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The problem of the existence and determination of the set of Metzler matrices for given stable polynomials is formulated and
solved. Necessary and sufficient conditions are established for the existence of the set of Metzler matrices for given stable
polynomials. A procedure for finding the set of Metzler matrices for given stable polynomials is proposed and illustrated
with numerical examples.
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1. Introduction

Determination of the state space equations for a gi-
ven transfer matrix is a classical problem, called the
realization problem, which has been addressed in ma-
ny papers and books (Farina and Rinaldi, 2000; Be-
nvenuti and Farina, 2004; Kaczorek, 1992; 2009b;
2011d; 2012; Shaker and Dixon, 1977). An overview
on the positive realization problem is given by Fari-
na and Rinaldi (2000), Kaczorek (2002), as well as
Benvenuti and Farina (2004). The realization problem
for positive continuous-time and discrete-time linear sys-
tems was considered by Kaczorek (2006a; 2006b; 2011a;
2011b; 2006c; 2004; 2011c) along with the positive reali-
zation problem for discrete-time systems with delays (Ka-
czorek, 2006c; 2004; 2005). Fractional positive linear sys-
tems were addressed by Kaczorek (2008c; 2009a; 2011d),
together with the realization problem for fractional line-
ar systems (Kaczorek, 2008a) and for positive 2D hybrid
systems (Kaczorek, 2008b). A method based on similarity
transformation of the standard realization to the discrete
positive one was proposed (Kaczorek, 2011c), and condi-
tions for the existence of a positive stable realization with
a system Metzler matrix for a transfer function were esta-
blished (Kaczorek, 2011a). The problem of determination
of the set of Metzler matrices for given stable polynomials
was formulated and partly solved by Kaczorek (2012).

It is well known (Farina and Rinaldi, 2000; Kaczo-
rek, 2002; 1992) that to find a realization for a given trans-
fer function, first we have to find a state matrix for a given

denominator of the transfer function.
In this paper the problem of the existence and deter-

mination of the set of Metzler matrices for a given stable
polynomial will be established and solved. Necessary and
sufficient conditions will be established for the existence
of the set of Metzler matrices for a given stable polyno-
mial and a procedure will be proposed for finding the de-
sired set of Metzler matrices.

The paper is organized as follows. In Section 2 some
preliminaries concerning positive stable continuous-time
linear systems are recalled and the problem formulation
is given. The problem solution is presented in Section 3,
which consists of four subsections. In Section 3.1 the pro-
blem is solved for second-order stable polynomials, and in
Section 3.2 and 3.3 for third- and fourth- order stable po-
lynomials. The general case is addressed in Section 3.4.
Concluding remarks are given in Section 4.

The following notation will be used: R is the set of
real numbers, R

n×m is the set of n × m real matrices,
R

n×m
+ is the set of n × m matrices with nonnegative en-

tries and R
n
+ = R

n×1
+ , Mn is the set of n × n Metzler

matrices (real matrices with nonnegative off-diagonal en-
tries), In is the n × n identity matrix.

2. Preliminaries and problem formulation

Consider the continuous-time linear system

ẋ(t) = Ax(t) + Bu(t), (1a)

y(t) = Cx(t) + Du(t), (1b)
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where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p are the state,

input and output vectors, respectively, and A ∈ R
n×n,

B ∈ R
n×m, C ∈ R

p×n, D ∈ R
p×m.

Definition 1. (Farina and Rinaldi, 2000; Kaczorek, 2002)
The system (1) is called (internally) positive if x(t) ∈ R

n
+,

y(t) ∈ R
p
+, t ≥ 0 for any initial conditions x(0) = x0 ∈

R
n
+ and all inputs u(t) ∈ R

m
+ , t ≥ 0.

Theorem 1. (Farina and Rinaldi, 2000; Kaczorek, 2002)
The system (1) is positive if and only if

A ∈ Mn, B ∈ R
n×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ .

(2)

Definition 2. (Farina and Rinaldi, 2000; Kaczorek, 2002)
The positive system (1) is called asymptotically stable if

lim
t→∞ x(t) = 0 for any x0 ∈ R

n
+. (3)

Theorem 2. (Farina and Rinaldi, 2000; Kaczorek, 2002)
The positive system (1) is asymptotically stable if and only
if all coefficients of the polynomial

pn(s) = det[Ins − A]

= sn + an−1s
n−1 + · · · + a1s + a0 (4)

are positive, i.e., ai > 0 for i = 0, 1, . . . , n − 1.

Definition 3. (Kaczorek, 2002) A matrix P ∈ R
n×n
+ is

called the monomial matrix (or the generalized permuta-
tion matrix) if its every row and its every column contains
only one positive entry and its remaining entries are zero.

Lemma 1. (Kaczorek, 2002) The inverse matrix A−1 of
the monomial matrix A is equal to the transpose matrix in
which every nonzero entry is replaced by its inverse.

Lemma 2. If AM ∈ Mn, then ĀM = PAMP−1 ∈ Mn

for every monomial matrices P ∈ R
n×n
+ and

det[Ins − ĀM ] = det[Ins − AM ]. (5)

Proof. By Lemma 1, if P ∈ R
n×n
+ , then P−1 ∈ R

n×n
+

and ĀM = PAMP−1 ∈ Mn if AM ∈ Mn. It is easy to
check that

det[Ins − ĀM ] = det[Ins − PAMP−1]

= det{P [Ins − AM ]P−1}
= detP det[Ins − AM ] det P−1

= det[Ins − AM ]

(6)

since det P detP−1 = 1. �

The problem under consideration can be stated as fol-
lows: Given a stable polynomial

pn(s) = sn + an−1s
n−1 + · · ·+ a1s+ a0, ai > 0 (7)

for i = 0, 1, . . . , n − 1, find a class of Metzler matrices
AM ∈ Mn (if it exists) such that

det[Ins − AM ] = pn(s). (8)

The following two subproblems will be analyzed.

Subproblem 1. Find a class of stable polynomials (7) for
which there exists a class of Metzler matrices AM ∈ Mn

satisfying the condition (8).

Subproblem 2. Given a stable polynomial of the form (7)
for which there exists a class of Metzler matrices AM ∈
Mn, propose a procedure for computation of the desired
class of Metzler matrices.

3. Problem solution

3.1. Second-degree polynomials. In the work of Ka-
czorek (2012) it was shown that the Metzler matrix

AM =
[ −a11 a12

a21 −a22

]
, ai,j ≥ 0 (9)

for i, j = 1, 2, has only real eigenvalues, and for a given
stable polynomial

p2(s) = s2 + a1s + a0 (10)

there exists a set of Metzler matrices (9) with diagonal
entries

a11 =
1
2

(
a1 ±

√
a2
1 − 4(a0 + a12a21)

)
,

a22 =
1
2

(
a1 ±

√
a2
1 − 4(a0 + a12a21)

)

and off-diagonal entries a12 ≥ 0, a21 ≥ 0 satisfying the
condition

a2
1 − 4(a0 + a12a21) ≥ 0

if and only if
a2
1 ≥ 4a0. (11)

Theorem 3. For a given stable polynomial (10) there exi-
sts a set of Metzler matrices ĀM = PAMP−1, where
P ∈ R

2×2
+ is a monomial matrix and matrix AM has one

of the following forms:

AM1 =
[ −a a1a − a2 − a0

1 a − a1

]
,

AM2 =
[ −a 1

a1a − a2 − a0 a − a1

]
,

0 < a < a1, a1a − a2 − a0 ≥ 0,

(12)

if and only if the condition (11) is met.



Existence and determination of the set of Metzler matrices for given stable polynomials 391

Proof. If the matrix AM has the form (9) for a21 = 1, then
its characteristic polynomial is

det[I2s − AM ] =
∣∣∣∣ s + a11 −a12

−1 s + a22

∣∣∣∣
= s2 + (a11 + a22)s + a11a22 − a12

= s2 + a1s + a0, (13a)

where

a1 = a11 + a22, a0 = a11a22 − a12.
(13b)

From (13b) for a11 = a we have a22 = a1 − a and
a12 = a(a1−a)−a0 = a1a−a2−a0 ≥ 0. By Lemma 2
the condition (5) is satisfied for any monomial matrix P ∈
R

2×2
+ . The proof for the matrix AM 2 is similar. �

Example 1. Find the set of Metzler matrices (12) corre-
sponding to the stable polynomial

p2(s) = s2 + 5s + 6. (14)

The polynomial (14) satisfies the condition (11) since
a2
1 = 25, 4a0 = 24 and its zeros are s1 = −2, s2 = −3.

The desired set of Metzler matrices corresponding to (14)
has the form

ĀM1 = PAM1P
−1 or ĀM2 = PAM2P

−1, (15a)

where

AM1 =
[ −a 5a − a2 − 6

1 a − 5

]
,

AM2 =
[ −a 1

5a − a2 − 6 a − 5

]
(15b)

for 2 ≤ a ≤ 3 and any monomial matrix P ∈ R
2×2
+ .

Choosing the monomial matrix

P =
[

0 2
3 0

]
(16)

and using (15), we obtain

ĀM1 = PAM1P
−1

=
[

0 2
3 0

] [ −a 5a − a2 − 6
1 a − 5

] [
0 1

3
1
2 0

]

=
[

a − 5 2
3

3
2 (5a − a2 − 6) −a

]
, (17a)

ĀM2 = PAM2P
−1

=
[

0 2
3 0

] [ −a 1
5a − a2 − 6 a − 5

] [
0 1

3
1
2 0

]

=
[

a − 5 2
3 (5a − a2 − 6)

3
2 −a

]
(17b)

for 2 ≤ a ≤ 3. Note that the set of diagonal entries of both
matrices (17) is the same and

trace ĀM1 = trace ĀM2 = trace AM1

= trace AM2 = −5.

�

3.2. Third-degree polynomials. In the work of Kaczo-
rek (2012) it was shown that if the stable polynomial

p3(s) = (s + α1)(s + α2)(s + α3)

= s3 + a2s
2 + a1s + a0

has only real negative zeros s1 = −α1, s2 = −α2, s3 =
−α3, then the desired set of Metzler matrices is given by
the set of lower or upper triangular matrices with diago-
nal entries −ai,i, i = 1, 2, 3 equal to the negative zeros
−α1,−α2,−α3 and any nonnegative off-diagonal entries.

In what follows it will be assumed that the polyno-
mial p3(s) has one real zero and a pair of complex conju-
gate zeros.

Theorem 4. For the given stable polynomial

p3(s) = s3 + a2s
2 + a1s + a0, ak > 0, k = 0, 1, 2,

(18)
there exists the set of Metzler matrices

ĀMk = PAMkP−1, k = 1, 2, . . . , 6, (19)

if and only if

a2
2 − 3a1 ≥ 0, (20a)

−2a3
2 + 9a1a2 − 27a0 ≥ 0, (20b)

where P ∈ R
3×3
+ is a monomial matrix and matrix AM

has one of the following forms:

AM1 =

⎡
⎣ −a11 1 a13

0 −a22 a23

1 0 −a33

⎤
⎦ ,

AM2 =

⎡
⎣ −a11 0 1

a21 −a22 0
a31 1 −a33

⎤
⎦ ,

AM3 =

⎡
⎣ −a11 a12 0

0 −a22 1
1 a32 −a33

⎤
⎦ ,

AM4 = AT
M1 =

⎡
⎣ −a11 0 1

1 −a22 0
a13 a23 −a33

⎤
⎦ ,

AM5 = AT
M2 =

⎡
⎣ −a11 a21 a31

0 −a22 1
1 0 −a33

⎤
⎦ ,

AM6 = AT
M3 =

⎡
⎣ −a11 0 1

a12 −a22 a32

0 1 −a33

⎤
⎦ ,

(21)
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and T denotes the transpose.

Proof. The characteristic polynomial of AM1 has the form

det[I3s − AM1] =

∣∣∣∣∣∣
s + a11 −1 −a13

0 s + a22 −a23

−1 0 s + a33

∣∣∣∣∣∣
= (s + a11)(s + a22)(s + a33)

−
∣∣∣∣ −1 −a13

s + a22 −a23

∣∣∣∣
= s3 + a2s

2 + a1s + a0, (22a)

where

a2 = a11 + a22 + a33,

a1 = a11(a22 + a33) + a22a33 − a13,

a0 = a11a22a33 − a22a13 − a23. (22b)

From (22b) and (18) we have

a13 = a11(a22 + a33) + a22a33 − a1 ≥ 0, (23a)

a23 = a11a22a33 − a22a13 − a0 ≥ 0. (23b)

By Lemma 3 the functions a11(a22 + a33) + a22a33

and a11a22a33 for a11 + a22 + a33 = a2 reach their ma-
ximal values if

a11 = a22 = a33 =
a2

3
(a2 is given). (24)

Substitution of (24) into (23) yields

a13 =
a2
2

3
− a1 ≥ 0, (25a)

a23 =
(a2

3

)3

−
(a2

3

)(
a2
2

3
− a1

)
− a0

= −2
(a2

3

)3

+
a1a2

3
− a0 ≥ 0, (25b)

and these conditions are equivalent to the conditions (20).
The proof for the remaining matrices AM 2 and AM 3 is
similar and proofs for the matrices AM4, AM5 and AM6

follow immediately from the equations

det[I3s − AM4] = det[I3s − AM1],
det[I3s − AM5] = det[I3s − AM2],
det[I3s − AM6] = det[I3s − AM3].

(26)

�

Theorem 5. Let s1 = −α and s2 = −α1 + jβ1, s′2 =
−α1 − jβ1 be the zeros of the polynomial (18). Then the
conditions (20) are satisfied if and only if

(α − α1)2 ≥ 3β2
1 (27)

and
α1 ≥ α. (28)

Proof. Taking into account that

p3(s) = (s + α)(s + α1 + jβ1)(s + α1 − jβ1)

= s3 + a2s
2 + a1s + a0, (29)

where

a2 = α + 2α1, a1 = 2αα1 + α2
1 + β2

1 ,

a0 = α(α2
1 + β2

1), (30)

and using (20), we obtain �

a2
2 − 3a1 = (α + 2α1)2 − 3(2αα1 + α2

1 + β2
1)

= α2 − 2αα1 + α2
1 − 3β2

1

= (α − α1)2 − 3β2
1 ≥ 0 (31a)

and

− 2a3
2 + 9a1a2 − 27a0

= −2(α + 2α1)3

+ 9(2αα1 + α2
1 + β2

1)(α + 2α1)

− 27α(α2
1 + β2

1)

= 2(α1 − α)3 + 18β2
1(α1 − α) ≥ 0. (31b)

Therefore, the inequalities (27) and (31a) are equivalent,
and the condition (20b) is satisfied if and only if (28)
holds.

If the conditions (20) are satisfied, then to find the
entries of the matrix AM 1 of the form given in (21) the
following procedure can be used.

Procedure 1.

Step 1. Given a2, choose a11, a22 and a33 so that

a11 + a22 + a33 = a2. (32a)

In a particular case,

a11 = a22 = a33 =
a2

3
. (32b)

Step 2. Knowing a1 and using (23a), find

a13 = a11(a22 + a33) + a22a33 − a1. (33a)

In a particular case for (32b), we obtain

a13 =
a2
2

3
− a1. (33b)

Step 3. Knowing a0 and using (23b), find

a23 = a11a22a33 − a22a13 − a0. (34a)

In a particular case for (32b), we obtain

a23 =
(a2

3

)3

−
(a2

3

)
a13 − a0 (34b)

and the desired set of Metzler matrices (19).
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Example 2. Find the set of Metzler matrices (19) for the
stable polynomial

p3(s) = s3 + 9s2 + 25s + 17. (35)

The polynomial (35) satisfies the conditions (20) since

a2
2 − 3a1 = 81 − 75 = 6 > 0,

and

−2a3
2 +9a1a2−27a0 = −1458+2025−459 = 108 > 0

and its zeros are s1 = −1, s2 = −4 + j, s′2 = −4 − j.

Using Procedure 1, we obtain the following.

Step 1. We choose a11 = 2, a22 = 3, a33 = 4.

Step 2. Using (33a), we obtain

a13 = a11(a22+a33)+a22a33−a1 = 2 ·7+12−25 = 1.
(36)

Step 3. Using (34a) and 36, we obtain

a23 = a11a22a33−a22a13−a0 = 24−3−17 = 4. (37)

The desired set of Metzler matrices corresponding to
the polynomial (35) has the form

ĀM1 = PAM1P
−1

=

⎡
⎣ 0 0 p1

p2 0 0
0 p3 0

⎤
⎦

⎡
⎣ −2 1 1

0 −3 4
1 0 −4

⎤
⎦

×

⎡
⎢⎢⎢⎣

0
1
p2

0

0 0
1
p3

1
p1

0 0

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

−4
p1

p2
0

p2

p1
−2

p2

p3

4p3

p1
0 −3

⎤
⎥⎥⎥⎥⎥⎦

(38)

for any positive p1, p2, p3. �

Example 3. Find the set of Metzler matrices (19) for the
stable polynomial

p3(s) = s3 + 10s2 + 33s + 34. (39)

The polynomial satisfies the conditions (20) since a2
2 −

3a1 = 100 − 99 = 1 > 0 and

− 2a3
2 + 9a1a2 − 27a0

= −2000 + 2970 − 918 = 52 > 0,

and its zeros are s1 = −2, s2 = −4 + j, s′2 = −4 −
j. Using Procedure 1 and the particular choice (32b), we
obtain the following.

Step 1. From (32b), we have a11 = a22 = a33 = 10
3 .

Step 2. Using (33b), we obtain

a13 =
a2
2

3
− a1 =

100
3

− 33 =
1
3
. (40)

Step 3. Using (34b), we have

a23 =
(a2

3

)3

−
(a2

3

)
a13 − a0

=
(

10
3

)3

−
(

10
3

)
1
3
− 34 =

52
27

. (41)

The desired set of Metzler matrices corresponding to
the polynomial (39) has the form

ĀM1 = PAM1P
−1

=

⎡
⎣ 0 p1 0

p2 0 0
0 0 p3

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

−10
3

1
1
3

0 −10
3

52
27

1 0 −10
3

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

0
1
p2

0
1
p1

0 0

0 0
1
p3

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−10
3

0
52p1

27p3

p2

p1
−10

3
p2

3p3

0
p3

p2
−10

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(42)

for any positive p1, p2, p3.
In the above method the set of Metzler matrices (42)

depends on three arbitrary positive parameters p1, p2, p3.
In the following method, also based on Procedure 1, the
set of Metzler matrices corresponding to the polynomial
(39) will depends on five parameters.

Using Procedure 1, we obtain the following.

Step 1. We choose

a11 = p4, a22 = p5

and
a33 = a2 − p4 − p5.
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Step 2. From (33a) for a1 = 33, we have

a13 = a11(a22 + a33) + a22a33 − a1

= p4(a2 − p4) + p5(a2 − p4 − p5) − a1

= 10(p4 + p5) − p4p5 − p2
4 − p2

5 − 33.

(43)

Step 3. Using (34a) and (43) for a0 = 34, we obtain

a23 = a11a22a33 − a22a13 − a0

= p4p5(10 − p4 − p5) − p5[10(p4 + p5)

− p4p5 − p2
4 − p2

5 − 33]− 34

= p3
5 − 10p2

5 + 33p5 − 34.

(44)

In this case the desired set of Metzler matrices correspon-
ding to the polynomial (39) and the same monomial ma-
trix P has the form

Ā′
M1 = PA′

M1P
−1

=

⎡
⎣ 0 p1 0

p2 0 0
0 0 p3

⎤
⎦
⎡
⎣ −p4 1 a13

0 −p5 a23

1 0 −10 + p4 + p5

⎤
⎦

×
⎡
⎣ 0 1/p2 0

1/p1 0 0
0 0 1/p3

⎤
⎦

=

⎡
⎣ −p5 0 a23p1/p3

p2/p1 −p4 a13p2/p3

0 p3/p2 −10 + p4 + p5

⎤
⎦ ,

(45)

where a13 and a23 are given by (43) and (44), respecti-
vely, and p1, p2, p3 are arbitrary positive parameters and
0 < p4 + p5 < 10.

3.3. Fourth-degree polynomials. It will be shown that
there exists a set of Metzler matrices corresponding to the
stable polynomial

p4(s) = s4 + a3s
3 + a2s

2 + a1s + a0, ak > 0,

k = 0, 1, 2, 3, (46)

only if the polynomial has at least two real negative zeros.
If the polynomial (46) has only real nonnegative zeros,
then the desired set of Metzler matrices is given by the set
of lower or upper triangular matrices with diagonal en-
tries equal to the negative zeros and any nonnegative off-
diagonal entries (Kaczorek, 2012). In what follows it will
be assumed that the polynomial (46) has a pair of complex
conjugate zeros.

Theorem 6. For a given stable polynomial (46), the set of
Metzler matrices exists and

ĀMk = PAMkP−1, k = 1, 2, . . . , 8, (47)

if and only if

3a2
3 − 8a2 ≥ 0, (48a)

−a3
3 + 4a2a3 − 8a1 ≥ 0, (48b)

3a4
3 − 16a2a

2
3 + 64a1a3 − 256a0 ≥ 0, (48c)

where P ∈ R
4×4
+ is a monomial matrix and matrix AM

has one of the following forms:

AM1 =

⎡
⎢⎢⎣

−a11 1 0 a14

0 −a22 1 a24

0 0 −a33 a34

1 0 0 −a44

⎤
⎥⎥⎦ ,

AM2 =

⎡
⎢⎢⎣

−a11 0 0 1
a21 −a22 0 0
a31 1 −a33 0
a41 0 1 −a44

⎤
⎥⎥⎦ ,

AM3 =

⎡
⎢⎢⎣

−a11 a12 1 0
1 −a22 0 0
0 a32 −a33 1
0 a42 0 −a44

⎤
⎥⎥⎦ ,

AM4 =

⎡
⎢⎢⎣

−a11 1 a13 0
0 −a22 a23 1
1 0 −a33 0
0 0 a43 −a44

⎤
⎥⎥⎦ ,

AM5 = AT
M1, AM6 = AT

M2,

AM7 = AT
M3, AM8 = AT

M4.

(49)

Proof. The characteristic polynomial of AM 1 has the form

det[I4s − AM1]

=

∣∣∣∣∣∣∣∣

s + a11 −1 0 −a14

0 s + a22 −1 −a24

0 0 s + a33 −a34

−1 0 0 s + a44

∣∣∣∣∣∣∣∣
= (s + a11)(s + a22)(s + a33)(s + a44)

+

∣∣∣∣∣∣
−1 0 −a14

s + a22 −1 −a24

0 s + a33 −a34

∣∣∣∣∣∣
= s4 + a3s

3 + a2s
2 + a1s + a0, (50a)

where

a3 = a11 + a22 + a33 + a44,

a2 = a11(a22 + a33 + a44) + a22(a33 + a44)
+ a33a44 − a14,

a1 = (a11 + a22)a33a44 + (a33 + a44)a11a22

− a14(a22 + a33) − a24,

a0 = a11a22a33a44 − a14a22a33 − a24a33 − a34.
(50b)
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From (50b) and (47) we have

a14 = a11(a22 + a33 + a44) + a22(a33 + a44)
+ a33a44 − a2 ≥ 0, (51a)

a24 = (a11 + a22)a33a44 + (a33 + a44)a11a22

− a14(a22 + a33) − a1 ≥ 0, (51b)

a34 = a11a22a33a44 − a14a22a33 − a24a33

− a0 ≥ 0. (51c)

The functions a11(a22 + a33 + a44) + a22(a33 +
a44) + a33a44, (a11 + a22)a33a44 + (a33 + a44)a11a22

and a11a22a33a44 for a11 + a22 + a33 + a44 = a3 reach
their maximal values if

a11 = a22 = a33 = a44 =
a3

4
(a3 is given). (52)

Substitution of (52) into (51) yields

a14 = 6
(a3

4

)2

− a2 =
3
8
a2
3 − a2 ≥ 0, (53a)

a24 = 4
(a3

4

)3

− 2
(a3

4

) (
3
8
a2
3 − a2

)
− a1

= −a3
3

8
+

a2a3

2
− a1 ≥ 0, (53b)

a34 =
(a3

4

)4

−
(a3

4

)2
(

3
8
a2
3 − a2

)

−
(a3

4

)(
−a3

3

8
+

a2a3

2
− a1

)
− a0

=
3a4

3

256
− a2a

2
3

16
+

a1a3

4
− a0 ≥ 0. (53c)

The conditions (53) are equivalent to the conditions
(48). The remaining part of the proof is similar to the proof
of Theorem 4. �

Theorem 7. For a given stable polynomial (46) the set of
Metzler matrices exists only if the polynomial has at least
two real nonnegative zeros.

Proof. Let us assume that the polynomial has two pairs of
complex zeros. Then

p4(s) = (s + α1 + jβ1)(s + α1 − jβ1)
× (s + α2 + jβ2)(s + α2 − jβ2)

= s4 + a3s
3 + a2s

2 + a1s + a0, (54)

where

a3 = 2(α1 + α2),

a2 = 4α1α2 + α2
1 + β2

1 + α2
2 + β2

2 ,

a1 = 2α2(α2
1 + β2

1) + 2α1(α2
2 + β2

2),

a0 = (α2
1 + β2

1)(α2
2 + β2

2). (55)

In this case, using (48) and (55), we obtain

3a2
3 − 8a2

= 12(α1 + α2)2 − 8(α2
1 + α2

2 + β2
1 + β2

2 + 4α1α2)

= 4(α1 + α2)2 − 8(β2
1 + β2

2)

= 4[(α1 + α2)2 − 2(β2
1 + β2

2)] ≥ 0 (56a)

− a3
3 − 42a3 − 8a1

= 8[α1(β2
1 − β2

2) + α2(β2
2 − β2

1)]

= 8(α1 − α2)(β2
1 − β2

2) ≥ 0, (56b)

3a4
3 − 16a2a

2
3 + 64a1a3 − 256a0

= −16(α1 + α2)4 − 64(α1 + α2)2(β2
1 + β2

2)

− 256β2
1β

2
2

= −16[(α1 + α2)4 + 4(α1 + α2)2(β2
1 + β2

2)

+ 16β2
1β2

2 ] ≥ 0. (56c)

From (56c) it follows that the condition cannot be satisfied
for two pairs of complex conjugate zeros, and by The-
orem 6 there is no Metzler matrix corresponding to the
stable polynomial (54). �

The following example shows that a set of Metzler
matrices (47) for a given stable polynomial does not exist,
but there may exist a set of Metzler matrices of forms dif-
ferent from (47) corresponding to the stable polynomial.

Example 4. Find the set of Metzler matrices for the stable
polynomial

p4(s) = s4 + 10s3 + 34s2 + 42s + 17. (57)

The polynomial does not satisfy the conditions (48)
since 3a2

3−8a2 = 28 > 0 and −a3
3+4a2a3−8a1 = 24 >

0 and 3a4
3 − 16a2a

2
3 + 64a1a3 − 256a0 = −1872 < 0.

By Theorem 6 there is no set of Metzler matrices of the
form (47). It will be shown that there exists another set of
Metzler matrices corresponding to the polynomial (57).
Note that the polynomial (57) can be decomposed into the
following stable polynomials:

p1(s) = s + 1, p3(s) = s3 + 9s2 + 25s + 17 (58)

since p4(s) = p1(s)p3(s). To the first polynomial p1(s)
corresponds the matrix AM1 = [−1] and to the second
polynomial p3(s) the Metzler matrix (Kaczorek, 2012),

AM3 =

⎡
⎣ −2 1 1

0 −3 4
1 0 −4

⎤
⎦ . (59)

Therefore, the desired Metzler matrix corresponding to
the polynomial (57) has the form

AM =
[

AM1 0
0 AM3

]
=

⎡
⎢⎢⎣

−1 0 0 0
0 −2 1 1
0 0 −3 4
0 1 0 −4

⎤
⎥⎥⎦ ,

(60)
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and the desired Metzler matrices is given by

ĀM = PAMP−1 (61)

for any monomial matrix P ∈ R
4×4
+ . �

Therefore, we have the following important corolla-
ry.

Corollary 1. If there does not exist a set of Metzler ma-
trices of the form (47), there may exist a set of Metzler
matrices of other forms corresponding to the given stable
polynomials.

3.4. General case: n-th degree polynomials. If the
polynomial

pn(s) = sn + an−1s
n−1 + · · · + a1s + a0,

ak > 0, k = 0, 1, . . . , n − 1 (62)

has only negative zeros, then the desired set of Metzler
matrices is given by the set of lower or upper triangular
matrices with diagonal entries equal to the negative ze-
ros and any nonnegative off-diagonal entries (Kaczorek,
2012). It will be assumed that the polynomial (62) has at
least one pair of complex conjugate zeros.

Theorem 8. For the given stable polynomial (62) there
exists the set of Metzler matrices

ĀMk = PAMkP−1, k = 1, 2, . . . , 2n, (63)

if and only if

Cn
2

(an−1

n

)2

− an−2 ≥ 0,

Cn
3

(an−1

n

)3

−
[
Cn

2

(an−1

n

)2

− an−2

]

× Cn−2
1

(an−1

n

)
− an−3 ≥ 0,

...

Cn
n

(an−1

n

)n

−
[
Cn

2

(an−1

n

)2

− an−2

]

× Cn−2
1

(an−1

n

)n−2

− · · · − C1
1

(an−1

n

)
− a0 ≥ 0,

(64)

where Cn
k =

(
n
k

)
, P ∈ R

n×n
+ is a monomial matrix and

matrix AM has one of the following forms:

AM1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a11 1 0 . . . 0 a1,n

0 −a22 1 . . . 0 a2,n

0 0 −a33 . . . 0 a3,n

...
...

... . . .
...

...
0 0 0 . . . 1 an−2,n

0 0 0 . . . −an−1,n−1 an−1,n

1 0 0 . . . 0 −an,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

. . . ,

AMn

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a11 0 0 . . . 0 1
a21 −a22 0 . . . 0 0
a31 1 −a33 . . . 0 0

...
...

... . . .
...

...
an−2,1 0 0 . . . 0 0
an−1,1 0 0 . . . −an−1,n−1 0
an,1 0 0 . . . 1 −an,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

AMn+1 = AT
M1, . . . , AM2n = AT

Mn.

(65)

Proof. The characteristic polynomial of AM 1 has the form
(66).

From (66b) and (62) we have

a1,n = a11(a22 + a33 + · · · + an,n)
+ a22(a33 + a44 + · · · + an,n) + . . .

+ an−2,n−2(an−1,n−1 + an,n)
+ an−1,n−1an,n − an−2 ≥ 0,

...

an−2,n = a11a22a33 . . . an−1,n−1

+ a11a22 . . . an−2,n−2an,n

+ a22a33 . . . an,n − a1,n(a22a33 . . . an−2,n−2

+ · · · + a33a44 . . . an−1,n−1)
− a2,n(a33a44 . . . an−2,n−2 + . . .

+ a44a55 . . . an−1,n−1) − · · · − an−3,nan−2,n−2

− a1 ≥ 0,

an−1,n = a11a22 . . . an,n − a1,na22 . . . an−1,n−1

− a2,na33 . . . an−1,n−1 − an−2,nan−1,n−1

− a0 ≥ 0.

(67)

The functions a11(a22+a33+· · ·+an,n)+a22(a33+
a44 + · · · + an,n) + · · · + an−2,n−2(an−1,n−1 + an,n),
. . . , a11a22 . . . an,n for a11 + a22 + · · · + an,n = an−1

(given) reach their maximal values if (cf. Appendix)

a11 = a22 = · · · = an,n =
an−1

n
. (68)
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det[Ins − AM1]

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s + a11 −1 0 . . . 0 −a1,n

0 s + a22 −1 . . . 0 −a2,n

0 0 s + a33 . . . 0 −a3,n

...
...

... . . .
...

...
0 0 0 . . . −1 −an−2,n

0 0 0 . . . s + an−1,n−1 −an−1,n

−1 0 0 . . . 0 s + an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (s + a11)(s + a22) . . . (s + an,n) + (−1)n+2

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 . . . 0 −a1,n

s + a22 −1 . . . 0 −a2,n

0 s + a33 . . . 0 −a3,n

...
...

...
...

...
0 0 . . . −1 −an−2,n

0 0 . . . s + an−1,n−1 −an−1,n

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (s + a11)(s + a22) . . . (s + an,n) − a1,n(s + a22)(s + a33) . . . (s + an−1,n−1)
− a2,n(s + a33)(s + a44) . . . (s + an−1,n−1) − · · · − an−2,n(s + an−1,n−1) − an−1,n

= sn + an−1s
n−1 + · · · + a1s + a0, (66a)

where

an−1 = a11 + a22 + · · · + an,n,

an−2 = a11(a22 + a33 + · · · + an,n) + a22(a33 + a44 + · · · + an,n) + · · · + an−2,n−2(an−1,n−1 + an,n)
+ an−1,n−1an,n − a1,n,

...

a1 = a11a22a33 . . . an−1,n−1 + a11a22 . . . an−2,n−2an,n + a22a33 . . . an,n − a1,n(a22a33 . . . an−2,n−2

+ · · · + a33a44 . . . an−1,n−1) − a2,n(a33a44 . . . an−2,n−2 + · · · + a44a55 . . . an−1,n−1)
− · · · − an−3,nan−2,n−2 − an−2,n,

a0 = a11a22 . . . an,n − a1,na22 . . . an−1,n−1 − a2,na33 . . . an−1,n−1 − an−2,nan−1,n−1 − an−1,n. (66b)

Substitution of (68) into (67) yields

a1,n = Cn
2

(an−1

n

)2

− an−2 ≥ 0,

a2,n = Cn
3

(an−1

n

)3

−
[
Cn

2

(an−1

n

)2

− an−2

]

× Cn−2
1

(an−1

n

)
− an−3 ≥ 0,

...

an−1,n = Cn
n

(an−1

n

)n

−
[
Cn

2

(an−1

n

)2

− an−2

]

× Cn−2
1

(an−1

n

)n−2

− · · · − C1
1

(an−1

n

)

− a0 ≥ 0.

(69)

The conditions (69) are equivalent to the conditions (64).
The remaining part of the proof is similar to the proof of
Theorem 4. �

4. Concluding remarks

The problem of the existence and determination of the set
of Metzler matrices for given stable polynomials has be-
en formulated and solved. Necessary and sufficient condi-
tions for the existence of the set of Metzler matrices for
a given second, third, fourth and n-th-order stable poly-
nomial have been established. A procedure for finding the
set of Metzler matrices for given stable polynomials has
been proposed and illustrated with numerical examples. It
has been shown that if there does not exist a set of Metzler
matrices of the form (47), then there may exist a set of
Metzler matrices of another form corresponding to a gi-
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ven polynomial (Example 4). The presented approach for
positive continuous-time linear systems can be extended
to positive discrete-time linear systems. The results of the
paper will be used for the computation of positive realiza-
tions of a given transfer matrix.
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Appendix

Lemma 3. Let

x1 + x2 + x3 = c(c − −a given constant). (70)

Then the functions

f1 = f1(x1, x2, x3) = x1(x2 + x3) + x2x3, (71a)

f2 = f2(x1, x2, x3) = x1x2x3 (71b)

reach their maximal values for

x1 = x2 = x3 =
c

3
. (72)
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Proof. From (70) we have

x3 = c − x1 − x2. (73)

Substitution of (73) into (71) yields

f1 = x1x2 + (x1 + x2)(c − x1 − x2)

= c(x1 + x2) − x2
1 − x1x2 − x2

2, (74a)

f2 = x1x2(c − x1 − x2) = cx1x2 − x2
1x2 − x1x

2
2.
(74b)

The necessary conditions for the extremum of (74)
are

∂f1

∂x1
= c − 2x1 − x2 = 0,

∂f1

∂x2
= c − x1 − 2x2 = 0 (75a)

and

∂f2

∂x1
= cx2 − 2x1x2 − x2

2 = 0,

∂f2

∂x2
= cx1 − x2

1 − 2x1x2 = 0. (75b)

From (75) we have
[

2 1
1 2

] [
x1

x2

]
=

[
c
c

]
(76)

and
[

x1

x2

]
=

[
2 1
1 2

]−1 [
c
c

]
=

c

3

[
1
1

]
. (77)

Substitution of (77) into (73) yields x3 = c/3. The
proof of sufficiency is trivial. �

Lemma 3 can be easily extended for n > 3.
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