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The flow of particles suspended in fluids and transported through different geometries is 
a process with numerous applications. Realistic filters have randomly-interconnected 
channel space with complex flow path. However, in micro-fluidic systems, channel space 
may resemble two-dimensional (2D) tessellation. Here we adopt the network flow 
concept to analyze 2D micro-filters and study the filter efficiency and the clogging time. 
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1. INTRODUCTION 

The geometrical and statistical properties of networks are the focous of research 
efforts in the fields of computer science, mathematical biology, statistical 
physics and technology. A lot of systems operate as a two-dimensional network 
and numerous devices are constructed in a planar fashion. Examples are grids of 
processors, radar arrays, wireless sensor networks, as well as a wide range of 
micromechanical devices. Especially, the microfluidic systems are built with the 
use of methods borrowed from the semiconductor industry [1]. Such methods 
generally employ the fabrication of highly ordered microscale structures. 
Molecular filtration using nanofilters is an important engineering problem, with 
very diverse applications ranging from chemical processing to biological 
applications. Biochemical analysis of aqueous solutions involves the flow of 
particles of different shapes suspended in fluids and transported through 
different geometries. A filtrate particle flowing through the pore space may be 
trapped by the geometric constraint or other adhesive mechanisms. Realistic 
filters have randomly-interconnected channel space with complex flow path. 
However, in microfluidic systems, channel space may resemble two-
dimensional tessellation [1], [5], [11]. Here, the term “channel” refers to 
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a conduit of any desirable shape through which liquids may be directed and the 
term “microfluidic” refers to the structure wherein one or more dimensions is 
less than 10-5 m. The problem we consider is the clogging process of 
a hypothetical microfilter with the channel space built up according to a given 
two dimensional tessellation. The objective of our investigation is to determine 
the role played by the network geometry in this process provided that the flow 
of liquid and suspended molecules is laminar. 

2. TECHNOLOGICAL ASPECTS 

Physical and technological constituents of network employed in mass transport 
cover waste range of size scale from huge oil installations with macroscopic 
pipes to nano-fabricated channels transporting countable sets of molecules [1]. 
Such nano-scale transport primarily exists in the world of biology where the 
nanofluidic channels present in living organisms deliver nutrients into cells and 
evacuate waste from cells. A class of artificially fabricated systems can even 
organize particles’ transport in a network-like manner with no material-channel-
structure inside it, as is the case of systems sorting in an optical lattice [16] or 
the Maragoni flows induced in thin liquid films for the purpose of microfluidic 
manipulations. In this latter case such devices as channels, filters or pumps are 
completely virtual. They have no physical structure and do their job by localized 
variation in surface tension due to the presence of heat sources suspended above 
the liquid surface [3]. 

In this contribution, we pay special attention to microfluidic devices. 
They are constructed in a planar fashion [5] and typically comprise at least two 
flat substrate layers that are mated together to define the channel networks. 
Channel intersections may exist in a number of formats, including cross 
intersections, “T” intersections, or other structures whereby two channels are in 
fluid communication [11]. Due to the small dimension of channels the flow of 
the fluid through a microfluidic channel is characterized by the Reynolds 
number of the order less than 10. In this regime the flow is predominantly 
laminar and thus molecules can be transported in a relatively predictable manner 
through the microchannel.  

3. TWO DIMENSIONAL MICRONETWORKS 

Numerous channel arrangements forming networks are encountered in 
technology. Apart from random arrangements an important class of networks, 
with dedicated channel architecture, is employed in microelectronic and 
microfluidic devices. Especially, the ordered-channel-space networks are 
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interesting from the theoretical point of view and also because of their 
applicability in filters. 

3.1. Network geometry 
These ordered networks have channel spaces built around the lattices known in 
the literature as Archimedean and the Laves lattices [9]. For a given 
Archimedean lattice all its nodes play the same role thus, from the mathematical 
point of view, all the Archimedean lattices are the infinite transitive planar 
graphs. They divide the plane into regions, called faces, that are regular 
polygons. There exist exactly 11 Archimedean lattices. Three of them: the 
triangular, square and hexagonal lattices are built with only one type of face (see 
Fig. 1) whereas the remaining eight lattices need more than one type of face. 
The former lattices belong to the regular tessellations of the plane and the latter 
ones are called semiregular lattices.  
 

Fig. 1. Regular Archimedean lattices: (a) hexagonal, (b) square and (c) triangular. 

Another important group of lattices contains dual lattices of the 
Archimedean ones. The given lattice G can be mapped onto its dual lattice DG 
in such a way that the center of every face of G is a vertex in DG, and two 
vertices in DG are adjacent only if the corresponding faces in G share an edge. 
The square lattice is self-dual, and the triangular and hexagonal lattices are 
mutual duals. The dual lattices of the semiregular lattices form the family called 
Laves lattices. Finally, there are 19 possible regular arrangements of channel 
spaces.  

The lattices are labeled according to the way they are drawn [9]. Starting 
from a given vertex, the consecutive faces are listed by the number of edges in 
the face, e.g. a square lattice is labeled as (4, 4, 4, 4) or equivalently as (44). 
Consequently, the triangular and hexagonal lattices are (36) and (63), 
respectively. Other, frequently encountered lattices are (3, 6, 3, 6) – called 
Kagomé lattice and its dual D(3, 6, 3, 6) - known as Necker Cube lattice. In 
some ways these 5 lattices serve as an ensemble representative to study 

     (a)   (b)   (c) 
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conduction problems in two dimension. They form pairs of mutually dual 
lattices and also share some local properties as e.g. the coordination number z 
being the number of edges with common vertex. 

Besides the above mentioned lattices, in this paper we have also analyzed 
other tiling, namely (3, 122), (4, 82), D(4, 82), (33, 42), and D(33, 42). Some of 
these lattices are presented in Fig. 1. 

3.2. Percolation phase transition 
Percolation theory is a mathematical concept which merges connectivity and 
transport in complex networks. It deals with the connectivity regarded  as the 
possibility to find an accessible route between terminal nodes of a given 
network. The physical side of percolation relies on the possibility to pass an 
amount of transported medium through this accessible route. 

Percolation theory was invented in order to explain the fluid behaviour in 
a porous material with randomly clogged channels [4]. Consider a network with 
two terminals, source and sink, and assume that only fraction of the channels is 
accessible to transport. If this part of conducting channel is spanned between the 
source and the sink then the network is in the conducting phase with nonzero 
conductibility [6]. If the fraction of channels, available for a medium flow, is 
not sufficient to connect these two reservoirs the flow conductance vanishes and 
the network becomes locked. This threshold fraction of working channels for 
which the network enters the non-conducting phase is called the percolation 
threshold and this phase change is known as the percolation transition. If, 
instead of blocked channels, we consider the non-transporting nodes of the 
lattice then we deal with the so-called site percolation. Here we are mainly 
interested in the case of non-transporting channels so we will evoke the bond 
percolation transition at the bond percolation threshold (Table 1). 

Table 1. Bond percolation thresholds for networks analysed in this work. 

Lattice Bond percolation threshold pc 

(36) triangular 0.3473 

(44) square 0.5000 

(63)  hexagonal 0.6527 

(3, 6, 3, 6) 0.5244 

D(3, 6, 3, 6) 0.4756 

(4, 82) 0.6768 

D(4, 82) 0.2322 

(33, 42) 0.4196 

D(33, 42) 0.5831 

(3, 122) 0.7404 
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4. EFFICIENCY OF LIQUID TRANSFER THROUGH 
ARCHIMEDEAN AND LAVES LATTICES 

The problem we consider is the conductibility of the networks with 
Archimedean and Laves channel-network geometries. We focus our analysis on 
the filter efficiency represented by a drop in filter permeability [7], [10]. 
Assume that a hypothetic flow of particles transported by fluid is operated by 
the network whose channels are arranged according to the edges of a given 
lattice. We apply the network flow language. In this framework, all channels are 
characterized by their capacitances C. These capacitances are quenched random 
variables governed by a uniform probability distribution defined in the range 
[0, 1] to assure C = 0 for the clogged channel and C = 1 for the fully opened 
channel. We define the filter’s effective conductibility as follows 

( ) ( )nn CCCCCC ,,,
1

,,, 21
0

21 KK Φ
Φ

=φ  (4.1)

where Φ(C1, C2, …, Cn) is the flux transmitted by the filter whose channels have 
restricted possibilities to maintain the flow and Φ0 = Φ(C1 = 1, C2 = 1, …, 
Cn = 1). 

Equation (4.1) permits to compare performance of different lattice 
geometries in their job as a potential transporting network. We have computed 
the average values of φ for an ample set of values of length (LX) and width (LY) 
of some of our 10 networks. As an example, in Fig. 2 we present φ for the 
square lattice.  

Fig. 2. Average filter’s effective conductibility, defined by (4.1), computed for different 
values of length (LX) and width (LY) of the square lattice. The lines are drawn using (4.2) 

and they are only visual guides. 
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We have found that for all lattices φ has the following form: 

( ) ( ) ( )[ ]YXXYX LLLaaLL ⋅ψ+=φ −δ 1
21 tan/,  (4.2)

where: a1, a2, δ are the parameters and ψ is the function, all dependent on the 
lattice symmetry. For sufficiently long and wide network (4.2) is characterized 
by the value of a1. This one-parameter characteristic permits us to estimate how 
two-dimensional networks are resistant against to clogging. For the square, 
Kagomé and hexagonal lattices a1 takes the values: 0.237, 0.1722 and 0.1604, 
respectively. Thus, the square lattice is much more robust then e.g., Kagomé 
lattice even that both these lattices share the same value of the coordination 
number z = 4, and so their local channel arrangements are similar. 

5. SIZE-EXCLUSION FILTERING 

Network models play an important role in microscopic description of flows 
observed in daily experiments. Among the applications worth to mention is the 
control of ground water contaminant transport and production from oil 
reservoirs. These, so-called large scale phenomenas, involve an ample volume 
of liquid. On the other hand there are micro- or even nano-scale flows through 
highly integrated microfluidic devices [11]. In this work we are concerned 
mainly with these micro-flows problems. 

Size-exclusion filtration is a process for cleaning a fluid from undesirable 
molecules by passing it through a medium in order to mechanically arrest the 
harmful molecules [7], [10], [17]. The connectivity of the medium is modelled 
by a network model. We consider a hypothetic flow of particles transported by 
fluid through the network of channels arranged according to  the positions of the 
edges of the chosen lattice. All channels are characterized by their radii r which 
are quenched random variables governed by a given probability distribution. 
This distribution will be specified later. In order to analyze the filter clogging 
process we employ a cellular automata model with the following rules [14, 15]: 
� Fluid and a particle of a radius R enter the filter and flow inside it due to an 

external pressure gradient.  
� The particle can move through the channel without difficulty if r > R, 

otherwise it would be trapped inside a channel and this channel becomes 
inaccessible for other particles.  

� At an end-node of the channel, the particle has to choose a channel out of the 
accessible channels for movement.  

� If at this node there is no accessible channel to flow the particle is retained in 
the channel. Otherwise, if the radius of the chosen channel r’  > R the particle 
moves to the next node.  
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� The movement of the particle is continued until either the particle is captured 
or leaves the filter.  

� Each channel blockage causes a small reduction in the filter permeability and 
eventually filter becomes clogged. 

A minimalist requirements for the filter blockage investigation: 
� injected particles are identical spheres with the radius R, 
� the channel radius is drawn from a discrete two-point probability distribution 

function, whereas P(r > R) = p is the only model parameter.  
In our minimalist model the channel space is represented by a network of 

interconnected, wide (W) and narrow (N), cylindrical pipes. Fluid containing 
suspended particles flows through the filter according to the previously stated 
rules. 

We present the results of the numerical simulations of the above specified 
filter. Every time step particles enter the filter - one particle per each accessible 
entry channel and we count the time t required for the filter to clog. For each 
analyzed geometry and for several values of p from the range [0.05, pc] we 
performed 103 simulations and then we have built empirical distributions of the 
clogging time t. Here pc is the fraction of W channel for which the network lost 
its filtering capability. It is because of sufficiently high p values that there exist 
statistically significant number of trajectories formed only by W channels and 
spanned between input and output of the filter. 

Our simulations yield a common observation [2], [8]: the average time 
required for the filter to clog can be approximated by the following function: 

( )[ ]cppt 2/tan π≈  (5.1)

where the values of pc are in excellent agreement with the bond percolation 
thresholds of the analyzed networks (see Table 1). Fig. 3 shows t  as a function 
of p for selected lattices, 3 lattices out of 10 lattices we have analyzed. 

6. CONCLUSION 

In this paper we have discussed transport properties of two-dimensional 
networks. We heve exploited two extreme pictures: a cellular automata 
microscopic-like picture and a completely statistical approach to an operating 
network considered it as the network supporting the flow trough a collection of 
randomly conducting channels. Even though the cellular automata rules are too 
simple to capture the detailed interactions in the real system this approach 
enable us to see how the system becomes damaged. Also the network flow 
concept is useful to study the interplay between geometry and transport 
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properties of ordered lattices. Its main advantage relays on a very simple  
 

 

Fig. 3. Average clogging time for regular lattices: solid line, triangular lattice; dashed 
line, square lattice; dash-dotted line, hexagonal lattice. The line are drawn using (5.1) 

and they are only visual guides. 

representation of the inner structure yet keeping a bridge between the 
conductibility, the geometry (lattice’s symmetry, coordination number) and the 
statistical global property (bond percolation threshold). 

An interesting subclass of transportation problem, not directly discussed 
in this contribution, concerns the transport in environments that evolve in time 
[12]. Each pair of neighbouring nodes is connected by a channel, which can be 
conducting or blocked and the state of the channel changes in time. An example 
is a network of chemically active channels that capture undesired molecules. 
Ones the molecules are trapped by channel-binding-centres the channel itself 
becomes inactive during the chemical reaction  needed to convert the molecules. 
Keeping fixed the portion of conducting channels the evolving environment 
reorganises their positions. The conductibility of the network in such  
circumstances differs from that one corresponding to the static partition of 
gradually clogging channels. Appropriate models of transport in changing 
environment deal with so-called dynamic (or stirred) percolation [13]. 

Even that dynamically percolated networks have not been analysed here 
our efficiency analysis and cellular automata approaches are also applicable in 
such case. We expect to analyse the effective conductibility of two-dimensional 
lattices with evolving bond-activities in the near future. 
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MODEL SIECIOWY MIKROFILTRACJI 

S t r e s z c z e n i e  

Mikroukłady filtrujące charakteryzują się dwuwymiarową regularną siecią kanałów. 
Praca dotyczy wpływu symetrii sieci na wydajność filtrów i ich odporność na zatykanie. 
Układ filtrujący jest modelowany za pomocą sieci wzajemnie połączonych kanałów, 
których średnice są dyskretnymi zmiennymi losowymi o zadanych rozkładach 
prawdopodobieństwa. Średnice kanałów są tak dobrane, że płyn i filtrowane cząstki 
przepływają swobodnie przez kanały szerokie (S), zaś w kanałach wąskich (W) cząstki są 
zatrzymywane. Ruch cząstki trwa do momentu jej zatrzymania w jednym z kanałów lub 
do momentu opuszczenia filtru. Cząstki są wprowadzane do układu do czasu jego 
zablokowania. Analizowano sieci kanałów o symetriach reprezentatywnych dla 
dwuwymiarowych filtrów o strukturach kanałów odpowiadających regularnym 
i półregularnym podziałom płaszczyzny. Z otrzymanych histogramów czasu blokowania 
filtru wynika, że dla każdej struktury sieci kanałów wartość oczekiwana czasu blokady 
ma rozbieżność typu tangens, gdy frakcja kanałów S staje się bliska progowi perkolacji 
wiązań danej sieci. Statystycznie zbiór kanałów S zaczyna umożliwiać komunikację 
między wejściem i wyjściem z układu i układ traci własności filtruj ące. 
 

 




