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In this note vibrations of thin composite plateshwé smooth and a slow gradation of
macroscopic properties are considered. Plates isfkihd have transversally graded
macrostructure. In this paper certain averaged enadltical models of these plates are
proposed. In an example, these models are applietitain fundamental free vibrations
frequencies of a plate band, using the finite diffees method.
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1. PRELIMINARIES

Objects under consideration are thin plates, wihelre on the macrolevel
functionally graded structure in planes paralletite plate midplane. However,
they have tolerance-periodic microstructure, c§. Ai. The microstructure size
is assumed to be very small compared to charatitelesigth of the plate in the

midplane.
S

L

Fig. 1. A fragment of a thin plate with functiona(transversally) graded macrostructure
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These plates are described by partial differerggaiations with highly
oscillating, tolerance-periodic, non-continuousftioents. Unfortunately, these
equations are not a good tool to analyse spec@iheering problems. Hence,
various averaged models are formulated, which desglates of this kind by
equations with smooth, slowly-varying coefficienthese plates can be treated
to be made oh functionally graded material, cf. the book [12]. Plates of this
kind can be calletransversally graded plates.

Functionally graded materials and structures awmallysdescribed in the
framework of approaches used to analyse macrosabplomogeneous media,
e.g. periodic. Some of these methods are presémtéte book [12]. Between
them we have to mention models based on the asyimbtmmogenization, cf.
the book [7]. These models are applied for periquetes in the paper [8].
However, the effect of the microstructure size igitted in the governing
equations of these models.

In order to take into account this effect we applytolerance averaging
technique (cf. the books [13,9].). Applications of this t&itpue to the modelling
of dynamic problems of various periodic structusge shown in a series of
papers, e.g. [1], [2,3], [10], [14]. The toleranm®delling is also adopted for
nonstationary problems of functionally graded dues, e.g. for thin
tolerance-periodic plates in [4]; for thin shalléglerance-periodic shells in [6];
for skeletonal functionally graded shells in [1Xpr annular plates with
longitudinally graded structure in [15]; for tramssally and longitudinally
graded plates in [5].

The aims of this paper are two. Firstly, the tabee and asymptotic
models of the transversally graded plates are ptedeSecondly, an application
of the asymptotic model to analyse free vibratimybiencies for a transversally
graded plate band is shown. Results are obtainied) ulse finite differences
method.

2. MODELLING FOUNDATIONS

Let Ox;x,X; be the orthogonal Cartesian coordinate systemtdvethe time
coordinate. Subscriptgk,l run over 1,23 anda,3,6 run over 1,2 . Denote
X=(x1,%) and z=x;. Let the undeformed plate occupy the region
Q={(x,2):-d(x)/2<z=<d(x)/2xOM} , wherell is the midplane and(l} is the
plate thickness. By, denote derivatives ok,, and alsod, s=0,...05. Let
Q=[-A\/2A/2] X[-A,/2\,/2] be the “basic cell” oi©Ox;x, plane, wheré\;, A,
are cell length dimensions along the, thexy-axis, respectively. The diameter
of cell Q, calledthe microstructure parameter, is denoted bx=[(A1)*+(A2)]*>.
This parameter satisfies conditidps,<<A<<max(,L,). It is assumed that([)
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can be a tolerance-periodic functionximnd all material and inertial properties
of the plate, as a mass dengitsp(LZ) and elastic moduleyy=ayu(Lk), are
tolerance-periodic functions iR and even functions i@ Let w(x,t) (xOTT,
tO(t,,ty) ) be a plate midplane deflection aaghs, aupss assss be the non-zero
components of the elastic moduli tensor. Dermgg@Ea{,Bya—a{,B%ay&s(agggg)‘l.

The mean plate properties (being tolerance-periddictions inx) —
mass density and bending stiffness@&g,s — are defined in the form:

d/2
u=[ pdz Bupys = |, Z2Cupys0Z (2.1)

From the well-known assumptions of the Kirchhofeyplates theory we
obtain the partial differential equation of the fibuorder for deflectiorw(x,t)
for transversally graded plates

aaB(BaByBaVBW) THwW= Ov (22)

where coefficients are highly oscillating, non-doobus, tolerance-periodic
functions. Because external loadings are negldoteduation (2.2) it describes
free vibrations of transversally graded plates nrdasideration.

3. INTRODUCTORY CONCEPTS

In the modelling some concepts defined in the h@plare used. Some of these
concepts are reminded below. For tolerance-peripldites some of them were
also presented in [4].

A cell at x[Mg is denoted byQ(x)=x+Q, Mg ={xOM: QXx)O}.
The knownaveraging operator for an integrable functiohis defined by

<f>X)=x% f (Y1, y2)dyidy,, xOMg. (3.1)

)\1)\2 Q(X)

If f is a tolerance-periodic function ¥j its averaged value calculated from (3.1)
is a slowly-varying function ix.

Let us denote thk-th gradient of functionf = f (x),xM, k= 01...,a,
(a20), by 9kf ; 9°f = f ; and f® (] be a function defined ifiT x R,

Function f OHa (1) is the tolerance-periodic function, f OTR&(M,Q), if
for k= 01...,a the following conditions are satisfied

(19 (OxON)(FOEIOHOQ)) [110%f|n, (B~ F0 & Dllon,y<3],
(29) [, FoEndzocem).
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Function f®(x,)) is calledthe periodic approximation of dkf in Q(x),x0,
k=0]1...0.
FunctionF OH<(M) is the slowly-varying function, F OSV&(MM,Q) , if
(1°) FOTR(M,Q),
(29 (DxDI‘I)[If(k>(x,[ﬂb(x)=6kF(x), k=0...,0].
Function@H@e (1 )is the highly oscillating function, @C0HO$ (M,Q) , if
(1°)  ¢OTR(N,Q),
(2°)  (OXOM) [¢9 X Py=0%q(x), k= 01...a].
(3°9) OFOSVE(N,Q) OF =gF OTR(M,Q)
fox L, = FO)kK)L,,, k=1...0.
Fora=0 let us denotef = f©.
Let h() be defined onlM a highly oscillating functionhCDHOZ(IM,Q) ,

continuous together with gradiedth. However, gradien®’h is a piecewise
continuous and bounded. Functibi) is the fluctuation shape function of the
2-nd kind, FS(M1,Q), if it depends o as a parameter and conditions hold:
(1°) OO ™) fork=0,1,...0, a=2,8°h=h,
(2°)  <uh>(x)=0 for everyxon,,,
wherep>0 is a certain tolerance-periodic function.

4. MODELLING ASSUMPTIONS

Following the monography [9] and using the intromug concepts we can
formulate two fundamental modelling assumptions.

The first of them isthe micro-macro decomposition, in which it is
assumed that the plate deflectiwran be decomposed in the form:

w(x,t) =W(x,t) + hAX)VAXt), A=1...,N, xOM, (4.1)

where W(1),VAGT) OSVZ(M,Q) (for everyt) are basic kinematic unknowns,
and hA(OFS2(M,Q) . FunctionW([}) is calledthe macrodeflection; VA(Gt) are

called the fluctuation amplitudes, however, h(J are the known fluctuation
shape functions.

The tolerance averaging approximation is the second modelling
assumption, in which term®(d) are assumed to be negligibly small in the
course of modelling, e.g. in formulas:
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<@>(x) =< > (x) +0(d),

<@F > (x) =< > (X)F (x) +O(3),

<@, (h*F) > (x) =< @ h* > (X)F (x) +O(9),
xdM; a=12; A=1...,N; 0<d<<1;
QUOTRZ(M,, ), FOSVA(M,, ), hAOFS(MM,, ).

5. TOLERANCE MODELLING

Following the book [9] the modelling procedure vii# outlined below.
The starting point of the modelling is the formidat of the action
functional (averaged over the plate thicknesshenform:

AGO) = [ [A(Y, Qagly 1), 0wy, WLy, ), Wiy, D), (5.1)
n

where the lagrangeahis given by:
/\ :%(H\N\N_ DGByﬁa(waayéw)' (52)
The Euler-Lagrange equation

20_/\_0_/\_608_0/\ =0, (5.3)
otow ow 0 04pW

written for lagrangean (5.2) leads to the fundamleeguation of the plate
theory (2.2), describing free vibrations for trassally graded plates.

Using the tolerance modelling to action functioffll) in the first step
we substitute micro-macro decomposition (4.1) twoacfunctional (5.1). In the
next step, applying averaging operator (3.1) toabon functional we obtain
the tolerance averaging of functionalw())) in the form

ARWOIVAD) = [ ['< Ay > (1, 0N AW,V )y, (5.4)
n

with the averaged form A, > of lagrangean (5.2):

<A >==3{(< Dypys > 0pW +2< Dyps045h® >V E)I W —

— <SPSV < Dygydohd,ghe >V V8- <pihthe sy sy, (02

The principle stationary action used £, leads to the following system of
Euler-Lagrange equations:
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a</\.h>—a</\h>—6 a</\h>:O

ow W FaEwW) (5.6)
0<Ap>_0<Mw>_, '
VA VA T

Coefficients of equations (5.6) are slowly-varyfgctions inx.

6. MODEL EQUATIONS

Combining formula (5.5) with equations (5.6) thé#dwing system of equations
for W() andVA((}) is obtained:

aaB(< Ba[}yé > (X)ay6W+ < BaByéayéhB > (X)V B)+ <p> (X)W =0, (6 1)
< Bygyadysh? > (X)0o@W+ < By, s0ogh0,6hB > (X)V B + <phAhe > (x)VB =0,

Equations (6.1)involve the underlined terms with the microstruetparameter
A. The characteristic feature of equations (6.1)that coefficients are
slowly-varying functions irk. These equations and micro-macro decomposition
(4.1) constitutethe tolerance model of thin transversally graded plates, which
describes the effect of the microstructure sizdrea vibrations of these plates.
For a rectangular plate with midplamé&=(0.L)*(0L,) boundary conditions
have to be formulated only féine macrodeflection W (on the edgex,=0, L, and
x>=0, L), but not forthe fluctuation amplitudes VA, A=1,...N. These functions
are slowly-varying irx.

It can be shown thatphAh® >00(\). Thus, after neglecting the term
with A in equation (6.1)the algebraic equations for the fluctuation amplits
V* are obtained:

VA =—=(< Bypy00pn™0ysh® >)~1 < By 05N > 0. (6.2)
Substituting right-hand side of (6.2) into (@.&hd denoting
Bllays =< Bupys > ~ < BygniOnkh > (< Byuyr0qn0, 7B >)~1 < Bl 0, 1B >
we arrive at the following equation fav(Lt):
04p(Blp5(X)0, W)+ <> (x)W = 0. (6.3)

Equation (6.3) together with micro-macro decomposit(4.1) representhe
asymptotic model of thin transversally graded plates, which can be obtained in
the framework of the formal asymptotic modellingpg@edure, cf. the book [9].
Equation (6.3) neglects the effect of the micraduce size on free vibrations of
these plates.
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7. APPLICATIONS - FREE VIBRATIONS OF A PLATE BAND

7.1. Introduction

Let us consider free vibrations of a thin platedu®aith sparL along theg-axis,
The plate band has a functionally graded matetiatgire along its span. The
material properties of the plate are assumed toirfaependent of the
Xo-coordinate. A fragment of this plate is shown ig. 2.

The problem under consideration is treated as ewggnt of the
xp-coordinate. Let us denote=x;, z=x3, xU[0,L], z[J[-d/2,d/2], whered is a
constant plate thickness, ad€d,. It means that in this problem we assume the
basic cellQ=[-A/2A/2], in the intervalA=[0,L], andA, A<<L, is the length of
this cell. It is also assumed that< L. A cell with a centre at[1[0,L] is denoted
by Q(X) =[x—-A/2x+A/2].

| s

Fig. 2. A fragment of a thin transversally gradéatgpband

It is assumed that the plate band is made of twmpoment elastic
isotropic materials, characterised by: Young’s nio#(y E", Poisson’s ratios’,
v" and mass densitigs, p”, respectively. These materials are perfectly bdnde
across interfaces. It is assumed tB@), p(-) are tolerance-periodic functions in
X, EQIp(RUTRY(A,Q), but Poisson’s rati@=v'=v" is constant. Hence, under

condition E'2E" and/orp'#p" the material structure of the plate band can be
treated as functionally graded along khaxis.

Let us assume that the properties of the plate lbaadlescribed by the
following functions:

(o, for  ZD(@=YOOA [2@+YOON 12),
p@)‘{p", for  Z0[0A-yOOA /2O [y r2a], (D

for  zO((L- YOO 12,1+ V() 12),

_JE,
E(DZ)_{E", for  ZO[0A-yOOA /2] D[A+yo/2n], (2

wherey(x) is a distribution function of material propertie$. Fig. 3.
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We assume only one fluctuation shape function,A=\N=1. Hence, we
denoteh=h', V=V*. Micro-macro decomposition (4.1) of the fielx,t) takes
the form:

w(x,t) =W(x,t) + h(xV (x,t),
whereW (1),V (1) OSVZ(A,Q) for everytO(ty,t), h(OFS(Q,Q).

d f - E” p, i
v -
E". P the symmetry E', 0"
axis
V2
(L-yON J YA ¥ (1=y(x)M/
A

Fig. 3. A cell of the transversally graded platada

For the cell shown in Fig. 3 the periodic approXia of the fluctuation shape
functionh(x) can be assumed as

h(x,2) =M[cos@mz/N\) +c(X)], zOQ(x), xOA,

wherec(x) is determined by<fih >= 0The parameter(X) is a slowly-varying
function inx and has the form:

c= ) = SN =)
{P'Y(X) +p"[1-V(X)1}
where y &) is the periodic approximation of the distributidanction of

material propertieg(X). In calculations of derivativedh,ddh the parameter
c(X) is treated as constant. Hence:

oh(2) =-2m sin2rz/A), 00h(2) =-4mecos@rz/A) .

Using definitions of tolerance-periodic functiors1) for the plate band
under consideration we have:

B9 =dp(x), B0 = e E(Y).

Introducing denotations:

~

B=<B>  B;;=<Bdoh>  B!=<Bdohdoh>, (7.3)
A=<p>  ptt=<phh>, '

tolerance model equations (6.1) take the form:
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00(BAOW + B, +AW =0,

BL,00W + BV + 1/ =0, (7.4)

Equations (7.4) describe free vibrations of thedva&rsally graded plate band
under consideration in the framework of the toleeamodel.
Moreover, using denotations (7.3) equation (6.3)tha form

90[(B — (Byy)2/ B1)9oW] + AW =0, (7.5)

which describes free vibrations of this plate buaiitthin the asymptotic model.
Coefficients of equations (7.4) and (7.5) are sjevdrying functions irx.

7.2. Example - the finite differences method applied to the asyntptic
model equation
Our example is restricted to analyse free vibraiohthe transversally graded
plate band using only the asymptotic model desdrime equation (7.5). This
equation has slowly-varying functional coefficieritience, the problem of free
vibrations will be analysed using the finite di#aces method.
Let us assume the solution to equation (7.5) irfaha

W(x,t) =U(x)cos(xt), (7.6)
wherew is a free vibrations frequency(-) is so called eigenvalue function for

the macrodeflectioWV, satisfying boundary conditions far0, L. Substituting
(7.6) into equation (7.5) we have

00[(B - (B,,)2/ B11)90U] - w?aU =0. (7.7)

Let us consider two cases of the boundary conditfonthe plate band:
1) the simply supported plate band

U(x=0)=0, 00U (x=0)=0, (7.8)
U(x=L)=0, 00U (x=L)=0; '
2) the clamped plate band
U(x=0)=0, oU(x=0)=0, (7.9)
U(x=L)=0, oU(x=L)=0. :
Introducing denotations:

AO =B, A® =9B, A®@ =998,

DO =B, D® =9B,,, D@ =00B, CO=p,

FO =B F® =9B1L, F® =00B,

equation (7.7) can be written in the form
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[A© _M]aaaau +2[AD -2 DO DO + (D)2 F®]oooU +
F©) FO (FO)?

DOD® +(D®)? , (DO)2F@ +4DODOF® _

FO (FO)2
—2—83232 (F®)2)90U - ?COU =0,

+[AD -2 (7.10)

In the finite differences method intervA=[0,L] is divided onn intervals.
Derivatives of functiong=g(x), xUJA, with respect tox can be written as
differences:

g(¥) =g, 09(X) = 5xx (G141~ Gi-0),

009(X) =27 (9i1 20 + Gi0), (7.11)

where Ax is an increment of argument i=0,1,..n. Hence, using formulas
(7.11) equation (7.10) takes the form of systeriffiérences equations:

. (D)2, Up-aUs U, ) +eU UL
A", @ '
+[A(l)| —_ 2 D(O)I B(l)l + (D(O)l)z F (1)I] Ul+3_3(U|+1_U|—1_L:JJ’|+2+U|—2)_U|—3 +
F O, (F )2 9

+[A® —2DOD@ +(DOY , (DO)F@ +aDODOFY _ (712)

F o) (FOx)2

_5(D©%)2 )27 Yin =i tUig _ 1. =

2, B (F VA ~0C0U, =0

Formula (7.12) is a system of algebraic linear equatfor unknowndJ;. Using
boundary conditions (7.8) and (7.9) we have:
1) for the simply supported plate band

Uy =0, YPeba = Q,
0 o s (7.13)
Un - O, (AX)Z - 0;
2) for the clamped plate band
Uy =0, dta=,
_ s _ (7.14)
U, =0, Ung U =

Equations (7.12) with formulas (7.13) or (7.14) makpossible to find values
U, i=1,...n-1.
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7.3. Results

Let us consider three distribution functions of engtl propertiey(x), assuming
their periodic approximations in the form:
- the f'case ¢=1)

¥(x) =sin?(mx/L); (7.15)
- the 2% case ¢=2)
y(X) =co(tx/L); (7.16)
- the 3 case ¢=3)
¥(X)=(2x/L-1)2. (7.17)
Let a nondimensional frequency parameter be giyen b
Q2 =10 2y (7.18)

with the free vibrations frequencydetermined by the finite differences method
from equation (7.10).

Calculational results are shown as plots in Fig8. @urves presented in
Figs. 4-6 are made for the simply supported platedbbut in Figs. 7-9 — for the
clamped plate band. Figs. 4 and 7 show resultshidistribution function of
material propertieg(x) given by (7.15) ¢=1), Figs. 5 and 8 — for the function
y(X) given by (7.16) ¢=2), Figs. 6 and 9 — for the functigfx) given by (7.17)
(p=3). Plots of the frequency parameters versus mailtip’ are presented in
Figs. 4a, 5a, 6a, 7a, 8a, 9a (BVE'=0.25, 0.5, 0.75, 1), but in Figs. 4b, 5b, 6b,
7b, 8b, 9b there are shown plots of the frequerararmeters versus ratis'/E'
(for p"/p'=0.08, 0.51, 0.74, 1). All these results are cal@d for the Poisson’s
ratiov=0.3 and the ratios\/L=0.1,d/A=0.01.

a) b)
0.01 0.01
a Q -
0010————————————— 0.010 —————————
0.008 —— o008 -
g

0.006 00064

EYE=0.25 0600
0.004 ——EUE=050 (004 —— =05

EE=0.75 o007
0.00 —EVESLO0 =10
0.000 PP g000 EE

0o¢C 01 02 03 04 05 06 07 08 09 10

00 01 02 03 04 05 0607 08 09 10

Fig. 4. Plots of the lower frequency parameferf®r the simply supported plate band
and functiony(x) denoted byp=1 versus: a) the ratio of mass densigigp’, b) the ratio
of Young’'s moduliE"/E' (v=0.3, ratioA/L=0.1, ratiod/A=0.01)
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b)
0.020 0.020
0.018 Q oos &
0.016 ~_ 0.016
0.014 - 0.014
0.01. ~ — — 0.01. ——
0.010+— ——— ————— 0.010 — —
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0.008 ————— 0008
0.006 = — 0.006 -
0.004 0.004 -
0.00. o 0.00:
0.000 . . . . . . PIR 000 — — . .

00 01 02 0f 04 O0E 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10

Fig. 5. Plots of the lower frequency paramefer®r the simply supported plate band
and functiony(x) denoted byp=2 versus: a) the ratio of mass densigigp’, b) the ratio
of Young’s moduliE"/E' (v=0.3, ratioA/L=0.1, ratiod/A=0.01)

a) b)
0.0247 0.024
0022 S /=0, o022 Q
0.020 N 0.020
0.018 S 0.018
0.016 S~ 0.016
0.014 ——— 0.014 -
0.012 = ooy -
0,010 = T —— ——° 0010 — ————»
0.0081 - —————— 0008 — —
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0.004 0.004 —— *“::;“?8 ;‘11
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! 1p'=1.00 =
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00 01 02 0f 04 O0F 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10

Fig. 6. Plots of the lower frequency paramefer®r the simply supported plate band
and functiony(x) denoted byp=3 versus: a) the ratio of mass densigigp’, b) the ratio
of Young’'s moduliE"/E' (v=0.3, ratioA/L=0.1, ratiod/A=0.01)

a) b)
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Fig. 7. Plots of the lower frequency paramefer®r the clamped plate band and
functiony(x) denoted byp=1 versus: a) the ratio of mass densiti&p’, b) the ratio of
Young’s moduliE"/E' (v=0.3, ratioA/L=0.1, ratiod/A=0.01)
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Fig. 8. Plots of the lower frequency paramefer®r the clamped plate band and
functiony(x) denoted byp=2 versus: a) the ratio of mass densiti&p’, b) the ratio of
Young’s moduliE"/E' (v=0.3, ratioA/L=0.1, ratiod/A=0.01)

a) b)
8.32&1‘0 0056 |
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Fig. 9. Plots of the lower frequency parameferf®r the clamped plate band and
functiony(x) dended by@=3 versus: a) the ratio of mass densifi&p’, b) the ratio of
Young’s moduliE"/E' (v=0.3, ratioA/L=0.1, ratiod/A=0.01)

Analysing results presented in Figs. 4-9 the follmywremarks can be
formulated:
1) values of the lower free vibrations frequenciesesebon ratioE£"/E' and
p"lp', i.e.:
a. they increase with the increasing of the r&fi¢E’ (cf. Figs. 4b, 5b, 6b,
7b, 8b, 9b),
b. they decrease with the increasing of the ratip’ (cf. Figs. 4a, 5a, 6a,
7a, 8a, 9a);
2) values of the lower free vibrations frequencies esieb on distribution
functions of material propertiggx) under consideration, e.g.:
a. the highest values of these frequencies are oltaioe the &' case
(¢=3) given by (7.17), cf. Figs. 6, 9,
b. the smallest values of these frequencies — fodttease ¢=1) given by
(7.15), cf. Figs. 4, 7;
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3) differences between the values of the free vibnativequencies for various
ratiosp"/p’ depend on the distribution functions of materiadpertiesy(x),
e.g. for the 1 case ¢=1) these differences are smaller than for therothe
cases@=2,3), cf. Figs. 4, 7.

8. FINAL REMARKS

Using the tolerance modelling to the known diffdi@nequation of Kirchhoff-
type plates with a transversally graded macroatrecthe tolerance model
equations are derived. In the framework of thishtégue the governing
differential equation with non-continuous, tolerafperiodic coefficients is
replaced by the system of differential equationsthwislowly-varying
coefficients. The characteristic feature of the aol#d tolerance model
equations is that they describe the effect of timastructure size on the overall
behaviour of transversally graded plates underidenstion. On the other hand,
the asymptotic model neglects this effect and dessrthese plates only on the
macrolevel.

Our considerations in the presented example atéctesl to analyse only
lower free vibrations frequencies, which can becwalted within both the
proposed models — tolerance and asymptotic. Frde ¢kample it can be
observed that these frequencies decrease witmtheaising of the ratio of the
mass densitieg"/p’ and increase with the increasing of the ratichef Young's
moduli E"/E'. These frequencies depend also on the distributiootion of
material propertieg(x).

Other special problems of vibrations for the trasally graded plates
and some comparisons with results obtained withtimero methods will be
presented in forthcoming papers.
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DRGANIA SWOBODNE PLYT CIENKICH O POPRZECZNEJ GRADAC
WEASNOSCI

Streszczenie

W pracy rozpatrywaneasdrgania cienkich ptyt kompozytowych, charakteryzyih se
,wolna”’ zmian wlasnagci makroskopowych @ednionych). Plyty nazywane gtytami

0 poprzecznej gradacji wlasimd. Zaproponowano pewne matematyczne modele takich
piyt. Nastpnie, stosujc te modele obliczono podstawowesstimici drgai swobodnych
pasma ptytowego, wykorzystig meto@ réznic skaiczonych.





