on microstructure length parameter λ . 
The principle of stationary action applied to cbA  given above leads to the 

following system of equations for Kk VQ ,α  

 

.

,

0

0

=
∂

><∂
−

∂
><∂

∂
∂

=
∂

><∂
−

∂
><∂

∂
∂

αα

K
cb

K
cb

k
cb

k
cb

V

L

V

L

t

Q

L

Q

L

t

&

&

 (4.15) 



196 Barbara TOMCZYK 

 
 

Combining (4.15) with ( 4.14) we obtain finally the explicit form of the Euler-
Lagrange equations 
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Let us observe that in the problem under consideration we have obtained 
system of governing equations which consists of two independent subsystems. 
The first from them is the system of m2  equations for fluctuation amplitudes 

kQα , cf. (4.16), whereas the second one is the system of M  equations for 

fluctuation amplitudes KV , cf. (4.17). The right-hand sides of (4.16) and (4.17) 
are known under assumption that 00 wu ,α  were determined in the first step of 

modelling. 
Equations (4.16) and (4.17) have to be considered together with 

decomposition 
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where functions Aa WwUu ,,, αα  have to be obtained in the first step of combined 

modelling, i.e. in the framework of the consistent asymptotic modelling. It 
follows that the combined model derived here is represented by  
���� macroscopic model defined by equations (4.8) for wu ,α  with expressions 

(4.6) for Aa WU ,α , obtained by means of the consistent asymptotic 

modelling and being independent of the microstructure length; it is 
assumed that in the framework of this model the solution (4.10) to the 
problem under consideration is known, 

���� superimposed microscopic model equations (4.16), (4.17) derived by 
means of the tolerance (non-asymptotic) modelling, some coefficients of 
these equations (underlined terms) depend on the microstructure length 
parameter λ , 

���� decomposition (4.18) 



ON THE MODELLING OF DYNAMIC PROBLEMS FOR BIPERIODICALLY… 197 

 
 

Coefficients of all equations derived in the framework of combined 
modelling are constant in contrast to coefficients in equations (2.4) which are 
discontinuous, highly oscillating and periodic. 

The model proposed here can be applied to analyse the length-scale effect 
in selected problems of dynamics of biperiodically and densely stiffened 
cylindrical shells under consideration. Moreover, under special conditions it 
makes it possible to separate the macroscopic description of a certain problem 
from its microscopic description. 

Applying the tolerance modelling directly to the decomposition (4.18) we 

also obtain the system of equations for KAka VWQUwu ,,,,, ααα . However, this 

system is much more complicated then the system obtained in the framework of 
the combined modelling. 

5. MICRO-DYNAMICS OF THE SHELL 

Now, we are to show that the combined model, proposed here, makes it possible 
to study micro-dynamics of periodic shells under consideration independently of 

their macro-dynamics. To this end, instead of functions )(),( ⋅⋅ Kk bc  in (4.16), 

(4.17) we introduce fluctuation shape functions 

NAgnah Aa ,..,),(,,..,),( 11 =⋅=⋅ , respectively, setting MNmn ≡≡ , . By 

means of the consistent asymptotic modelling we obtain 
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It means that the right-hand sides of equations (4.16) and (4.17) are equal to 
zero and the final result is given by equations 
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 (5.3) 

Equations (5.2), (5.3) are independent of solutions α0u , 0w  obtained in 

the framework of the macroscopic model and hence describe selected problems 
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of the shell micro-dynamics; e.g. the free micro-vibration problem. Moreover, 
the shell’s micro-dynamics in the axial and circumferential directions can be 
analysed independently of its micro-dynamic behaviour in the direction normal 
to the shell midsurface. 

It has to be emphasized that problems described by (5.2), (5.3) are related 

to unknown fields ),( tuu xαα =  and ),( tww x=  by means of kkQhuu ααα += 0 , 
KKVgww += 0 , where 00 wu ,α  are determined by the consistent asymptotic 

modelling. 
At the end of this section, using equations (5.2), (5.3) we derive formulae 

for free micro-vibration frequencies of a certain closed biperiodically stiffened 
shell. The stiffened shell under consideration is treated as a shell with 
periodically varying thickness and periodically varying elastic and inertial 
properties. It is assumed that both the shell and stiffeners are made of 
homogeneous isotropic materials. We confine ourselves to the simplest form of 
the combined model in which 1==== NAna . It assumed that the fluctuation 
shape functions are known in the problem under consideration. Let the 
investigated problem be rotationally symmetric with a period r/λ ; hence 

1
11 QQ ≡  in (5.2) is equal to zero and the remaining slowly-varying unknowns 
1
22 QQ ≡ , 1VV ≡  of equations (5.2), (5.3) are independent of argument 1x . 

Obviously, the highly-oscillating fluctuation shape functions 1hh ≡  and 1gg ≡  

are λ -periodic functions of both arguments 1x  and 2x . It is assumed that the 

edges 2
22 0 Lxx == ,  are simply supported, i.e. they are hinged with the 

support free, cf. [27]. 
Equations (5.2) and (5.3) reduce now to the form 
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Solutions to equations (5.4) and (5.5) will be taken in the form 
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where 00 ≠≠ VQ AA ,  are micro-vibration amplitudes being arbitrary constants, 

2Lk /π=  is a wave number and ∗∗ ωω ,  are frequencies of free micro-vibrations 

along the generating lines and in direction normal to the shell midsurface, 
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respectively. It can be observed that solutions (5.6) are slowly-varying functions 

in argument 2x , because of, under assumption 12 <<λ L/ , the wave number k  

satisfies condition: λπ<<π= /)/( 2Lk . 

Substituting (5.6)1 and (5.6)2 into (5.4) and (5.5), respectively, under extra 
denotations 
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we arrive at formulae for  
•  free micro-vibration frequency ∗ω  in axial direction 
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µλ
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2  (5.7) 

•  free micro-vibration frequency ∗ω  in direction normal to the shell 
midsurface 

 .
ˆ

g

B

µλ
=ω∗ 4

2  (5.8) 

The free micro-vibration frequencies derived above depend on 
microstructure length parameter λ . Hence, they cannot be obtained in the 
framework of the commonly used asymptotic models of periodically stiffened 
shells. 

6. FINAL REMARKS 

Thin linear-elastic Kirchhoff-Love-type circular cylindrical shells with a 
periodically inhomogeneous structure along the circumferential and axial 
directions are objects under consideration. Shells of this kind are termed 
biperiodic. As an example we can mention cylindrical shells with periodically 
spaced families of longitudinal and circular stiffeners as shown in Fig.1. 
Dynamic and stability behaviour of such shells are described by Euler-Lagrange 
equations (2.3) generated by the well known Lagrange function (2.2). The 
explicit form of (2.3), given by (2.4), coincides with the governing equations of 
the simplified Kirchhoff-Love theory for elastic shells. For periodic shells 
coefficients of these equations are highly oscillating non-continuous periodic 
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functions. That is why the direct application of equations (2.4) to investigations 
of specific problems is non-effective even using computational methods. 

In this contribution, the new mathematical non-asymptotic model for 
analysis of selected dynamic problems for periodic shells under consideration 
has been formulated by applying the combined modelling procedure given in 
[11]. Contrary to starting equations, the resulting combined model equations 
have constant coefficients and take into account the length-scale effect. The 
combined modelling technique is realized in two steps. The first step is based on 
the consistent asymptotic averaging of lagrangian (2.2) under consistent 
asymptotic decomposition (4.1) of the shell displacements. The resulting 
averaged form of lagrangian (2.2) is given by (4.3). Then, applying the principle 
of stationary action to the consistent asymptotic action functional defined by 
means of averaged lagrangian (4.3), we arrive at Euler-Lagrange equations (4.8) 
with constant coefficients which are independent of the microstructure cell size. 
Hence, the model obtained in the first step is referred to as the macroscopic 
model. Assuming that in the framework of the macroscopic model the solution 
(4.10) to the problem under consideration is known, we can pass to the second 
step. This step is based on the tolerance averaging of lagrangian (2.2) under 
superimposed decomposition (4.11). The resulting tolerance averaged form of 
lagrangian (2.2) is given by (4.14). Then, applying the principle of stationary 
action to the tolerance averaged action functional defined by means of averaged 
lagrangian (4.14), we arrive at Euler-Lagrange equations (4.16), (4.17) with 
constant coefficients which depend on the cell size (underlined terms). Hence, 
the model obtained in the second step is referred to as the superimposed 
microscopic model. Thus, the new combined model, proposed here, is 
represented by macroscopic model equations (4.8) together with expressions 
(4.6) and solution (4.10) and by superimposed microscopic model equations 
(4.16), (4.17) as well as by decomposition (4.18). 

The important advantages of the new shell model proposed here are listed 
below. 
���� The coefficients of the combined model equations are constant and some of 

them depend on the microstructure length parameter λ . It means that the 
proposed model equations describe the effect of the cell size on the overall 
shell dynamics. Hence, they can be used to the analysis of many phenomena 
caused by the length-scale effect, e.g. for investigations of the additional 
higher-order free vibration frequencies occurring in the periodic shells. 

���� The resulting combined model equations are uniquely determined by the 
postulated fluctuation shape functions, which describe fluctuations of the 
shell displacements inside the cell from the qualitative point of view. The 
fluctuation shape functions introduced into macroscopic model by means of 
decomposition (4.1) can be obtained by a certain periodic discretization of 



ON THE MODELLING OF DYNAMIC PROBLEMS FOR BIPERIODICALLY… 201 

 
 

the cell while those introduced into superimposed microscopic model by 
means of decomposition (4.11) represent either the principal modes of the 
free periodic vibrations of the cell or physically reasonable approximations 
of these modes. In most problems the fluctuation shape functions specified 
in the first and second steps of combined modelling are different due to the 
different character of the macroscopic and the superimposed microscopic 
models. However, from the formal point of view the fluctuation shape 
functions of both the models can coincide.  

���� Under assumption that the fluctuation shape functions introduced in the first 
step of combined modelling coincide with those introduced in the second 
step, we have derived superimposed microscopic model equations (5.2), 
(5.3) which are independent of the solutions obtained in the framework of 
the macroscopic model. Taking into account this result we can conclude that 
an important advantage of the combined model is that it makes it possible to 
separate the macroscopic description of some special problems from their 
microscopic description. It means that in the framework of the combined 
model we can study micro-dynamics of periodic shells under consideration 
independently of their macro-dynamics. 

Using superimposed microscopic model equations (5.2) and (5.3), the free 
micro-vibration frequencies caused by a periodic structure of a certain 
biperiodically stiffened shell have been derived independently of the macro-
vibration frequencies. The results given by means of (5.7) and (5.8) depend on 
the microstructure length and cannot be obtained in the framework of the 
commonly used asymptotic models for dynamic analysis of periodically stiffened 
shells.  

It is worth noting that the combined model for analysis of dynamic and 
stability problems for cylindrical shells with one-directional periodic structure 
(uniperiodic shell) was proposed and discussed in [24]. We recall that the 
tolerance models of uniperiodic shells are not the special cases of the tolerance 
models of biperiodic shells. 

More detailed discussion of the combined model for dynamic analysis of 
biperiodic shells proposed in this contribution, will be presented separately. 
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MODELOWANIE ZAGADNIEŃ DYNAMIKI W BIPERIODYCZNIE 
UŻEBROWANYCH POWŁOKACH WALCOWYCH 

S t r e s z c z e n i e  

W pracy wyprowadzono nowy nieasymptotyczny model służący do analizy dynamiki 
cienkich liniowo-sprężystych powłok walcowych typu Krchhoffa-Love’a, periodycznie i 
gęsto użebrowanych w dwóch kierunkach stycznych do powierzchni środkowej powłoki. 
Do wyprowadzania równań wykorzystano technikę „combined modelling” 
zaproponowaną w monografii [11]. Modelowanie jest dwuetapowe. W pierwszym etapie, 
stosując procedurę modelowania asymptotycznego, otrzymuje się model makroskopowy 
rozważanych powłok, mający stałe współczynniki, które nie zależą od długości okresu 
periodyczności mikrostruktury. Zakładając, że rozwiązanie danego problemu brzegowo-
początkowego w ramach modelu makroskopowego jest znane, przechodzi się do etapu 
drugiego, w którym w oparciu o technikę modelowania tolerancyjnego wyprowadza się 
równania modelu mikroskopowego nałożonego na model makroskopowy etapu 
pierwszego. Równania modelu mikroskopowego mają stałe współczynniki zależne od 
wielkości komórki periodyczności. Proponowany „combined model” może być 
zastosowany do badania efektu skali w zagadnieniach dynamiki mikroperiodycznych 
powłok walcowych. Zaletą modelu jest to, że umożliwia rozdzielenie makroskopowego 
opisu szczególnych zagadnień dynamiki powłok od ich opisu mikroskopowego. 




