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In this note vibrations of thin composite plates with a smooth and a slow gradation of 
macroscopic properties are considered. Plates of this kind have transversally graded 
macrostructure. In this paper certain averaged mathematical models of these plates are 
proposed. In an example, these models are applied to obtain fundamental free vibrations 
frequencies of a plate band, using the finite differences method. 
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1. PRELIMINARIES 

Objects under consideration are thin plates, which have on the macrolevel 
functionally graded structure in planes parallel to the plate midplane. However, 
they have tolerance-periodic microstructure, cf. Fig. 1. The microstructure size 
is assumed to be very small compared to characteristic length of the plate in the 
midplane. 

 
Fig. 1. A fragment of a thin plate with functionally (transversally) graded macrostructure 
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These plates are described by partial differential equations with highly 
oscillating, tolerance-periodic, non-continuous coefficients. Unfortunately, these 
equations are not a good tool to analyse special engineering problems. Hence, 
various averaged models are formulated, which describe plates of this kind by 
equations with smooth, slowly-varying coefficients. These plates can be treated 
to be made of a functionally graded material, cf. the book [12]. Plates of this 
kind can be called transversally graded plates. 

Functionally graded materials and structures are usually described in the 
framework of approaches used to analyse macroscopically homogeneous media, 
e.g. periodic. Some of these methods are presented in the book [12]. Between 
them we have to mention models based on the asymptotic homogenization, cf. 
the book [7]. These models are applied for periodic plates in the paper [8]. 
However, the effect of the microstructure size is omitted in the governing 
equations of these models. 

In order to take into account this effect we apply the tolerance averaging 
technique (cf. the books [13,9].). Applications of this technique to the modelling 
of dynamic problems of various periodic structures are shown in a series of 
papers, e.g. [1], [2,3], [10], [14]. The tolerance modelling is also adopted for 
nonstationary problems of functionally graded structures, e.g. for thin 
tolerance-periodic plates in [4]; for thin shallow tolerance-periodic shells in [6]; 
for skeletonal functionally graded shells in [11]; for annular plates with 
longitudinally graded structure in [15]; for transversally and longitudinally 
graded plates in [5]. 

The aims of this paper are two. Firstly, the tolerance and asymptotic 
models of the transversally graded plates are presented. Secondly, an application 
of the asymptotic model to analyse free vibration frequencies for a transversally 
graded plate band is shown. Results are obtained using the finite differences 
method. 

2. MODELLING FOUNDATIONS 

Let 321 xxOx  be the orthogonal Cartesian coordinate system and t be the time 
coordinate. Subscripts lki ,,  run over 3,2,1  and δβα ,,  run over 2,1 . Denote 

x≡(x1,x2) and z≡x3. Let the undeformed plate occupy the region 
},2/)(2/)(:),{( Π∈≤≤−≡Ω xxxx dzdz , where Π is the midplane and d(⋅) is the 

plate thickness. By ∂α denote derivatives of xα, and also ∂α...δ≡∂α...∂δ. Let 
]2/,2/[]2/,2/[ 2211 λλ−×λλ−≡Ω  be the “basic cell” on Ox1x2 plane, where λ1, λ2 

are cell length dimensions along the x1-, the x2-axis, respectively. The diameter 
of cell Ω , called the microstructure parameter, is denoted by λ≡[(λ1)

2+(λ2)
2]1/2. 

This parameter satisfies condition dmax<<λ<<max(L1,L2). It is assumed that d(⋅) 
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can be a tolerance-periodic function in x and all material and inertial properties 
of the plate, as a mass density ρ=ρ(⋅,z) and elastic moduli aijkl=aijkl(⋅,z), are 
tolerance-periodic functions in x and even functions in z. Let w(x,t) ( Π∈x , 

),( 10 ttt∈ ) be a plate midplane deflection and aαβγδ, aαβ33, a3333 be the non-zero 

components of the elastic moduli tensor. Denote cαβγδ≡aαβγδ−aαβ33aγδ33(a3333)
−1. 

The mean plate properties (being tolerance-periodic functions in x) – 
mass density µ and bending stiffnesses Bαβγδ – are defined in the form: 

 .,
2/

2/
2

2/

2/ ∫∫ − αβγδαβγδ−
≡ρ≡µ

d

d

d

d
dzczBdz  (2.1) 

From the well-known assumptions of the Kirchhoff-type plates theory we 
obtain the partial differential equation of the fourth order for deflection w(x,t) 
for transversally graded plates 

 ,0)( =µ+∂∂ γδαβγδαβ wwB &&  (2.2) 

where coefficients are highly oscillating, non-continuous, tolerance-periodic 
functions. Because external loadings are neglected in equation (2.2) it describes 
free vibrations of transversally graded plates under consideration. 

3. INTRODUCTORY CONCEPTS 

In the modelling some concepts defined in the book [9] are used. Some of these 
concepts are reminded below. For tolerance-periodic plates some of them were 
also presented in [4]. 

A cell at ΩΠ∈x  is denoted by ΩΩ +≡ xx)( , })(:{ Π⊂Π∈=Π xx ΩΩ . 

The known averaging operator for an integrable function f is defined by 

 .,),()(
)( 2121

1
21 ΩΩ

Π∈=>< ∫λλ xx
x

dydyyyff  (3.1) 

If f is a tolerance-periodic function in x, its averaged value calculated from (3.1) 
is a slowly-varying function in x. 

Let us denote the k−th gradient of function ,),( Π∈= xxff  α= ,...,1,0k , 

( 0≥α ), by fk∂ ; ff ≡∂0 ; and ),(~ )( ⋅⋅kf  be a function defined in mR×Π . 

Function )(Π∈ αHf  is the tolerance-periodic function, ),( ΩΠ∈ α
δTPf , if 

for α= ,...,1,0k  the following conditions are satisfied 

(1º) ))(),(~()( 0)( ΩHf k ∈⋅∃Π∈∀ xx  ]||),(~)([|| )(
)(

0 δ≤⋅−⋅∂ ΠΠ xx
x H

kk ff , 

(2º) ∫ ⋅
Π∈⋅

)(
0)( )(),(~

Ω
Cdf k zz . 
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Function ),(~ )( ⋅xkf  is called the periodic approximation of fk∂  in ,),( Π∈xxΩ  
α= ,...,1,0k . 

Function )(Π∈ αHF  is the slowly-varying function, ),( ΩΠ∈ α
δSVF , if 

(1º) ),( ΩΠ∈ α
δTPF , 

(2º) ],,0),(|),(~[)( )(
)( α=∂=⋅Π∈∀ KkFF kk xxx xΩ . 

Function )(Π∈φ αH  is the highly oscillating function, ),( ΩΠ∈φ α
δHO , if 

(1º) ),( ΩΠ∈φ α
δTP , 

(2º) ],...,1,0),(~|),(~[)( )(
)( α=φ∂=⋅φΠ∈∀ kkk xxx xΩ . 

(3º) ),( ΩΠ∈∀ α
δSVF  ),( ΩΠ∈φ≡∃ α

δTPFf  

 α=φ∂=⋅ ,,1,|)(~)(|),(~
)()(

)(
KkFf kk

xx
xxx

ΩΩ
. 

For α=0 let us denote )0(~~ ff ≡ . 

Let h(⋅) be defined on Π  a highly oscillating function, ),(2 ΩΠ∈ δHOh ,  

continuous together with gradient ∂1h. However, gradient ∂2h is a piecewise 
continuous and bounded. Function h(⋅) is the fluctuation shape function of the 
2-nd kind, ),(2 ΩΠδFS , if it depends on λ as a parameter and conditions hold: 

(1º) ∂kh∈O(λα−k) for k=0,1,…,α, α=2, ∂0h≡h, 
(2º) <µh>(x)≈0 for every ΩΠ∈x , 

where µ>0 is a certain tolerance-periodic function. 

4. MODELLING ASSUMPTIONS 

Following the monography [9] and using the introductory concepts we can 
formulate two fundamental modelling assumptions. 

The first of them is the micro-macro decomposition, in which it is 
assumed that the plate deflection w can be decomposed in the form: 

 ,,,,1),,()(),(),( Π∈=+= xxxxx NAtVhtWtw AA
K  (4.1) 

where ),(),(),,( 2 ΩΠ∈⋅⋅ δSVtVtW A  (for every t) are basic kinematic unknowns, 

and ),()( 2 ΩΠ∈⋅ δFShA . Function W(⋅,t) is called the macrodeflection; VA(⋅,t) are 

called the fluctuation amplitudes; however, hA(⋅) are the known fluctuation 
shape functions. 

The tolerance averaging approximation is the second modelling 
assumption, in which terms O(δ) are assumed to be negligibly small in the 
course of modelling, e.g. in formulas: 
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;10;,,1;2,1;

,)()()()()(
),()()()(

),()()(

222 ,,, Π∈Π∈Π∈φ
<<δ<==αΠ∈

δ+>∂φ=<>∂φ<
δ+>φ=<>φ<

δ+>φ=<>φ<

δδδ
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FShSVFTP
NA

OFhFh
OFF

O

A

AA

Kx

xxx
xxx

xx

  

5. TOLERANCE MODELLING 

Following the book [9] the modelling procedure will be outlined below.  
The starting point of the modelling is the formulation of the action 

functional (averaged over the plate thickness) in the form: 

 ,)),(),,(),,(),,(,())((
1

0
∫ ∫
Π

ααβ ∂∂=⋅
t

t
dtdtwtwtwtww yyyyyy &ΛΑ  (5.1) 

where the lagrangean Λ is given by: 

 ).(2
1 wwDww γδαβαβγδ ∂∂−µ= &&Λ  (5.2) 

The Euler-Lagrange equation 

 ,0
   

=
∂∂
∂∂−

∂
∂−

∂
∂

∂
∂

αβ
αβ

wwwt
ΛΛΛ

&

 (5.3) 

written for lagrangean (5.2) leads to the fundamental equation of the plate 
theory (2.2), describing free vibrations for transversally graded plates. 

Using the tolerance modelling to action functional (5.1) in the first step 
we substitute micro-macro decomposition (4.1) to action functional (5.1). In the 
next step, applying averaging operator (3.1) to the action functional we obtain 
the tolerance averaging of functional ))(( ⋅wΑ  in the form 

 ,),,,,,())(),((
1

0
∫ ∫
Π

αβ∂><=⋅⋅
t

t
AA

h
A

h dtdVWVWWVW yy &&ΛΑ  (5.4) 

with the averaged form >< hΛ  of lagrangean (5.2): 

 
}.

)2{(2
1

BABABABA

BB
h

VVhhVVhhDWW
WVhDWD

&&&& >µ<−>∂∂<+>µ<−
−∂>∂<+∂><−>=<

γδαβαβγδ

γδαβαβγδαβαβγδΛ
 (5.5) 

The principle stationary action used to hΑ  leads to the following system of 

Euler-Lagrange equations: 
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 (5.6) 

Coefficients of equations (5.6) are slowly-varying functions in x. 

6. MODEL EQUATIONS 

Combining formula (5.5) with equations (5.6) the following system of equations 
for W(⋅,t) and VA(⋅,t) is obtained: 

 
.0)()()(

,0)())()((
=>µ<+>∂∂<+∂>∂<

=>µ<+>∂<+∂><∂
γδαβαβγδαβγδαβγδ

γδαβγδγδαβγδαβ
BBABBAA

BB

VhhVhhBWhB
WVhBWB

&&

&&

xxx
xxx

 (6.1) 

Equations (6.1)2 involve the underlined terms with the microstructure parameter 
λ. The characteristic feature of equations (6.1) is that coefficients are 
slowly-varying functions in x. These equations and micro-macro decomposition 
(4.1) constitute the tolerance model of thin transversally graded plates, which 
describes the effect of the microstructure size on free vibrations of these plates. 
For a rectangular plate with midplane Π=(0,L1)×(0,L2) boundary conditions 
have to be formulated only for the macrodeflection W (on the edges x1=0, L1 and 
x2=0, L2), but not for the fluctuation amplitudes VA, A=1,…,N. These functions 
are slowly-varying in x. 

It can be shown that ).( 4λ>∈µ< Ohh BA  Thus, after neglecting the term 

with λ in equation (6.1)2 the algebraic equations for the fluctuation amplitudes 
VA are obtained: 

 .)( 1 WhBhhBV BBAA
αβγδαβγδ

−
γδαβαβγδ ∂>∂<>∂∂<−=  (6.2) 

Substituting right-hand side of (6.2) into (6.1)1 and denoting  

>∂<>∂∂<>∂<−>≡< χεγδχε
−

νπφµφµνπηκαβηκαβγδαβγδ
BBAAh hBhhBhBBB 1)(  

we arrive at the following equation for W(⋅,t): 

 .0)())(( =>µ<+∂∂ γδαβγδαβ WWBh
&&xx  (6.3) 

Equation (6.3) together with micro-macro decomposition (4.1) represent the 
asymptotic model of thin transversally graded plates, which can be obtained in 
the framework of the formal asymptotic modelling procedure, cf. the book [9]. 
Equation (6.3) neglects the effect of the microstructure size on free vibrations of 
these plates. 
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7. APPLICATIONS – FREE VIBRATIONS OF A PLATE BAND 

7.1. Introduction 
Let us consider free vibrations of a thin plate band with span L along the x1-axis, 
The plate band has a functionally graded material structure along its span. The 
material properties of the plate are assumed to be independent of the 
x2-coordinate. A fragment of this plate is shown in Fig. 2. 

The problem under consideration is treated as independent of the 
x2-coordinate. Let us denote x=x1, z=x3, x∈[0,L], z∈[−d/2,d/2], where d is a 
constant plate thickness, and ∂≡∂1. It means that in this problem we assume the 
basic cell ]2/,2/[ λλ−≡Ω , in the interval Λ≡[0,L], and λ, λ<<L, is the length of 

this cell. It is also assumed that λ<< L. A cell with a centre at x∈[0,L] is denoted 
by ]2/,2/[)( λ+λ−≡ xxxΩ . 

 
Fig. 2. A fragment of a thin transversally graded plate band 

It is assumed that the plate band is made of two component elastic 
isotropic materials, characterised by: Young’s moduli E′, E″, Poisson’s ratios ν′, 
ν″ and mass densities ρ′, ρ″, respectively. These materials are perfectly bonded 
across interfaces. It is assumed that E(·), ρ(·) are tolerance-periodic functions in 
x, ),()(),( 0 ΩΛ∈⋅ρ⋅ δTPE , but Poisson’s ratio ν≡ν′=ν″ is constant. Hence, under 

condition E′≠E″ and/or ρ′≠ρ″ the material structure of the plate band can be 
treated as functionally graded along the x-axis. 

Let us assume that the properties of the plate band are described by the 
following functions: 

 




λλγ+∪λγ−∈ρ′′
λγ+λγ−∈ρ′=⋅ρ ],,2/))(1[(]2/))(1(,0[for,

),2/))(1(,2/))(1((for,),(
xxz

xxzz  (7.1) 

 




λλγ+∪λγ−∈′′
λγ+λγ−∈′=⋅ ],,2/))(1[(]2/))(1(,0[for,

),2/))(1(,2/))(1((for,),(
xxzE

xxzEzE  (7.2) 

where γ(x) is a distribution function of material properties, cf. Fig. 3. 
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We assume only one fluctuation shape function, i.e. A=N=1. Hence, we 
denote h≡h1, V≡V1. Micro-macro decomposition (4.1) of the field w(x,t) takes 
the form: 

 ),,()(),(),( txVxhtxWtxw +=  

where ),(),( ),,( 2 ΩΛ∈⋅⋅ δSVttW V  for every ),( 10 ttt ∈ , ),()( 2 ΩΩ∈⋅ δFSh . 

 
Fig. 3. A cell of the transversally graded plate band 

For the cell shown in Fig. 3 the periodic approximation of the fluctuation shape 
function h(x) can be assumed as 

 ,),()],()/2[cos(),(~ 2 Λ∈∈+λπλ= xxzxczzxh Ω  

where c(x) is determined by 0~~ >=µ< h . The parameter c(x) is a slowly-varying 
function in x and has the form: 

 
)]}(~1[)(~{
))]((~sin[)(

xx
xxcc

γ−ρ′′+γρ′π
ρ′′−ρ′γπ== , 

where )(~ xγ  is the periodic approximation of the distribution function of 

material properties γ(x). In calculations of derivatives hh ~ ,~ ∂∂∂  the parameter 
c(x) is treated as constant. Hence: 

 )/2cos(4)(),/2sin(2)( 2 λππ−=∂∂λππλ−=∂ zzhzzh . 

Using definitions of tolerance-periodic functions (2.1) for the plate band 
under consideration we have: 

 )()(),()( )1(12 2
3 xExBxdx d
ν−≡ρ≡µ . 

Introducing denotations: 

 
,,ˆ

,,,ˆ
11

11
11

>µ=<µ>µ=<µ
>∂∂∂∂=<>∂∂≡<>≡<

hh
hhBBhBBBB  (7.3) 

tolerance model equations (6.1) take the form: 

E′′, ρ′′ 

d 

γ(x)λ (1−γ(x))λ/
2 λ 

(1−γ(x))λ/
2 

x 

the symmetry 
axis 

z 

E′, ρ′ 
O 

E′′, ρ′′ 
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.0

,0ˆ)ˆ(
1111

11

11

=µ++∂∂
=µ++∂∂∂∂

VVBWB
WVBWB
&&

&&

 (7.4) 

Equations (7.4) describe free vibrations of the transversally graded plate band 
under consideration in the framework of the tolerance model. 

Moreover, using denotations (7.3) equation (6.3) has the form 

 ,0ˆ])/)(ˆ[( 112
11 =µ+∂∂−∂∂ WWBBB &&  (7.5) 

which describes free vibrations of this plate band within the asymptotic model. 
Coefficients of equations (7.4) and (7.5) are slowly-varying functions in x. 

7.2. Example −−−− the finite differences method applied to the asymptotic 
model equation 

Our example is restricted to analyse free vibrations of the transversally graded 
plate band using only the asymptotic model described by equation (7.5). This 
equation has slowly-varying functional coefficients. Hence, the problem of free 
vibrations will be analysed using the finite differences method. 

Let us assume the solution to equation (7.5) in the form 

 ),cos()(),( txUtxW ω=  (7.6) 

where ω is a free vibrations frequency, U(·) is so called eigenvalue function for 
the macrodeflection W, satisfying boundary conditions for x=0, L. Substituting 
(7.6) into equation (7.5) we have 

 .0ˆ])/)(ˆ[( 2112
11 =µω−∂∂−∂∂ UUBBB  (7.7) 

Let us consider two cases of the boundary conditions for the plate band: 
1) the simply supported plate band 

 ;0)(,0)(
,0)0(,0)0(

==∂∂==
==∂∂==

LxULxU
xUxU  (7.8) 

2) the clamped plate band 

 .0)(,0)(
,0)0(,0)0(

==∂==
==∂==

LxULxU
xUxU  (7.9) 

Introducing denotations: 

 
,,,

,ˆ,,,
,ˆ,ˆ,ˆ

11)2(11)1(11)0(

)0(
11

)2(
11

)1(
11

)0(

)2()1()0(

BFBFBF
CBDBDBD

BABABA

∂∂=∂==
µ=∂∂=∂==

∂∂=∂==
 

equation (7.7) can be written in the form 
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.0])(
)(
)(2

)(
4)()(2[

]
)(
)(2[2])([

)0(22)1(
3)0(

2)0(

2)0(

)1()1()0()2(2)0(

)0(

2)1()2()0(
)2(

)1(
2)0(

2)0(
)1(

)0(

)0(
)1(

)0(

2)0(
)0(

=ω−∂∂−

−+++−+

+∂∂∂+−+∂∂∂∂−

UCUF
F
D

F
FDDFD

F
DDDA

UF
F
DD

F
DAU

F
DA

 (7.10) 

In the finite differences method interval Λ=[0,L] is divided on n intervals. 
Derivatives of function g=g(x), x∈Λ, with respect to x can be written as 
differences: 

 ),2()(
),()(,)(

11)(
1

112
1

2 −+∆

−+∆
+−=∂∂

−=∂=
iiix

iixi

gggxg
ggxggxg

 (7.11) 

where ∆x is an increment of argument x, i=0,1,…n. Hence, using formulas 
(7.11) equation (7.10) takes the form of system of differences equations: 

 

.0])(
)(
)(2

)(
4)()(2[

]
)(
)(2[

])([

)0(2
)(

22)1(
3)0(

2)0(

2)0(

)1()1()0()2(2)0(

)0(

2)1()2()0(
)2(

)(
)(3)1(

2)0(

2)0(
)1(

)0(

)0(
)1(

)(
6)(4

)0(

2)0(
)0(

2
11

3
322113

4
2112

=ω−−

−+++−+

++−+

+−

∆
+−

∆
−+−−−

∆
+++−

−+

−−+−++

−−++

iix
UUU

i
i

i

i

iiiii

i

iii
i

x
UUUUUU

i
i

i
i

i

i
i

x
UUUUU

i

i
i

UCF
F
D

F
FDDFD

F
DDDA

F
F
DB

F
DA

F
D

A

iii

iiiiii

iiiii

 (7.12) 

Formula (7.12) is a system of algebraic linear equations for unknowns Ui. Using 
boundary conditions (7.8) and (7.9) we have: 

1) for the simply supported plate band 

 
;0,0

,0,0

2
11

2
101

)(
2

)(
2

0

==
==

∆
+−

∆
+−

−+

−

x
UUU

n

x
UUU

nnnU

U
 (7.13) 

2) for the clamped plate band 

 
.0,0

,0,0

2

20
11

11

==
==

∆
−

∆
−

−+

−

x
UU

n

x
UU

nnU
U

 (7.14) 

Equations (7.12) with formulas (7.13) or (7.14) make it possible to find values 
Ui, i=1,…n−1. 



FREE VIBRATIONS OF THIN PLATES WITH TRANSVERSALLY GRADED…  159 

 
 

7.3. Results 
Let us consider three distribution functions of material properties γ(x), assuming 
their periodic approximations in the form: 

− the 1st case (φ=1) 

 )/(sin)(~ 2 Lxx π=γ ; (7.15) 

− the 2nd case (φ=2) 

 )/(cos)(~ 2 Lxx π=γ ; (7.16) 

− the 3rd case (φ=3) 

 2)1/2()(~ −=γ Lxx . (7.17) 

Let a nondimensional frequency parameter be given by: 

 ,22)1(122
2 ω≡Ω ′

ρ′ν− LE  (7.18) 

with the free vibrations frequency ω determined by the finite differences method 
from equation (7.10). 

Calculational results are shown as plots in Figs. 4-9. Curves presented in 
Figs. 4-6 are made for the simply supported plate band, but in Figs. 7-9 – for the 
clamped plate band. Figs. 4 and 7 show results for the distribution function of 
material properties γ(x) given by (7.15) (φ=1), Figs. 5 and 8 – for the function 
γ(x) given by (7.16) (φ=2), Figs. 6 and 9 – for the function γ(x) given by (7.17) 
(φ=3). Plots of the frequency parameters versus ratio ρ″/ρ′ are presented in 
Figs. 4a, 5a, 6a, 7a, 8a, 9a (for E″/E′=0.25, 0.5, 0.75, 1), but in Figs. 4b, 5b, 6b, 
7b, 8b, 9b there are shown plots of the frequency parameters versus ratio E″/E′ 
(for ρ″/ρ′=0.08, 0.51, 0.74, 1). All these results are calculated for the Poisson’s 
ratio ν=0.3 and the ratios: λ/L=0.1, d/λ=0.01. 
 a) b) 

  
Fig. 4. Plots of the lower frequency parameters Ω for the simply supported plate band 

and function γ(x) denoted by φ=1 versus: a) the ratio of mass densities ρ″/ρ′, b) the ratio 
of Young’s moduli E″/E′ (ν=0.3, ratio λ/L=0.1, ratio d/λ=0.01) 
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 a) b) 

  
Fig. 5. Plots of the lower frequency parameters Ω for the simply supported plate band 

and function γ(x) denoted by φ=2 versus: a) the ratio of mass densities ρ″/ρ′, b) the ratio 
of Young’s moduli E″/E′ (ν=0.3, ratio λ/L=0.1, ratio d/λ=0.01) 

 a) b) 

  
Fig. 6. Plots of the lower frequency parameters Ω for the simply supported plate band 

and function γ(x) denoted by φ=3 versus: a) the ratio of mass densities ρ″/ρ′, b) the ratio 
of Young’s moduli E″/E′ (ν=0.3, ratio λ/L=0.1, ratio d/λ=0.01) 

 a) b) 

  
Fig. 7. Plots of the lower frequency parameters Ω for the clamped plate band and 

function γ(x) denoted by φ=1 versus: a) the ratio of mass densities ρ″/ρ′, b) the ratio of 
Young’s moduli E″/E′ (ν=0.3, ratio λ/L=0.1, ratio d/λ=0.01) 
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 a) b) 

  
Fig. 8. Plots of the lower frequency parameters Ω for the clamped plate band and 

function γ(x) denoted by φ=2 versus: a) the ratio of mass densities ρ″/ρ′, b) the ratio of 
Young’s moduli E″/E′ (ν=0.3, ratio λ/L=0.1, ratio d/λ=0.01) 

 a) b) 

  
Fig. 9. Plots of the lower frequency parameters Ω for the clamped plate band and 

function γ(x) denoted by φ=3 versus: a) the ratio of mass densities ρ″/ρ′, b) the ratio of 
Young’s moduli E″/E′ (ν=0.3, ratio λ/L=0.1, ratio d/λ=0.01) 

Analysing results presented in Figs. 4-9 the following remarks can be 
formulated: 
1) values of the lower free vibrations frequencies depend on ratios E″/E′ and 

ρ″/ρ′, i.e.: 
a. they increase with the increasing of the ratio E″/E′ (cf. Figs. 4b, 5b, 6b, 

7b, 8b, 9b), 
b. they decrease with the increasing of the ratio ρ″/ρ′ (cf. Figs. 4a, 5a, 6a, 

7a, 8a, 9a); 
2) values of the lower free vibrations frequencies depend on distribution 

functions of material properties γ(x) under consideration, e.g.: 
a. the highest values of these frequencies are obtained for the 3rd case 

(φ=3) given by (7.17), cf. Figs. 6, 9, 
b. the smallest values of these frequencies – for the 1st case (φ=1) given by 

(7.15), cf. Figs. 4, 7; 
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3) differences between the values of the free vibrations frequencies for various 
ratios ρ″/ρ′ depend on the distribution functions of material properties γ(x), 
e.g. for the 1st case (φ=1) these differences are smaller than for the other 
cases (φ=2,3), cf. Figs. 4, 7. 

8. FINAL REMARKS 

Using the tolerance modelling to the known differential equation of Kirchhoff-
type plates with a transversally graded macrostructure the tolerance model 
equations are derived. In the framework of this technique the governing 
differential equation with non-continuous, tolerance-periodic coefficients is 
replaced by the system of differential equations with slowly-varying 
coefficients. The characteristic feature of the obtained tolerance model 
equations is that they describe the effect of the microstructure size on the overall 
behaviour of transversally graded plates under consideration. On the other hand, 
the asymptotic model neglects this effect and describes these plates only on the 
macrolevel. 

Our considerations in the presented example are restricted to analyse only 
lower free vibrations frequencies, which can be calculated within both the 
proposed models – tolerance and asymptotic. From this example it can be 
observed that these frequencies decrease with the increasing of the ratio of the 
mass densities ρ″/ρ′ and increase with the increasing of the ratio of the Young’s 
moduli E″/E′. These frequencies depend also on the distribution function of 
material properties γ(x). 

Other special problems of vibrations for the transversally graded plates 
and some comparisons with results obtained within other methods will be 
presented in forthcoming papers. 
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DRGANIA SWOBODNE PŁYT CIENKICH O POPRZECZNEJ GRADACJI 
WŁASNOŚCI 

S t r e s z c z e n i e  

W pracy rozpatrywane są drgania cienkich płyt kompozytowych, charakteryzujących się 
„wolną” zmianą własności makroskopowych (uśrednionych). Płyty nazywane są płytami 
o poprzecznej gradacji własności. Zaproponowano pewne matematyczne modele takich 
płyt. Następnie, stosując te modele obliczono podstawowe częstości drgań swobodnych 
pasma płytowego, wykorzystując metodę różnic skończonych. 
 
 
 
 




