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The paper is devoted to the problem of observability and controllability analysis in nonlinear dynamic systems. Both
continuous- and discrete-time systems described by nonlinear differential or difference equations, respectively, are con-
sidered. A new approach is developed to solve this problem whose features include (i) consideration of systems with
non-differentiable nonlinearities and (ii) the use of relatively simple linear methods which may be supported by existing
programming systems, e.g., Matlab. Sufficient conditions are given for nonlinear unobservability/uncontrollability analysis.
To apply these conditions, one isolates the linear part of the system which is checked to be unobservable/uncontrollable and,
if the answer is positive, it is examined whether or not existing nonlinear terms violate the unobservability/uncontrollability
property.
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1. Introduction

Observability and controllability are fundamental system
theoretical properties intensively studied in many books
and papers (e.g., Kalman et al., 1969; Kwakernaak and
Sivan, 1972; Sussmann, 1979; van der Schaft, 1982;
Isidori, 1989). The reason for investigation of above sys-
tem properties is to conclude if the available model of the
system can be applied to solve the corresponding control
problem.

The problem of observability analysis has been suc-
cessfully solved for a wide class of dynamic systems
linear, linearly-analytical, polynomial, etc. (see, e.g.,
Kalman et al., 1969; Herman and Krener, 1977; Klamka,
1973; 1975; 2002; Sontag, 1979; Nijmeijer, 1982; Isidori,
1989; Jakubczyk and Sontag, 1990; Jank, 2002; Albertini
and D’Alessandro, 2002; Guerman et al., 2008; Zhirabok
and Shumsky, 2008; Kawano and Ohtsuka, 2010). Vari-
ous aspects of observability and controllability have also
been investigated (Kotta and Schlacher, 2008; Krener and
Ide, 2009; Kang and Xu, 2009; Kang, 2010). All of the
above works dealing with nonlinear systems assume that
the system under consideration contains only smooth non-
linearities.

There are only few papers considering the proper-

ties of observability and controllability for non-smooth
systems (Koplon and Sontag, 1993; Murphey and Bur-
dick, 2002; Mincheko and Sirotko, 2002). Koplon and
Sontag (1993) investigated linear continuous-time and
discrete-time systems with a non-smooth output function
and gave a number of observability criteria. Local control-
lability analysis for continuous-time systems performed
by Murphey and Burdick (2002) can be interpreted as a
non-smooth extension of Chow’s theorem, formulated in
terms of generalized differential quotients. The same anal-
ysis by Mincheko and Sirotko (2002) is based on Mor-
dukhovch’s non-smooth constructions, in particular, sub-
differentials and coderivatives.

In the present paper, a new approach to analyze the
observability and controllability properties for nonlinear
dynamic systems that may contain non-smooth nonlinear-
ities is suggested. This approach is based on the so-called
logic-dynamic approach proposed first by Zhirabok and
Usoltsev (2002) and then developed by Zhirabok (2010)
as well as Zhirabok and Shumsky (2010). The main idea
of the approach is to replace the nonlinear system under
consideration by a certain linear one, solving the prob-
lem for this linear system involving linear methods and,
finally, taking into account nonlinear terms to correct the
obtained solution. Contrary to the cited papers, the present
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work investigates global rather than local properties of dy-
namic systems. The main features of the proposed ap-
proach are as follows: (i) it considers systems with non-
smooth nonlinearities in dynamics, (ii) it involves known
linear methods that result in a possibility to support the
observability and controllability analysis by existing pro-
gramming systems without using symbolic software.

The conference version of this paper was presented
by Zhirabok and Shumsky (2010). The present paper con-
tains the following additions:

(i) systems with nonlinear output function are consid-
ered,

(ii) more sophisticated analysis in the case of several
types of nonlinearities is used.

Both allow extending the class of systems to which the
suggested method can be applied.

Consider the class of nonlinear dynamic systems de-
scribed by the difference equations

x′(t+ 1) = f ′(x′(t), u(t)), y(t) = h′(x′(t)), (1)

in the discrete-time case, or differential equations

ẋ′(t) = f ′(x′(t), u(t)), y(t) = h′(x′(t)), (2)

in the continuous-time case, where x′ ∈ X ⊆ R
n,

u ∈ U ⊆ R
m, y ∈ Y ⊆ R

l are vectors of state, con-
trol and output, respectively, f ′ and h′ are nonlinear vec-
tor functions. The function f ′ may be non-smooth and
the function h′ is assumed to be smooth. Suppose that the
function h′ satisfies the condition

rank
(
∂h′

∂x′

)
= l (3)

for all x′ ∈ R
n except on a set of measure zero.

Typical non-smooth nonlinearities in technical sys-
tems are saturation, the Coulomb friction, backlash and
hysteresis. The method suggested in the paper is applica-
ble not only for such types but for others, too.

The rest part of the paper is organized as follows.
Several important system transformations are introduced
in Section 2. Some preliminary results are given in Sec-
tion 3. The problems of observability and controllability
analysis are considered in Sections 4 and 5, respectively.
Generalizations are given in Section 6. Some system is-
sues are considered in Section 7. An illustrative example
is given in Section 8, while Section 9 concludes the paper.

2. System representations

Consider several transformations of the system (1). No-
tice under this that appropriate transformations of the
model (2) are similar to those discussed below for the
model (1) and, as a result, are omitted. Notice also that

these transformations are the starting point for application
of the logic-dynamic approach.

For the system (1), a special coordinate transforma-
tion

x = Ψ(x′)

= ( h′1(x
′) . . . h′l(x

′) x′i1 . . . x′in−l
)T

is given by a function Ψ satisfying the condition

rank
(
∂Ψ
∂x′

)
= n (4)

for all x′ ∈ R
n except on a set of measure zero where

x′i1 , . . . , x
′
in−l

are some variables, h′i is the i-th compo-
nent of the function h′. In new coordinates, the system
takes the form

x(t+ 1) = Ψ(f ′(x′(t), u(t)))

= Ψ(f ′(Ψ−1(x(t)), u(t)))
= f(x(t), u(t)),

y(t) = h′(Ψ−1(x(t))) = Hx(t)

(5)

with H = (Il×l 0), where Il×l is the unit matrix of ap-
propriate dimensions.

Example 1. Let y1 = x′1x
′
2, y2 = exp(−x′3), n = 4,

l = 2. Under this, rank (∂h′/∂x′) = 2 except x′1 = 0 or
x′2 = 0. The functions Ψ and Ψ−1 specify the following
transformations:

x = Ψ(x′) = ( x′1x
′
2 exp(−x′3) x′2 x′4 )T ,

x′ = Ψ−1(x) = ( x1/x3 x3 −ln(x2) x4 )T .

It can be shown that rank (∂Ψ/∂x′) = 4 except
x′1 = 0 or x′2 = 0. As a result,

y1 = (x1/x3)x3 = x1,

y2 = exp(−(−ln(x2))) = x2,

H =
(

1 0 0 0
0 1 0 0

)
.

�

Remark 1. Note that a violation of the conditions
rank (∂h′/∂x′) = l and rank (∂Ψ/∂x′) = n on a set
of measure zero is acceptable because only generic prop-
erties of dynamic systems are analyzed.

Remark 2. The special case is when the function h′ in (1)
is a linear one, i.e., the appropriate equation has the form
y(t) = Hx′(t) for some matrixH . In this case, the model
of the form (5) is obtained under the identity function Ψ
that corresponds to x = x′ and f(x, u) = f ′(x′, u).
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Remark 3. Clearly, the described coordinate transforma-
tion is not unique but this does not affect the result pre-
sented below because controllability and observability are
intrinsic properties independent of such a transformation.

To apply the logic-dynamic approach, the function
f(x, u) is transformed via separating linear terms from
nonlinear ones. Such a transformation results in a system
of the form

x(t+ 1) = Fx(t) +Gu(t)

+ C

⎛
⎜⎝

ϕ1(A1x(t), u(t))
...

ϕp(Apx(t), u(t))

⎞
⎟⎠ ,

y(t) = Hx(t)

(6)

whereF andG are the matrices of appropriate dimensions
describing the linear part of the system;C is an n×p con-
stant matrix constructed as follows: If the right-hand side
of the equation from (5) related to the componentxi(t+1)
contains the nonlinearity ϕj(Ajx, u), then C(i, j) �= 0,
otherwise C(i, j) = 0. Generally, the function ϕj may
contain several terms in the form Ajx.

Example 2. Consider a system described by the equa-
tions

x1(t+ 1) = ln|x1(t)| − x1(t) + u2(t)

+ x2(t) + x2(t)u2
1(t),

x2(t+ 1) = −x2(t) − ln|x1(t)| − u1(t).

In this case, the matrices and functions used in (6) are as
follows:

F =
( −1 1

0 −1

)
, G =

(
0 1
−1 0

)
,

C =
(

1 1
−1 0

)
,

ϕ1(x, u) = ln|A1x|, ϕ2(x, u) = (A2x)u2
1,

A1 = ( 1 0 ), A2 = ( 0 1 ).

In some cases such a transformation leads to an er-
roneous decisions because the main conclusion is made
based on a linear part of the system. �

Example 3. Consider the system

x1(t+ 1) = sign(x2(t)) + u(t),
x2(t+ 1) = x3(t) − x2(t),
x3(t+ 1) = x1(t) − sign(x2(t)) − x3(t) − 2u(t),

y(t) = x1(t).

A matrix description is as follows:

F =

⎛
⎝ 0 0 0

0 −1 1
1 0 −1

⎞
⎠ , G =

⎛
⎝ 1

0
−2

⎞
⎠ ,

H = ( 1 0 0 ), C =

⎛
⎝ 1

0
−1

⎞
⎠ ,

ϕ(x, u) = sign(Ax), A = ( 0 1 0 ).

Clearly, HF = 0, and therefore, an analysis of ob-
servability is impossible. To overcome this difficult, the
formal term x2−x2 is added to the first equation, then the
variable x2 supplements the linear part, and the nonlinear
term becomes sign(x2) − x2. The matrix description is
changed as follows:

F =

⎛
⎝ 0 1 0

0 −1 1
1 0 −1

⎞
⎠ , C =

⎛
⎝ 1 0

0 0
0 −1

⎞
⎠ ,

ϕ1(x, u) = sign(A1x) −A1x,

ϕ2(x, u) = sign(A2x),

A1 = A2 = ( 0 1 0 ).
Generally, to analyze observability, the initial system

can be corrected as follows:

x(t+ 1) = (F + CA)x(t) +Gu(t)

+ C

⎛
⎜⎝

ϕ1(A1x(t), u(t))
...

ϕp(Apx(t), u(t))

⎞
⎟⎠ − CAx(t).

(7)

To analyze controllability, a correction is made by
analogy:

x(t+ 1) = (F + CA)x(t) + (G+ CB)u(t)

+ C

⎛
⎜⎝

ϕ1(A1x(t), B1u(t))
...

ϕp(Apx(t), Bpu(t))

⎞
⎟⎠

− CAx(t) − CBu(t) (8)

with

A =

⎛
⎜⎝

A1

...
Ap

⎞
⎟⎠ , B =

⎛
⎜⎝

B1

...
Bp

⎞
⎟⎠ .

Note that such corrections make the linear part more com-
plicated but allow taking into account all possible nonlin-
ear terms. In the specific case, one may use partial correc-
tion to avoid zero rows or columns in the matrix F .
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Reasoning along similar lines, it is easily to trans-
form (2) into

ẋ(t) = Fx(t) +Gu(t) + C

⎛
⎜⎝

ϕ1(A1x(t), u(t))
...

ϕp(Apx(t), u(t))

⎞
⎟⎠ ,

y(t) = Hx(t).
(9)

Denote by the quintuple Σ = (F,G,H,C,A) the
system (6) or (9). The model (6) or (9) without the non-
linear term will be named a linear part of the system Σ,
denoted by the triple Λ = (F,G,H). In order to avoid
the repetition, interpretation of the main results is given
below only for the discrete-time case; the same results for
the continuous-time case are obvious and can be obtained
by analogy.

3. Preliminary results

There are many different kinds of observability (Herman
and Krener, 1977; Sontag, 1979): single- and multi-
experiment observability, local observability, local weak
observability, global observability. This paper considers
global observability defined as follows: The system (1)
or (2) is said to be globally observable if for every pair
of states x(t0) and x′(t0) a control u(t), t0 ≤ t < ∞,
exists such that H(x(t0), u(t)) �= H(x′(t0), u(t)), where
H(x(t0), u(t)) (H(x′(t0), u(t))) is the output sequence
produced by the system in the initial state x(t0) (x′(t0))
under the control u(t). Thus, multi-experiment observ-
ability is studied.

There are also many kinds of controllability (Herman
and Krener, 1977): local controllability, global controlla-
bility, local weak controllability. This paper is concen-
trated on global controllability defined as follows: The
system (1) or (2) is said to be globally controllable if
for every pair of states x(t0) and x′(t1) a control u(t),
t0 ≤ t ≤ t1, exists which transfer the state from x(t0) to
x′(t1) in a finite time interval [t0, t1].

The main idea of the suggested approach is as fol-
lows: Observability (controllability) of a linear part is
checked and, if it is unobservable (uncontrollable), one
examines whether or not the nonlinear term violates this
conclusion. This examination is based on well-known
canonical forms of unobservable (uncontrollable) linear
systems (Kwakernaak and Sivan, 1972) and on the analy-
sis whether or not the nonlinear term changes the existing
links between observable and unobservable (controllable
and uncontrollable) subsystems in these forms. If these
links are not changed, a conclusion is made that the initial
nonlinear system is unobservable (uncontrollable). Ap-
propriate changes of the links mean that the conclusion
about unobservability (uncontrollability) becomes impos-
sible.

To solve the problem under consideration, well-
known criteria of observability and controllability for lin-
ear systems are used: the system Λ is observable if and
only if rank(V ) = n, where

V =

⎛
⎜⎜⎜⎝

H
HF

...
HFn−1

⎞
⎟⎟⎟⎠ ;

the system Λ is controllable if and only if rank(W ) = n,
where

W = ( G FG . . . Fn−1G ).

Recall that the matrices V and W are known as observ-
ability and controllability matrices of the system Λ, re-
spectively.

Consider first the special case when the system has
only one nonlinearity of the form Cϕ(Ax, u) with a col-
umn matrix C and a row matrix A. Because canonical
decompositions of unobservable and uncontrollable lin-
ear systems play an important part in our analysis, con-
sider linear coordinate transformation given by the matrix
T : Σ ⇒ Σ∗ = (F∗, G∗, H∗, C∗, A∗) according to

x∗(t) = Tx(t), ∀t. (10)

A discrete-time description of the system Σ∗ is given
by the equations

x∗(t+ 1) = F∗x∗(t) +G∗u(t)
+ C∗ϕ(A∗x∗(t), u(t)),

y(t) = H∗x∗(t), (11)

where x∗ is a state vector,F∗,G∗,H∗,C∗, andA∗ are ma-
trices of appropriate dimensions. To be specific, consider
in detail only the discrete-time case.

Consider the relationships between matrices of the
systems Σ and Σ∗. Rewriting (10) with t+1 and involving
(6) and (11), we obtain

F∗x∗ +G∗u+ C∗ϕ(A∗x∗, u)
= TFx+ TGu+ TCϕ(Ax, u).

Notice that to obtain the same relationship for the
continuous-time case, time differentiation of both the
sides of (10) should be used instead of the time shift. If
the nonlinear term Cϕ(Ax, u) is absent, then C = 0 and
from the above well-known relationships we get

F∗T = TF, G∗ = TG, H = H∗T. (12)

This, with (10), results in

C∗ϕ(A∗x∗, u) = C∗ϕ(A∗Tx, u) = TCϕ(Ax, u).
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If ϕ(∗) = const , then

C∗ = TC. (13)

If ϕ(Ax, u) = Ax and C is a nonsingular matrix, then
ϕ(A∗x∗, u) = A∗Tx and

A = A∗T. (14)

When the function ϕ has a particular form, the re-
lationships between matrices may have another (corre-
sponding particular) form. Therefore, (12)–(14) are suf-
ficient (but not necessary) conditions for transformation
Σ ⇒ Σ∗. It can be shown that (13) and (14) are valid
when several nonlinearities are in the system and C is an
n× p matrix, A is a p× n matrix.

Clearly, the relations (12)–(14) are true for the
continuous-time case.

4. Observability analysis

Suppose that
rank(V ) = s < n, (15)

i.e., the system Λ is unobservable. Denote by T ′ the ma-
trix of maximal rank, containing all linearly independent
rows of the matrix V and let

T =
(

T ′

T ′′

)
,

where the matrix T ′′ satisfies the condition rank(T ) = n.
This structure of the matrix T corresponds to the canoni-
cal decomposition (Fig. 1) of the linear part Λ which con-
tains observable and unobservable subsystems denoted as
Λ∗1 and Λ∗2, respectively (Kwakernaak and Sivan, 1972).
The nonlinear term Cϕ(Ax, u) is also transformed by the
matrix T and added to the decomposition as an additional
links between subsystems. Consider the following three
cases.

� �

�
�

u Λ∗1 y

Λ∗2

Fig. 1. Canonical decomposition of an unobservable system.

It is assumed in the first case that an argument of the
nonlinear term is formed on the basis only of the state
vector x1

∗ of the subsystem Λ∗1 and is independent of

state vector of the the subsystem Λ∗2, i.e., it has the form
C∗ϕ(A∗1x1∗, u) with an appropriate matrix C∗, the matrix
A∗ = ( A∗1 A∗2 ) and x1

∗ = T ′x. Then, the above
nonlinear term is added into the decomposition as a link
from the first subsystem to the second one, i.e., the struc-
ture of links in this decomposition remains and, hence,
the added nonlinearity does not violate the unobservabil-
ity property.

Consider the condition for this realization. Notice
first that the equality (14) results in

Ax = A∗Tx = ( A∗1 A∗2 )
(

T ′

T ′′

)
x

= A∗1T ′x+A∗2T ′′x = A∗1x1
∗ +A∗2x2

∗.

Therefore, the nonlinear term has the form
C∗ϕ(A∗1x1

∗, u) under the conditions A∗2T ′′ = 0
and A = A∗1T ′ (i.e., the row matrix A should be a linear
combination of rows of the matrix T ′). The last one is
equivalent to the condition

rank(T ′) = rank
(
T ′

A

)
.

Finally, since rank(V ) = rank(T ′), the above con-
dition can be rewritten as follows:

rank(V ) = rank
(
V
A

)
. (16)

So, the condition (16) describes the situation when
the nonlinear term does not violate the unobservability
property.

Example 4. Consider a system described by the equa-
tions

x1(t+ 1) = x2(t) − x3(t) + u1(t),
x2(t+ 1) = x1(t) + x4(t),
x3(t+ 1) = x4(t) − u1(t)ln|x2(t) − x3(t)|,
x4(t+ 1) = x3(t) + u2(t),

y1(t) = x1(t),
y2(t) = x2(t) − x3(t).

The third (nonlinear) equation can be rewritten in the
equivalent form according to (7):

x3(t+ 1) = x4(t) − x2(t) + x3(t)
− u1(t)ln|x2(t) − x3(t)| + x2(t) − x3(t),

which allows taking

F =

⎛
⎜⎜⎝

0 1 −1 0
1 0 0 1
0 −1 1 1
0 0 1 0

⎞
⎟⎟⎠ , G =

⎛
⎜⎜⎝

1 0
0 0
0 0
0 1

⎞
⎟⎟⎠ ,

H =
(

1 0 0 0
0 1 −1 0

)
, C =

⎛
⎜⎜⎝

0
0
−1
0

⎞
⎟⎟⎠ ,
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ϕ(x, u) = u1ln|Ax| +Ax, A = ( 0 1 −1 0 ).

One can see that

rank(V ) = rank

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 −1 0
0 1 −1 0
1 1 −1 0
1 1 −1 0
1 2 −2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

= 2 < 4,

i.e., a linear part of the system is unobservable. Since

rank
(
V
A

)
= 2,

the condition (16) holds, and the system under consider-
ation is unobservable as well. One can check that if the
third equation is not subject to transformations according
to (7), the final result is the same. �

In the second case, it is assumed that the condition
(16) fails. Consequently, an additional link does not vio-
late the existing connections if it is a member of the un-
observable subsystem Λ∗2 only. According to (13), a con-
tribution of the nonlinear term into the subsystem Λ∗1 is
specified by the matrix C∗1 = T ′C because

C∗ =
(
C∗1
C∗2

)
=

(
T ′

T ′′

)
C.

Therefore, the condition mentioned above holds if C∗1 =
T ′C = 0, or

V C = 0. (17)

Example 5. Consider the system from Example 3 with
the following modifications: the nonlinear term is re-
moved from the third equation and is added to the fourth
one in the form u1(t)ln|x2(t) + x3(t)|. Taking into ac-
count (7), this equation must be rewritten as

x4(t+ 1) = 2x2(t) + u2(t) + u1(t)ln|x2(t)
+ x3(t)| − x2(t) − x3(t).

Therefore a matrix description of the system is as follows:

F =

⎛
⎜⎜⎝

0 1 −1 0
1 0 0 1
0 0 0 1
0 2 0 0

⎞
⎟⎟⎠ , G =

⎛
⎜⎜⎝

1 0
0 0
0 0
0 1

⎞
⎟⎟⎠ ,

H =
(

1 0 0 0
0 1 −1 0

)
, C =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ ,

ϕ(x, u) = u1ln|Ax| −Ax, A =
(

0 1 1 0
)
.

Then one has

rank(V ) = rank

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 −1 0
0 1 −1 0
1 0 0 0
1 0 0 0
0 1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

= 2 < 4,

i.e., a linear part of the system is unobservable. Since

rank
(
V
A

)
= 3,

the condition (16) is violated but, due to V C = 0, the con-
dition (17) holds. Therefore, the initial nonlinear system
is unobservable. It can be shown that, if the fourth equa-
tion is not transformed according to (7), the conclusion
about unobservability does not change. �

In the third case, it is assumed that the conditions
(16) and (17) do not hold. This means that, firstly, an ar-
gument of the nonlinear term is formed not only on the
basis of the state vector of the subsystem Λ∗1 and, sec-
ondly, this function is contained not only in the subsystem
Λ∗2. In this case, suppose that the subsystem Λ∗2 can be
presented in the decomposed form shown in Fig. 2 and
an argument of the nonlinear term is a combination of the
state vectors x1

∗ and x21
∗ of the subsystems Λ∗1 and Λ∗21,

respectively. The latter is equivalent to the condition

rank
(

T ′

T ′′
1

)
= rank

⎛
⎝ T ′

T ′′
1

A

⎞
⎠ , (18)

where the matrix T ′′
1 determines the vector x21∗ according

to the equality x21
∗ = T ′′

1 x. The possibility of such a de-

�

�
�

u Λ∗21

Λ∗22

Fig. 2. Decomposition of an unobservable subsystem.

composition is established as follows.
Notice that the subsystem Λ∗1 estimates the output

vector y and is constructed on the basis of the observ-
ability matrix V . By analogy, one can say that the com-
plex system (Λ∗1,Λ∗21) estimates the actual output vector
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y = Hx and, according to (18), the fictitious output vec-
tor yf = Ax on the basis of the extended observability
matrix

VΣ =

⎛
⎜⎜⎜⎝

HΣ

HΣF
...

HΣF
n−1

⎞
⎟⎟⎟⎠ ,

where

HΣ =
(
H
A

)
.

From the structure of the matrices VΣ and HΣ it follows
that, if we set V = VΣ in the condition (16), then it is
fulfilled, and hence in the case of

rank(VΣ) < n (19)

the desired decomposition is possible and the system is
not observable.

Example 6. Consider a system described by the equa-
tions

x1(t+ 1) = x2(t) − x5(t) + u1(t),
x2(t+ 1) = x1(t) + 2x3(t) − x2(t),
x3(t+ 1) = sign(x4(t)) − x3(t) + x1(t),
x4(t+ 1) = x3(t) + u2(t) − sign(x4(t)),
x5(t+ 1) = x1(t) + x3(t) − x5(t),

y1(t) = x1(t),
y2(t) = x3(t).

A matrix description of the system is as follows:

F =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 −1
1 −1 2 0 0
1 0 −1 0 0
0 0 1 0 0
1 0 1 0 −1

⎞
⎟⎟⎟⎟⎠ ,

G =

⎛
⎜⎜⎜⎜⎝

1 0
0 0
0 0
0 1
0 0

⎞
⎟⎟⎟⎟⎠ , C =

⎛
⎜⎜⎜⎜⎝

0
0
1
−1
0

⎞
⎟⎟⎟⎟⎠ ,

H =
(

1 0 0 0 0
0 0 1 0 0

)
,

ϕ(x, u) = sign(Ax),

A = ( 0 0 0 1 0 ).

One can see that

rank(V )

= rank

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 1 0 0
0 1 0 0 −1
1 0 −1 0 0
0 −1 1 0 1
−1 1 1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

= 3 < 5,

i.e., a linear part of the system is unobservable. Since

rank
(
V
A

)
= 4

and V C �= 0, the conditions (16) and (17) are violated. To
check the condition (19), find the extended output matrix
HΣ and the rank of the observability matrix VΣ:

HΣ =

⎛
⎝ 1 0 0 0 0

0 0 1 0 0
0 0 0 1 0

⎞
⎠ ,

rank(VΣ) = rank

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 −1
1 0 −1 0 0
0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

= 4 < 5.

Thus, the system is unobservable according to (19).
Taking into account (7), one obtains

F =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 −1
1 −1 2 0 0
1 0 −1 1 0
0 0 1 −1 0
1 0 1 0 −1

⎞
⎟⎟⎟⎟⎠ ,

rank(V )

= rank

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 1 0 0
0 1 0 0 −1
1 0 −1 1 0
0 −1 1 0 1
−1 1 2 −2 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

= 4 < 5.

One can easily check that the condition (16) holds, i.e. the
system is unobservable. �

All of the above results are summarized below in the
form of a theorem.

Theorem 1. The system Σ is unobservable if at least one
of the three following situations takes place:

(i) the relations (15) and (16) hold,
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(ii) the relations (15) and (17) hold,

(iii) the relation (19) holds.

Because the criteria of observability for linear sys-
tems are the same for the discrete-time and continuous-
time cases, Theorem 1 is true for continuous-time sys-
tems.

5. Controllability analysis

To analyze the controllability of the system Σ, the dual-
ity principle for linear systems (Kwakernaak and Sivan,
1972) is involved. According to this principle, a linear
system given by the matrices F , G, and H is controllable
if and only if the dual system given by the matrices FT ,
HT , and GT is observable, where the superscript T de-
notes matrix transposition. Thus, to analyze the controlla-
bility of the system Σ, it is necessary, first of all, to con-
struct the observability matrix

Vd =

⎛
⎜⎜⎜⎝

GT

GTFT

...
GT (FT )n−1

⎞
⎟⎟⎟⎠

= ( G FG . . . Fn−1G )T = WT

for the dual system. Suppose that

rank(Vd) = rank(W ) = r < n, (20)

i.e., a linear part Λ of the system Σ is uncontrollable. De-
note by Φ′ the matrix of the maximal rank containing
all linear independent rows of the matrix Vd (transposed
columns of the matrix W ).

Let

Φ =
(

Φ′

Φ′′

)
,

where the matrix Φ′′ satisfies the condition rank(Φ) = n.
The structure of the matrix Φ corresponds to the canoni-
cal decomposition (Fig. 3) of the linear part Λ, containing
controllable and uncontrollable subsystems Λ01 and Λ02,
respectively (Kwakernaak and Sivan, 1972).

� �

�

� �

u Λ01

yh∗

Λ02

Fig. 3. Canonical decomposition of an uncontrollable system.

Compared with observability analysis, that of con-
trollability seems to be more complicated. This is caused
by the fact that the added nonlinearity should be analyzed
involving the uncontrollable subsystem Λ02 and the ma-
trix Φ′′. For this reason, the matrix Φ′′ should be con-
structed in a special way. Below, the matrix Φ′′ is chosen
from the condition Φ′′Φ′T = 0 (i.e., rows of the matrix
Φ′′ should be orthogonal to the rows of the matrix Φ′).
Notice, that such a choice is always possible. The last
condition allows obtaining a canonical decomposition of
the above form by means of the matrix Φ. Then the trans-
formation method in use differs from the conventional one
(Kwakernaak and Sivan, 1972).

Indeed, let the inverse matrix of Φ have the form
Φ−1 = ( R1 R2 ). Then Φ′′R1 = 0, and, hence, with
regard to the equation Φ′′Φ′T = 0, one obtainsR1 = Φ′T .
The dynamics of the transformed system are determined
by the product

(
Φ′

Φ′′

)
F ( R1 R2 ) =

(
Φ′FR1 Φ′FR2

Φ′′FR1 Φ′′FR2

)
.

Consider the equation Φ′′FR1 = Φ′′FΦ′T . By defi-
nition, the columns of the matrix Φ′T consist of all linearly
independent columns of the matrixW , the columns of the
matrix FΦ′T are linear combinations of the columns of
this matrix, i.e., FΦ′T = Φ′TB holds for some matrix B.
Hence, one can write Φ′′FR1 = Φ′′FΦ′T = Φ′′Φ′TB =
0, which means the absence of links from the subsystems
Λ01 into Λ02. Besides,

ΦG =
(

Φ′G
Φ′′G

)
=

(
Φ′G
0

)

because of the condition Φ′′Φ′T = 0, i.e., the subsystem
Λ02 has no input.

As above, the nonlinear term Cϕ(Ax, u) after its
transformation given by the matrix Φ is also added to the
decomposition as an additional link between the subsys-
tems. As under observability analysis, consider the fol-
lowing three cases.

The first case assumes that an additional link does
not violate the existing connections when it is a member
of the uncontrollable subsystem Λ02 only. According to
(13) with

T = Φ =
(

Φ′

Φ′′

)
,

a contribution of the nonlinear term into the subsystem
Λ02 is specified by the matrix C02 = Φ′′C. Therefore,
the condition of the link from the subsystem Λ02 into the
subsystem Λ01 holds if

Φ′′C = 0. (21)

Then from Φ′′Φ′T = 0 and the condition (19) one
can find that the columns of the matrix C must depend
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linearly on the columns of the matrix Φ′T , i.e., for some
matrix C0, the equality

C = Φ′TC0 (22)

has to hold. This is equivalent to the rank condition

rank(Φ′T ) = rank( Φ′T C ).

Since the columns of the matrix W are linear com-
binations of the matrix Φ′T columns, the latter condition
can be written as

rank(W ) = rank( W C ). (23)

Example 7. Consider a system described by the equa-
tions

x1(t+ 1) = x2(t) − x1(t) + u1(t),
x2(t+ 1) = x1(t) + x2(t) + x3(t) + u2(t)x4(t),
x3(t+ 1) = x4(t) − x1(t) − 2x2(t) − 2x3(t)

− u2(t)x4(t),
x4(t+ 1) = x2(t) + x3(t).

The following matrix description corresponds to this
system:

F =

⎛
⎜⎜⎝

−1 1 0 0
1 1 1 0
−1 −2 −2 1
0 1 1 0

⎞
⎟⎟⎠ ,

G =

⎛
⎜⎜⎝

1 0
0 0
0 0
0 0

⎞
⎟⎟⎠ , C =

⎛
⎜⎜⎝

0
1
−1
0

⎞
⎟⎟⎠ ,

ϕ(x, u) = BuAx,

A = ( 0 0 0 1 ),

B = ( 0 1 ).

Then

rank(W )

= rank

⎛
⎜⎜⎝

1 0 −1 0 2 0
0 0 1 0 −1 0
0 0 −1 0 1 0
0 0 0 0 0 0

⎞
⎟⎟⎠ = 2 < 4.

Therefore, a linear part of the system is uncontrol-
lable. As soon as for the matrices W and C the condition
(23) holds, the initial nonlinear system is uncontrollable
as well.

If the system is subjected to the transformation ac-
cording to (8), i.e.,

x2(t+ 1) = x1(t) + x2(t) + x3(t) + x4(t)
+ u2(t) + u2(t)x4(t) − x4(t) − u2(t),

x3(t+ 1) = −x1(t) − 2x2(t) − 2x3(t) − u2(t)
− u2(t)x4(t) + x4(t) + u2(t),

one obtains the following results:

F =

⎛
⎜⎜⎝

−1 1 0 0
1 1 1 1
−1 −2 −2 0
0 1 1 0

⎞
⎟⎟⎠ , G =

⎛
⎜⎜⎝

1 0
0 1
0 −1
0 0

⎞
⎟⎟⎠ ,

rank(W ) = rank

⎛
⎜⎜⎝

1 0 −1 1
0 1 1 0
0 −1 −1 0
0 0 0 0

⎞
⎟⎟⎠ = 2,

i.e., the conclusion concerning controllability does not
change. �

In the second case, violation of (23) is assumed.
Consider the particular case when the nonlinear term has
the form Cϕ(Ax, u) = Cϕ(Ax), i.e., it does not depend
on the control u. Suppose that an argument of the non-
linear term depends only on the state vector of the uncon-
trollable subsystem Λ02 and does not depend on the state
vector of the controllable subsystem Λ01. In this case, the
nonlinear term added to the decomposition preserves the
structure of the links existing in this decomposition, and
hence it does not affect the property of uncontrollability.

The above condition is fulfilled if the row matrix A,
which the argument depends on, is a linear combination
of the matrix Φ′′ rows, i.e., for some matrix A0 it holds
that

A = A0Φ′′,

and then
AΦ′T = A0Φ′′Φ′T = 0 (24)

or
AW = 0. (25)

Example 8. Consider the system

x1(t+ 1) = x2(t) − x1(t) + |x1(t) + x4(t)|
+ u1(t),

x2(t+ 1) = x3(t),
x3(t+ 1) = 2x1(t) − x3(t) + |x1(t) + x4(t)|

+ u2(t),
x4(t+ 1) = −x2(t) − x4(t) − u1(t).

A matrix description of the system is as follows:

F =

⎛
⎜⎜⎝

−1 1 0 0
0 0 1 0
2 0 −1 0
0 −1 0 −1

⎞
⎟⎟⎠ ,

G =

⎛
⎜⎜⎝

1 0
0 1
0 0
−1 0

⎞
⎟⎟⎠ , C =

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠ ,

ϕ(x, u) = |Ax|, A = ( 1 0 0 1 ).



516 A. Zhirabok and A. Shumsky

Computations without system transformation give

rank(W )

= rank

⎛
⎜⎜⎝

1 0 −1 0 1 1
0 0 0 1 2 −1
0 1 2 −1 −4 1
−1 0 1 0 −1 −1

⎞
⎟⎟⎠ = 3 < 4.

Therefore, a linear part of the system is uncontrol-
lable. As soon as rank( W C ) = 4, the condition (23)
does not hold but AW = 0. Therefore, the initial nonlin-
ear system is uncontrollable as well.

One can transform the initial system according to (8)
as follows:

x1(t+ 1) = x2(t) + x4(t) + |x1(t) + x4(t)|
+ u1(t) − (x1(t) + x4(t)),

x2(t+ 1) = x3(t),
x3(t+ 1) = 3x1(t) − x3(t) + x4(t) + |x1(t)

+ x4(t)| + u2(t) − (x1(t) + x4(t)),
x4(t+ 1) = −x2(t) − x4(t) − u1(t)

but it can be shown that the matrix W coincides with the
one given above, and the conclusion about uncontrollabil-
ity of the initial nonlinear system does not change. �

In the third case, it is assumed that the conditions
(23) and (25) do not hold or the function ϕ depends on
the control u. The subsequent analysis is based on the de-
composition of the uncontrollable subsystem Λ02 (Fig. 4)
under the assumptions that an argument of the nonlinear
term is formed on the basis of the state vectors of the sub-
systems Λ01 and Λ021 and that the subsystem Λ022 re-
mains uncontrollable. The possibility of a such decom-
position is established by introducing the fictitious input
vector uf = ϕ(Ax, u) with the matrix C and construct-
ing the extended controllability matrix WΣ based on the
matrix GΣ = ( G C ):

WΣ = ( GΣ FGΣ . . . Fn−1GΣ ). (26)

Then, if
rank(WΣ) < n, (27)

the conclusion is made that the desired decomposition is
possible and the system Σ is uncontrollable, since the con-
dition (23) holds for W = WΣ in this case.

Example 9. Consider a system described by the equa-
tions

x1(t+ 1) = x2(t) − x1(t) + u1(t),
x2(t+ 1) = x3(t) − x2(t),
x3(t+ 1) = x4(t) − x3(t) + x1(t) + u2(t),
x4(t+ 1) = x5(t) − x1(t) − x4(t)

+ ln|x1(t) + x2(t)|,
x5(t+ 1) = x2(t) − x5(t) + u1(t).

A matrix description of the system is as follows:

F =

⎛
⎜⎜⎜⎜⎝

−1 1 0 0 0
0 −1 1 0 0
1 0 −1 1 0
−1 0 0 −1 1
0 1 0 0 −1

⎞
⎟⎟⎟⎟⎠ ,

G =

⎛
⎜⎜⎜⎜⎝

1 0
0 0
0 1
0 0
1 0

⎞
⎟⎟⎟⎟⎠ , C =

⎛
⎜⎜⎜⎜⎝

0
0
0
1
0

⎞
⎟⎟⎟⎟⎠ ,

ϕ(x, u) = ln|Ax|, A = ( 1 1 0 0 0 ).

One can see that

rank(W )

= rank

⎛
⎜⎜⎜⎜⎝

1 0 −1 0 1 1
0 0 0 1 1 −2
0 1 1 −1 −2 1
0 0 0 0 0 0
1 0 −1 0 1 1

⎞
⎟⎟⎟⎟⎠ = 3 < 5,

i.e., a linear part of the system is uncontrollable. Since
rank

(
W C

)
= 4 and AW �= 0, the conditions (23)

and (25) are violated. To check the condition (27), find the
extended output matrix GΣ and rank of the controllability
matrix WΣ:

GΣ =

⎛
⎜⎜⎜⎜⎝

1 0 0
0 0 0
0 1 0
0 0 1
1 0 0

⎞
⎟⎟⎟⎟⎠ ,

rank(WΣ)

= rank

⎛
⎜⎜⎜⎜⎝

1 0 0 −1 0 0 1 1 0
0 0 0 0 1 0 1 −2 1
0 1 0 1 −1 1 −2 1 −2
0 0 1 0 0 −1 0 0 1
1 0 0 −1 0 0 1 1 0

⎞
⎟⎟⎟⎟⎠

= 4 < 5.

�

Λ021

Λ022

Fig. 4. Decomposition of an uncontrollable subsystem.



An approach to the analysis of observability and controllability in nonlinear systems via linear methods 517

Therefore, the system is unobservable according to (27).
Taking into account (8) with B = 0, we obtain

F =

⎛
⎜⎜⎜⎜⎝

−1 1 0 0 0
0 −1 1 0 0
1 0 −1 1 0
0 1 0 −1 1
0 1 0 0 −1

⎞
⎟⎟⎟⎟⎠ ,

rank(W )

= rank

⎛
⎜⎜⎜⎜⎝

1 0 −1 0 1 1
0 0 0 1 1 −2
0 1 1 −1 −1 1
0 0 1 0 −2 1
1 0 −1 0 1 1

⎞
⎟⎟⎟⎟⎠

= 4 < 5.

One can easily to check that the condition (23) holds, i.e.,
the system is uncontrollable. �

All of the above results can be summarized in the
form of a theorem.

Theorem 2. The system Σ is uncontrollable if at least one
of the two following situations takes place:

(i) both relations (20) and (23) hold,

(ii) both relations (20) and (25) hold,

(iii) relation (27) holds.

As in the case of observability analysis, Theorem 2
is true for continuous-time systems.

6. Generalizations

Consider a number of generalizations assuming that con-
ditions (15) and (20) hold.

Generalization 1. The nonlinear function ϕ contains sev-
eral arguments of the form Ax:

ϕ(A1x,A2x, . . . , Arx, u) (28)

where Ai is a row matrix, i = 1, 2, . . . , r; for example,
ϕ(x, u) = sin(x1)ln|x2u|. In this case, it is required to
form the matrix

AΣ =

⎛
⎜⎜⎜⎝

A1

A2

...
Ar

⎞
⎟⎟⎟⎠

and to use it as described in Sections 4 and 5.

Generalization 2. The nonlinear function ϕ has the gen-
eral form used in (6) and (9). In this case, the analysis is
more sophisticated. Consider the property of observability
first based on the following algorithm.

Algorithm 1.

Step 1. If the output function of the original system is
nonlinear and the condition (3) holds, transform the coor-
dinates to obtain the output function in the form y = Hx.
Otherwise go to Step 2.
Step 2. Transform the system into the form (6); if some
rows or columns of the matrix F are zero, make a correc-
tion to obtain the form (7) in the general case.
Step 3. Construct the matrix T ′ containing all linearly
independent rows of the matrix V .
Step 4. Calculate the product

T ′C

⎛
⎜⎝

ϕ1(A1x, u)
...

ϕp(Apx, u)

⎞
⎟⎠

and combine similar terms. For example, the sum
Aixuk + Ajxuk takes a form Aijxuk, where Aij =
Ai+Aj . Collect all row matrices of the formAj1 ,Aj2 ,. . . ,
Ajd

contained in this product and construct the matrix

AΣ =

⎛
⎜⎜⎜⎝

Aj1

Aj2
...
Ajd

⎞
⎟⎟⎟⎠ . (29)

Step 5. Check the condition (16); if it holds for A = AΣ,
then the system Σ is unobservable.
Step 6. If the condition (16) does not hold for some row
matrices Ai1 , Ai2 ,. . . , Aic from AΣ, then the condition
(17) is checked for columns of the matrixC with numbers
i1, i2, . . . , ic. If it holds for all columns, a conclusion is
made that the system Σ is unobservable.
Step 7. Assume that the condition (16) does not hold for
some row matrices Ai1 , Ai2 ,. . . , Aic from AΣ and the
condition (17) does not hold for columns of the matrix
C with numbers k1, k2, . . . , kb, ki ∈ {i1, i2, . . . , ic}. In
this case, construct the matrix

A′ =

⎛
⎜⎜⎜⎝

Ak1

Ak2

...
Akb

⎞
⎟⎟⎟⎠ .

Step 8. The extended observability matrix VΣ is con-
structed on the basis of the matrix

HΣ =
(
H
A′

)
.

If rank(VΣ) < n, then the system Σ is unobservable.

The analysis of controllability is based on the follow-
ing algorithm.
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Algorithm 2.

Step 1. Transform the system into the form (6); if some
rows or columns of the matrix F are zero, make a correc-
tion to obtain the form (7) in the general case.
Step 2. Construct the matrix Φ′, containing all linearly
independent rows of the matrix WT .
Step 3. Calculate the product

ψ(x, u) = Φ′C

⎛
⎜⎝

ϕ1(A1x, u)
...

ϕp(Apx, u)

⎞
⎟⎠ ,

combine similar terms and construct the matrix AΣ as in
(29) (we use the same notations for simplicity). Consider
three cases.
Step 4. Check the condition (25); if it holds for A = AΣ

and the function ψ(x, u) does not contain the control u,
then the system Σ is uncontrollable.
Step 5. If the condition (25) does not hold for some row
matrices Ai1 , Ai2 ,. . . , Aic from AΣ or the functions ϕi1 ,
ϕi2 , . . . ,ϕic contain the control u, then the condition (23)
has to be checked for columns of the matrix C with num-
bers i1, i2, . . . , ic; if it holds for all columns, a conclusion
is made that the system Σ is unobservable.
Step 6. Assume that the condition (25) does not hold for
some row matricesAi1 ,Ai2 ,. . . ,Aic fromAΣ or the func-
tions ϕi1 , ϕi2 , . . . ,ϕic the contain the control u and condi-
tion (23) does not hold for columns of the matrix C with
numbers k1, k2, . . . , kb, ki ∈ {i1, i2, . . . , ic}. In this case,
construct the matrix

C′ = ( C(k1) C(k2) . . . C(kb) ),

where C(ki) is the ki-th column of the matrix C.
Step 7. The extended controllability matrix WΣ is con-
structed on the basis of the matrix GΣ = ( G C′ ). If
rank(WΣ) < n, then the system Σ is uncontrollable.

Generalization 3. Some matrices in the general form of
the nonlinear function ϕ have the form (28). In this case,
all operations from the Generalization 2 take place. It is
only required to replace the term “row matrix” by the term
“matrix”.

7. System issues

Suppose that the system Σ is unobservable according to
the criteria (16) and the matrix T ′ is constructed on the
basis of the observability matrix V . Then, the equality
A = A∗T ′ holds for some matrix A∗, and it follows from
Wohnam (1985) that the equalities in (12) are valid. De-
fine the matrix C∗ as C∗ = CT ′ and represent the equal-
ities in (12) and the last two equations in the form of the
commutative diagrams

�
���

�
�
��� �

�

�

� �

�
���

�
���

U T ′ T ′ T ′

X X X X

X∗ X∗ X∗ X∗

T ′
Y

G

G∗

F

H

F∗ H∗

(30)

�
���

�
�
��� �

�
���

�
���

U0
T ′

X X

X∗ X∗

T ′
Z

C

C∗

A

A∗

(31)

HereX∗ is the state space of the system Σ∗, U0 is the
range of the nonlinear function ϕ(Ax, u), and Z is the set
of the argumentAx values.

The system Σ∗ may be referred to as an image of the
original system. Its dimension is less than that of Σ. The
matrices describing this system (in particular, F∗,H∗, and
A∗) are solutions to (12) and (14), respectively. Let us
find out how to obtain these solutions. From the defini-
tion of the matrix T ′ it follows that rows of the matrices
TF and H are linear combinations of those of the matrix
T ′. therefore, the first equation in the above system of
three equations is always solvable in matrices F∗ and H∗.
The second equation has solutions if the condition (16)
holds. If the condition (16) is violated, Eqn. (14) is not
solvable. However, this does not matter, since the equal-
ity (17) holds. According to it, C∗ = 0, and the system
Σ∗ is linear, which means that the condition (14) is not
important and the diagrams (31) can be omitted.

If the system is unobservable according to (19), the
matrix T ′ is constructed on the basis of the matrix VΣ and
the equality A = A∗T ′ holds in this case.

The matrices considered can be defined as follows.
Let T ′−R be the right inverse matrix of T ′, i.e., T ′T ′−R =
Is×s. Then from (12)–(14) we obtain

F∗ = T ′FT ′−R, G∗ = T ′G, H∗ = HT ′−R,

C∗ = T ′C, A∗ = AT ′−R.

Similarly to the image of an unobservable system and
according to Wohnam (1985), one can construct an image
of an uncontrollable system. However, according to the
duality principle for nonlinear systems (Zhirabok, 1998a;
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1998b), it is more interesting to construct an inverse im-
age of such a system, which can be done as follows. It
follows from the duality principle for linear systems that
for the unobservable dual system (uncontrollable original
system) and the matrix Φ′ constructed on the basis of the
matrix WT , the condition (12) and

FT
0 Φ′ = Φ′FT , HT

0 = Φ′HT , GT = G0Φ′

hold for some matrices F0, H0, and G0.
Write

P = Φ′T .

Notice that the matrix P is composed the maximum
number of linearly independent columns of the controlla-
bility matrix W . With regard to this, rewrite the above
equations as

PF0 = FP, H0 = HP, G = PG0. (32)

The obtained equations describe the homomorphism
of linear systems and can be represented by the commuta-
tive diagrams

�
���

�
�
��� �

�

�

� �

�
���

�
���

U P P P

X0 X0 X0 X0

X X X X

P Y

G0

G

F0

H0

F H

(33)

If the condition (23) holds, then the matrix Φ′ satis-
fies the equation C = Φ′TC0 = PC0. Since the product
AΦ′T = AP in (20) is not generally equal to zero, denote
it by A0 = AP . Represent the last two equations by the
commutative diagrams

�
���

�
�
��� �

�
���

�
���

U0
P

X0 X0

X X

P Z

C0

C

A0

A

(34)

Suppose that the condition (25) holds, then
Cϕ(Ax) = Cϕ(0) for states accessible from the initial
zero state and, if ϕ(0) = 0, the diagrams (34) can be omit-
ted. If the system is uncontrollable according to (27), the

matrix P is constructed on the basis of the matrixWΣ and
the equality C = PC0 holds.

Comparing the diagrams (30) and (33), as well as
(31) and (34), one can conclude that they are dual. It is
not difficult to see that the relations (16) and (23), as well
as (17) and (25), are also dual. These dual relations sup-
plement the well known duality principle for linear sys-
tems; they may also be viewed as particular cases of gen-
eral duality principles for nonlinear systems (Herman and
Krener, 1977; Zhirabok, 1998a; 1998b).

Matrices describing the inverse image Σ0 =
(F0, G0, H0, C0, A0) of the uncontrollable system are so-
lutions to (12) and C = PC0. Also A0 = AP . The
possibility of their solution can be analyzed in the same
way as in the case of observability. They can be found
as follows. Let P−L be the left inverse matrix of P , i.e.,
P−LP = Ir×r. Then, based on (32), equationsC = PC0

and A0 = AP , we obtain

F0 = P−LFP, G0 = P−LG, H0 = HP,

C0 = P−LC, A0 = AP.

Let us show that a linear part of the system Σ∗ is
observable. It is easy to see that from (12) the equali-
ties H = H∗T ′ and HF = H∗T ′F = H∗F∗T ′ follow.
It can be shown that the latter relation is valid for arbi-
trary powers of the matrices F and F∗: HF i = H∗F i∗T ′,
i = 2, 3, . . . Then, taking into account the form of the
observability matrix for the system Σ, we have

V =

⎛
⎜⎜⎜⎝

H
HF

...
HFn−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

H∗T ′

H∗F∗T ′
...

H∗Fn−1
∗ T ′

⎞
⎟⎟⎟⎠ = V∗T ′

where V∗ is the observability matrix of the system Σ∗.
From the matrix theory, it is known that

rank(V ) = rank(V∗T ′)
≤ min(rank(V∗), rank(T ′)). (35)

Let the system Σ be unobservable and rank(V ) =
rank(T ′) = s < n. Then it follows from the above rank
inequality that rank(V∗) = s. Since the system Σ∗ is s-
dimensional, its linear part is observable. As noted earlier,
this generally does not imply that the entire system Σ∗ is
observable.

To obtain the dual result, i.e., the controllability of a
linear part of the system Σ0, the relations (32) are used,
which yields G = PG0 and FG = FPG0 = PF0G0.
The latter relation is true also for arbitrary powers of the
matrices F and F0: F iG = PF i

0G0, i = 2, 3, . . . Then,
taking into account the form of the controllability matrix,
we have

W = ( G FG . . . Fn−1G )

= ( PG0 PF0G0 . . . PFn−1
0 G0 ) = PW0,
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where W0 is the controllability matrix of the system Σ0.
Let the system Σ be uncontrollable and rank(W ) =

rank(P ) = r < n. Then, it follows from the rank in-
equality (like (35)) that rank(W0) = r. Since the system
Σ0 is r-dimensional, its linear part is controllable.

8. Illustrative example

Consider the system given by the equations

x1(t+ 1) = x2(t) − x1(t) + u1(t),
x2(t+ 1) = 2x3(t) + 2x4(t) + |x1(t)|u2(t),
x3(t+ 1) = x2(t) − x1(t) − x3(t) − x5(t)

+ x6(t) − ln|x5(t)| − u2(t),
x4(t+ 1) = x5(t) − x4(t) + ln|x5(t)| + u2(t),
x5(t+ 1) = x1(t) − x5(t) + cos(x4(t)),
x6(t+ 1) = x2(t) − x6(t) + u1(t),

y1(t) = x1(t) + x3(t),
y2(t) = x4(t) − x2(t).

A linear part of this system and nonlinearities are de-
scribed by the matrices

F =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0
0 0 2 2 0 0
−1 1 −1 0 −1 1
0 0 0 −1 1 0
1 0 0 0 −1 0
0 1 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠
,

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0
0 0
0 −1
0 1
0 0
1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, C =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 1 0
−1 0 0
1 0 0
0 0 1
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

H =
(

1 0 0 0 0 0
0 0 1 1 0 0

)
,

ϕ(x, u) =

⎛
⎝ ln|A1x|

|A2x|
cos(A3x)

⎞
⎠ ,

A1 =
(

0 0 0 0 1 0
)
,

A2 =
(

1 0 0 0 0 0
)
,

A3 =
(

0 0 0 1 0 0
)
.

Analysis shows that we may consider only the first
three blocks of the observability matrix:

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 1 0 0
−1 1 0 0 0 0
−1 1 −1 −1 0 1
1 −1 2 2 0 0
2 −1 3 3 0 −2

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Since rank(V ) = 4, a linear part of the system is not
observable. Verification of the condition (16) shows that it
is fulfilled for the matrixA2 and is not fulfilled forA1 and
A3. However, since V C(1) = V C(3) = 0, the original
nonlinear system is also unobservable.

The controllability matrix is found to be

W =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 0 −1 0
0 0 0 0 0 0 0 0
0 −1 0 1 −1 −1 3 1
0 1 0 −1 1 1 −3 −1
0 0 1 0 −2 0 3 0
1 0 −1 0 1 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

As rank(W ) = 3, a linear part is unobservable. One can
easily check that the condition (23) holds for C(1) and
C(3) except for C(2) under A2W �= 0. Therefore, we
have to find the extended matrix WΣ based on the matrix
HΣ = ( H C(2) ):

WΣ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 −1 0 1 1 0 −1
0 0 1 0 0 0 0 0 2
0 −1 0 0 1 1 −1 −1 −1
0 1 0 0 −1 0 1 1 0
0 0 0 1 0 0 −2 0 1
1 0 0 −1 0 1 1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Because rank(WΣ) = 5 < 6, the initial system is uncon-
trollable.

Transforming the initial system according to (8), we
obtain

F =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0
1 0 2 2 0 0
−1 1 −1 0 −2 1
0 0 0 −1 2 0
1 0 0 1 −1 0
0 1 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠
,

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0
0 1
0 −1
0 1
0 0
1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 1 0 0
−1 1 0 0 0 0
−1 1 −1 −1 0 1
2 −1 2 2 0 0
3 −1 3 3 0 −2

⎞
⎟⎟⎟⎟⎟⎟⎠
,

W =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 −1 1 2 −1 −3 4
0 1 1 0 −1 3 10 −3
0 −1 0 2 −1 −4 9 −12
0 1 0 −1 2 3 −6 −5
0 0 1 1 −2 −1 6 3
1 0 −1 1 2 −1 −3 4

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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Because rank(V ) = 4 and rank(W ) = 5, the system is
unobservable and uncontrollable.

9. Conclusions

The approach to analyzing observability and controllabil-
ity of nonlinear dynamic systems proposed in this work is
based on known observability and controllability criteria
for linear systems and additional conditions that are also
linear. The use of linear methods allows obtaining only
sufficient conditions for observability and controllability.
However, in a number of cases, this is justified by the sim-
plicity of the proposed criteria, which impose almost no
constraints on the character of the nonlinearities, and the
universality of their use in the sense that they can be ap-
plied to both discrete and continuous systems without any
modifications. Moreover, the proposed criteria demon-
strate new facets of unobservability and uncontrollability
duality features of nonlinear dynamic systems.

Examples 6 and 9 and an illustrative example show
that, if the system unobservable (uncontrollable) accord-
ing to condition (19) (the condition (25)) is preliminar-
ily transformed according to the relation (7) (relation (8)),
then it is unobservable (or uncontrollable) according to
the condition (16) or (17) (the condition (21) or (25)).
One can suppose that these examples reflect some general
property.

To compare the suggested approach with existing
mathematical packages using the symbolic software, con-
sider the following possibilities:

(i) The original system is smooth and the output func-
tion is linear.

(ii) The original system is smooth and the output func-
tion is nonlinear.

(iii) The original system is non-smooth.

In the cases (i) and (iii), an advantage of the suggested ap-
proach in analysis of observability is evident because of
using linear methods with the possible coordinate trans-
formation in the case (iii). In the case (ii), packages using
symbolic software like Maple or Mathematica are prefer-
able. Clearly, if controllability is analyzed, coordinate
transformation is not required and the suggested approach
is preferable.
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