
CIVIL AND ENVIRONMENTAL ENGINEERING REPORTS 
 

No. 3  2009 
 

THE INFLUENCE OF TRANSVERSE SHEARING 
AND ROTATORY INERTIA ON THE VIBRATIONS OF 
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The aim of the paper was to determine the influence of transverse shear deformation and 
rotatory inertia on the natural frequencies and on the values of displacements of beams 
made of fibrous composites reinforced with layers of long fibres. It was assumed that the 
matrix of the composite beam possesses linear elastic and transversally isotropic 
properties. Moreover a reinforcement in the form of layers composed of long fibres 
symmetrically located in the cross section was considered. In order to describe the 
displacement and strain state of the matrix, Timoshenko theory was assumed. Using the 
complete analytical solutions obtained in the paper the accuracy analysis of results was 
performed in comparison with the theory of Bernoulli beam. 
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1. INTRODUCTION 
The fibrous composites are playing an increasing role as construction materials 
in a wide variety of applications. They are used in civil engineering and 
chemical, aerospace and shipbuilding industries. The composites composed of 
the matrix reinforced with long fibres (see Fig. 1), are characterized by high 
strength capability, lightness and significant transverse non-homogeneity. 

Technical application of fibrous composite materials needs to take into 
considerations their shear deformation vulnerability in order to carry out the 
strength calculations [1, 2, 3, 6, 8, 10, 12]. Theoretical and experimental 
investigations show that the use of the classical assumption about the non-
deformability of the normal section makes the values of the calculated 
displacements (deflections) lower. On the other hand it makes higher both the 
critical loads and the natural frequencies [10]. The errors connected with  
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Fig. 1 Construction element reinforced with the layers of long fibres. 

neglecting the influence of shear deformation on the vibrations of fibrous 
composite beam result not only from the relation  and the load type but also 
from the relation  (Young’s modulus of the fibres to Young’s modulus of 
the matrix) and from the fibre density and its location in cross-section [1, 2]. 

lh /
EE r /

The aim of this study is to determine the influence of the transverse shear 
deformations and rotatory inertia on the natural frequencies and on the value of 
displacement field of beams made of fibrous composites reinforced by layers of 
long fibres.  

The composite can be defined as a material consisting of at least two 
components. The first component constitutes the main phase (matrix). The 
second one, immersed in the matrix, constitutes the fibrous phase (2nd phase). 
The fibrous phase consists of any amount of families. 

The family is a group of long fibres laying on the planes parallel to the 
neutral axis of the beam. The fibres belonging to the family are thin, straight and 
so densely packed that the continuous model can be assumed. We assume that 
the two phases meet the continuity criteria both in the sense of displacements 
and strains. As a consequence of the above assumptions we can take into 
consideration a theoretical model in the form of continuous double-phase 
medium. In such model the continuum of the 1st phase is immersed in the 
continuum of the 2nd phase. The idea of the model presented herein was taken 
from the works of Holnicki-Szulc [4] and Świtka [13]. 

The dynamic problem of beams and plates made of transversally isotropic 
material has been investigated by a number of authors e.g. Nowacki [9], 
Kączkowski [7], Szcześniak [11, 12], Jemielita [5]. For a wide literature review 
of the problem see [5, 7, 12]. 
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2. FORMULATION OF THE PROBLEM 
Let we analyse the transverse vibration problem of fibrous composite prismatic 
beam (cross section ) in xzhb×  plane (see Fig. 2). Applying the Timoshenko 
theory, displacements of any point of the cross section can be described using 
the equations 
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where  and  denote respectively horizontal and vertical components of the 
displacement vector for points laying on the neutral axis. The 

u w
ψ  is the angle of 

rotation of the cross section. 

 
( )txp ,Fig. 2 Simply supported beam loaded by transverse load  and by axial load 

: a) model  b) example of the symmetric reinforcement of the cross section 
with two pair of long fibre families. 
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In this work we assume that the matrix is made of the transversally 
isotropic perfectly elastic material obeying Hooke’s relations 

.'      ; xzxzxx GE γτεσ ==  (3) 

The fibre phase (reinforcement) consists of symmetrically located vertical 
layers of fibrous families. Each family consists of continuous, straight fibres to 
coincide with ( )...3,2,1== rzz rx -axis and laying in planes , 

. The fibres of each family are thin, densely packed and 
support only axial loads. We assume that the fibres are made of linear elastic 

( 2/ ,2/ hhz r −∈ )
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material which much higher strength coefficients in comparison with the 
coefficients of the matrix. The force in the r-th family is given by   

( ), or
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r
x

rrrr
x AEjS εε −=  (4) 

where  mean respectively the unit elongation, the initial 
distortion, the Young’s modulus, the cross-section area of the fibre and the 
amount of fibres in the family.  
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We assume in the paper the perfect adherence between the matrix surface 
and the fibres surfaces so the resultant internal forces in the composite beam can 
be calculated as a sum of forces in the beam’s components.  
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Making use of equations (2), (3), (4) and assuming the amount of „ ” 
equal pairs of fibre families to be symmetrically located in the cross-section at 
the distances  

i

( )2/ ,0 hei ∈;.... , , 21 i
r eeez ±±±= , and also neglecting the 

initial elongation of fibres, the equations (5) take the form 
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where  
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represent respectively tension/compression stiffness of the beam and its bending 
stiffness [3]. Moreover  - shear modulus of the 
matrix, .  

'   ; 12/   ; 3 GbhJbhA ==
6/5=k

We formulate the equations of motion of a straight prismatic beam based 
on the Hamilton principle. The assumption that the variations of displacements 
for the times  and  are equal to zero, gives the following variational 
equation 
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to be satisfied for any value of functions uδ wδδψ,  and .  In the above 
expression  denotes the external transverse distributed load,  
denotes the external axial force, the symbol ρ denotes density and 

( txppz ,= ) ( )tS
ψρ &&J  is the 

moment of rotatory inertia. Dots denote differentiation with respect to the time 
coordinate t . 

The equation (8) implicates the system of three equations of motion 
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and the appropriate natural boundary conditions. Analysing uncoupled problem 
of axial and transverse vibrations we obtain in the first case two combinations of 
possible conditions for each boundary. In the case of pure transverse vibrations 
the number of combinations of boundary conditions is equal to four. The initial 
conditions correspond with displacements u , ψ  and , and their velocities. w

3. THE INFLUENCE OF THE ROTATORY INERTIA ON THE 
NATURAL FREQUENCIES 

First of all let we determine the order of magnitude of the influence of the cross 
section rotatory inertia ψρ &&J  on the transverse natural frequencies of composite 
beam. 

Using the equations of motion (9) we obtain, taking into consideration the 
constitutive equations (6) and eliminating the variable ψ , the following 
differential equation describing the eigenvalue problem 
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rd and 5thThe 3  component in equation (10) respects the influence of the 
roratory inertia and the 4th component respects the influence of the transverse 
shear deformation. 

In the case of a simply supported beam, the equation (10) will be satisfied 
if 
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where  denotes the deflection amplitude, nA nω  means the natural frequency 
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Substituting (11) into (10) gives  
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If we take into consideration only the first two components in the equation 
(12) then we will obtain the formula to calculate the natural frequencies of a 
slender beam obeying the Bernoulli hypothesis 

,422
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In the expression (13) the influence of the shear deformations and the rotatory 
inertia effect wasn’t taken into account. 

Substituting (13) into the last component of (12), as a first approximation, 
we notice that this component can be treated as a small 2nd order term with 
respect to another components so it can be neglected [9]. 

Making use of the above remarks the equation (12) gives  
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If we take in (14) the value of inertia  to be equal zero we will obtain the 
formula to calculate the natural frequencies respecting only the influence of the 
shear deformation. 
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respecting only the influence of the rotatory inertia. 
Let we apply the following coefficient in (15) 

2'kAlG
D
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It characterises the shear deformability of the composite beam [3]. By using (7)2  

( )ν+= 12'GE ζand taking , the coefficient  becomes 
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ζThe equation (18) shows that the coefficient  strongly depends on the 
parameters lh EEn rr =,  (Young’s modulus of the fibres to Young’s 
modulus of the matrix), AAj rrr =μ  (density of fibre packages in the r-th 
family) and hei  (location of the family of fibres in the cross section). Figure 3 
presents the diagram of the coefficient ζ  as a function of the beam slenderness 

2=iEE rhl  and of the ratio  with 30,0=ν ; ; 02,0=rμ he 45,01 =,  and 
. he 35,02 =

bεpεThe relative errors  and  resulting from the neglecting the 
influence of shear deformations and rotatory inertia with relation to the natural 
frequency (13) of the slender composite beam are as follows, if we take into 
account (15) and (16) 
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hlζFig. 3 The coefficient  as a function of the beam slenderness  and of the ratio of 

Young’s moduli EE r . 

states how much the influence of the shear deformation is greater than the 
influence of the rotatory inertia. Taking for example 6,2'/ =GE ;  (two 
pairs of identical fibre families in the cross section), ;  (  
of reinforcement), ; 

2=i
02,0=rμ %420=rn

he 45,01 = he 35,02 = 85,12/ =bp εε we obtain . This 
leads to the conclusion that for the composite beams with reinforcement by 
layers of long fibres the influence of shear deformation on the natural 
frequencies is at least one order of magnitude grater than the influence of  
rotatory inertia.     

Taking into account the above conclusion we will neglect the influence of 
the rotatory inertia of the cross section on the vibration of composite beams. 

pεThe relative error  caused by neglecting the influence of shear 

deformation with the length of deformation wave hnl 10=  and  (where  
denotes the cross section height) is equal to 5,3% and 21,1% respectively 

h5 h
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(keeping remaining input values unchanged). So we can easily observe that the 
error is significant and increases in proportion to the coefficient ζ . 

Thus, taking into account the influence of shear deformations only, gives 
the natural frequencies for simply supported composite beam in the form (15). 
The associated eigenmodes are expressed in the form 

( ) xAxW nnn αsin= ( ) xBx nnn αcos=Ψ  ;   . (22) 

4. HARMONICALLY FORCED VIBRATIONS 

( ) ( ) tiexptxp ω−=,In the case of beam vibrations forced by transverse load , 
neglecting the influence of axial loads and rotatory inertia, the system of 
equations (9) transforms into the system of uncoupled equations of motion 
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As a result of the load to act harmonically the displacement  and 
the angle of rotation 

( txw , )
)( tx,ψ  varies harmonically 

( ) ( ) tiexWtxw ω−=,   ;   ( ) ( ) tiextx ωψ −Ψ=, (24) . 

Substituting (24) into (23) gives the following ordinary differential 
equations 
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completed by the appropriate boundary conditions. For the simply supported 

beam we should use 
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and making use of Fourier transform [9] in order to solve the equations (25) 
eventually gives the following solution of the equations of motion (23) 
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ω nωwhere  denotes the frequency of excitation and  denotes the natural 
frequency. 
 In the case of the load to be uniformly distributed along the beam 

 or for the concentrated load ( ) tipetxp ω−=, ( ) ( ) tiexPtxp ωξδ −−=,  acting in 
the section ξ=x  we obtain respectively 
 The solutions describing the harmonic motion problem for simply 
supported composite shearing-sensitive beam we obtained above can be used to 
evaluate the solutions of the slender reinforced beam problem. We just need to 
eliminate the shear deformation xzγ  substituting  or ∞='G 0=ζ  into 
equations (15), (17), (23), (25), (27), (28) and (29). If we assume additionally 

 (elimination of the fibre phase) we will obtain appropriate solutions for 
the homogeneous beam [9]. 

0=rA
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0→ω The limit case when  gives the static problem. Thus, considering 
the uniformly distributed load p  or the concentrated load  acting in the mid-
span of the beam we will obtain the following extreme values of displacement 
components using (28) and (29) 
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0=ζTaking additionally  leads to the solution of the slender beam 
obeying Bernoulli hypothesis 
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5. PARAMETRIC STUDY 
The aim of the analysis is to determine the influence of shear deformations on 
the value of deflections of the composite beam we deal with in this paper. As we 
mentioned before the girders made of fibrous composites are reinforced using 
fibres characterised by much better mechanical properties than the matrix 
properties. The fibres exhibit significant shear deformability. The use of 
Bernoulli hypothesis is suited for isotropic slender beams. Because of it a direct 
application of this hypothesis to solve the fibrous composite beam problem 
seems to be inappropriate and leads to significant errors. 

The relative error connected with the omitting of shear deformations to be 
calculated for extreme deflections taking into account (30) and (31) becomes, in 

%100⋅
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=
B

B

w
ww

ε  (32) 

the case of uniformly distributed load 

%1006,9 ⋅= ζε . (33) 

For the concentrated load the relative error is 25% greater than the distributed 

%10012 ⋅= ζε  (34) 

load error. In the equation (32) the symbol  denoting the deflection 
calculated in respect with the slender beams theory was used.  

Bw

In order to demonstrate the influence of the beam slenderness changes 
EEn rr =hl ε and of the ratio  on the value of an error  to be committed, let 

we analyse the following data 30,0=ν ,  (4% reinforcement), , 
,  assuming the distributed load problem.  

2=i02,0=rμ
he 45,01 = he 35,02 =

εThe calculated values of the error  are presented in Table 1 and 
visualised in Fig. 4. 
Table 1. 

hl  ε  % 
25 20 15 10 8 4 

10 1,02 1,60 2,84 6,39 9,98 39,9 
20 1,65 2,57 4,57 10,3 16,1 64,3 
50 3,52 5,49 9,77 22,0 34,3 137,3 

100 7,05 10,4 18,4 41,4 64,7 265,2 
200 12,88 20,1 35,7 80,4 125,6 502,3 

E
En

r
r =  

300 19,12 29,8 53,1 119,3 186,4 745,7 
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hlFig. 4 The influence of the beam slenderness changes  and of the ratio 

EEn rr = ε on the value of the relative error  caused by omitting transverse shear 
deformations effect. 

6. CONCLUSIONS 
The analytical complete results obtained in the paper as well as the analysis 
carried out show that considering the influence of the transverse shear 
deformations in the dynamic problem of fibrous composite beams reinforced by 
layers of long fibres strongly results in the natural frequencies and displacements 
to be calculated. 

ζThis influence mainly depends on the vulnerability parameter  which 
strongly depends on the parameters EEn rr = AAj rrr =μ22 lh , ,  
(density of fibres’ locations in the r-th family) and hei  (location of the family 
of fibres in the cross section) and on the way the load is distributed.   

The influence of shear deformations on the behaviour of a homogenous 
beam (without reinforcement) with the ratio 10≥hl  is negligible. An 
important fact we presented in the paper is that for the composite beam 
possessing the same slenderness ratio this influence is significant and may reach 
the values grater than 100% (see Table 1).   
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However the influence of the rotatory inertia on the eigenvalues of 
composite beams is over ten times less than the influence of shear deformations. 
Thus it may be neglected. 

REFERENCES 
1. Gołaś J.: On limits of application of Kirchhoff’s hypothesis in the theory of 

viscoelastic fibrous composite plates, Engineering Transactions, 43, 4 
(1995),603-626. 

2. Gołaś J.: On necessity of making allovance for shear strain in cylindrical 
bending of fibre composite viscoelastic plates, Archives of Civil 
Engineering, 43, 2 (1997), 121-147. 

3. Gołaś J.: Solution for Timoshenko beams expressed in terms of Euler-
Bernoulli solutions for fibre-reinforced straight composite beams [in Polish], 
Akademia Techniczno-Rolnicza, Zeszyty Naukowe Nr 228, Mechanika 47, 
Bydgoszcz 2000, 111-120. 

4. Holnicki-Szulc J.: Distortions in structural systems. Analysis, control, 
modelling [in Polish], PWN, Warszawa-Poznań 1990. 

5. Jemielita G.: Problems of dynamics of plates [in Polish] Mechanika 
Techniczna (Applied Mechanics),Vol. VIII, Woźniak Cz. [red.], PWN, 
Warszawa 2001, pp. 296-330. 

6. Kapania R.K., Raciti S.: Recent advances in analysis of laminated beams 
and plates, Part I. Shear effects and buckling. AIAA J., 27, 7 (1989), 923-
934; Part II. Vibrations and wave propagation. AIAA J., 27, 7 (1989), 935-
946. 

7. Kączkowski Z.: Dynamics of bars and bar structures [in Polish] Mechanika 
Techniczna (Applied Mechanics), Vol. IX, PWN, Warszawa 1988, pp. 182-
240. 

8. Malmeister A.K., Tamuż V.P., Teters G.A.: Strength of polymeric and 
composite materials [in Russian], Zinatne, Riga 1980. 

9. Nowacki W., Dynamics of elastic systems [in Polish], Arkady, Warszawa 
1961. 

10. Reddy J.N., Phan N.D.: Stability and vibration of isotropic, orthotropic and 
laminated plates according to a higher – order shear deformation theory, J. 
Sound and Vibr., 98, 2 (1985), 157-170. 

11. Szcześniak W.: Free vibrations of viscoelastic Timoshenko beam and shield 
[in Polish], Engineering Transactions, 22, 4 (1974), 669-687. 

12. Szcześniak W.: Selected problems of dynamics of plates [in Polish] Oficyna 
Wydawnicza PW, 2000. 

13. Świtka R.: Equations of the fibre composite plates, Engineering 
Transactions, 40, 2 (1992), 187-201. 




