
Int. J. Appl. Math. Comput. Sci., 2012, Vol. 22, No. 2, 365–377
DOI: 10.2478/v10006-012-0027-4

ADAPTIVE CONTROL OF CLUSTER–BASED WEB SYSTEMS USING
NEURO–FUZZY MODELS

KRZYSZTOF ZATWARNICKI

Department of Electrical, Control and Computer Engineering
Opole University of Technology, ul. Sosnkowskiego 31, 45-272 Opole, Poland

e-mail: k.zatwarnicki@gmail.com

A significant development of Web technologies requires the application of more and more complex systems and algorithms
for maintaining high quality of Web services. Presently, not only simple decision-making tools but also complex adaptation
algorithms using artificial intelligence techniques are applied for controlling HTTP request traffic. The paper presents a
new LFNRD (Local Fuzzy-Neural Adaptive Request Distribution) algorithm for request distribution in cluster-based Web
systems using neuro-fuzzy models of Web servers in the decision-making process. The neuro-fuzzy model which is applied
is discussed in detail and a design of the Web switch using the proposed solution is presented. Finally, a testbed is described
and the results of a comparative simulation study on the LFNRD algorithm, and other algorithms known from the literature
and used in the industry, are presented and discussed.

Keywords: neuro-fuzzy model, request distribution, Web cluster, QoWS.

1. Introduction

Nowadays, the Internet is a part of the basic media which
provides entertainment, advertisement and latest news. It
is also a driving force for various business activities such
as, for example, running Internet stores, auction systems,
Internet banking systems, and many others. The Internet
constitutes a specific medium providing the user with a
considerable freedom in the selection of an information
source and the change of this source. This means that the
users whose demands are not satisfied in a given Web se-
rvice may quickly and easily change the source of infor-
mation and refer to another service without any financial
consequences.

The owners of Web services, who are anxious to at-
tract clients, need to be able to offer attractive content and
at the same time ensure an adequate quality of service
from a technical point of view. As the users will not pay
attention to the technical aspect of service when it is of
high quality, a low level of quality may cause them to give
up the service.

The problems of increasing and guaranteeing the
quality of service were interestingly surveyed by Car-
dellini et al. (2002) and Zhou et al. (2007). The so-
lutions encountered include the application of a mo-
re efficient server in the service, proper scheduling of

HTTP requests on the input to the Web server (AlSa’deh
and Yahya, 2008; Harchol-Balter et al., 2003; Zatwar-
nicki, 2010), scheduling and admission control in the
Web server (Borzemski and Suchacka, 2010; Elnikety
et al., 2004; Lee et al., 2004; Quan and Chung, 2005; Wei
et al., 2005; Wei and Xu, 2006), the application of a local-
ly distributed cluster-based Web system (Borzemski and
Zatwarnicki, 2003; Cardellini et al., 2001; 2002; Cher-
kasova and Karlsson, 2001; Pai et al., 1998), and the
application of globally distributed Web server clusters
(Andreolini et al., 2008; Borzemski et al., 2007). Foreca-
sting data transfer times in the Internet is of considerable
significance as well (Borzemski, 2006).

The application of Web server clusters is currently
the most common technique for increasing the efficiency
of a Web service (Gilly et al., 2011). Web clusters are used
in services when the clients are spread over a limited geo-
graphic area, e.g., in one state. A Web cluster consists of a
Web switch, WWW servers and back-end servers, such as
application and database servers (Fig. 1). The Web switch
is responsible for controlling a request flow in the cluster.
The switch uses a request distribution algorithm for deter-
mining a server that will service an HTTP request. A pro-
perly constructed executor, which is a part of the switch,
transfers a request obtained from a client to the WWW se-
rver and a response from the server to the client (this con-

k.zatwarnicki@gmail.com

366 K. Zatwarnicki

figuration is called a two-way architecture), or the request
may be transferred directly from the WWW server to the
client (this configuration is called a one-way architecture)
(Cardellini et al., 2002).

The efficiency of the whole Web service depends, to
a large extent, on the type of the request distribution algo-
rithm applied. Among the variety of request distribution
algorithms, the following can be distinguished:

(i) static algorithms, whose way of determining a server
for servicing a request does not change during the
operation of the algorithm;

(ii) dynamic algorithms modifying their operation based
on adequate service load measures;

(iii) adaptive algorithms, which learn the behavior of the
service during the work to improve the quality of the
decisions made.

Adaptive algorithms can make the best decisions while
achieving the assumed goals. The disadvantage of using
adaptive algorithms is usually a long decision-making ti-
me, which often makes the operation of a Web switch im-
possible in real time.

This paper presents a new computationally simple
adaptive algorithm for the control of time-varying Web
traffic. An adaptive parameter estimation algorithm for a
neuro-fuzzy model of a Web server is followed by an opti-
mal decision-making process, which provides a high qu-
ality of a Web service in terms of load-sharing distribution
of HTTP requests.

The application of the fuzzy approach in the two-way
Web switch makes it possible to use inaccurate, uncertain,
and sometimes even not up-to-date information for ma-
king decisions. The application of the approach based on
neural networks provides the ability of learning and adap-
ting to the time-varying environment. The paper describes
in detail the neuro-fuzzy model proposed, which is applied
in the decision-making algorithm to model the operation
of a Web server.

Fig. 1. Cluster-based Web system.

The paper is divided into six sections. Section 2 su-
rveys related work referring to the artificial intelligence
techniques discussed and the distribution of HTTP requ-
ests. Section 3 presents problem formulation and Section
4 contains a design of a Web switch together with a tho-
rough description of the construction and operation of a
neuro-fuzzy model for a Web server. Section 5 describes a
simulation testbed used in the experiment and the research
results. The final section contains concluding remarks.

2. Related work

Fuzzy and neural systems have been of great interest to
scientists for a long time and they have been applied in nu-
merous practical solutions. Fuzzy logic was introduced by
Zadeh (1965) and since then has been widely used in con-
structing intelligent systems. Mamdani (1977) introduced
fuzzy inference procedures, which resulted in numerous
applications of the new solution. The main advantage of
fuzzy logic is that it can cope well with the inaccurate in-
formation which may characterize physical systems. Fuz-
zy logic can afford abilities for building models which
correspond well with a human way of understanding and
perceiving reality. A complex review of the solutions used
in decision-making systems can be found in the work of
Zadeh (1996).

Using the solutions involving neural networks in fuz-
zy systems, hybrid systems can be obtained with additio-
nal learning skills. The integration of a neural network
with fuzzy logic makes it possible to create a controllers
characteristic of adaptation capabilities and with a simul-
taneous ability to make decisions in an uncertain and noisy
environment (Simiński, 2010). Neuro-fuzzy systems ha-
ve already been applied in dynamic load-balancing algo-
rithms (Kwok and Cheung, 2004; Kun-Ming et al., 2004),
as well as in Web systems control, e.g., for scheduling the
requests at the front of Web systems (Wei et al., 2005; Wei
and Xu, 2006), and distribution requests in local cluster
based Web systems (Cherkasova and Karlsson, 2001; Ri-
ska et al., 2002). The neuro-fuzzy approach was also used
in the distribution of HTTP requests in globally distri-
buted Web systems containing many local Web clusters
(Borzemski et al., 2007; Zatwarnicki, 2010).

In our previous works, we have already presented
the FNRD (Fuzzy-Neural Adaptive Request Distribution)
request distribution algorithm applied in a cluster-based
Web system using neuro-fuzzy models in its construction
(Borzemski and Zatwarnicki, 2003; 2006). In the numero-
us experiments we indicated that the request distribution
algorithm was better than other reference algorithms, such
as CAP (Content Aware Policy) (Casalicchio and Cola-
janni, 2001) and LARD (Locality Aware Request Distri-
bution) (Pai et al., 1998), and also better than the popu-
lar RR (Round-Robin) algorithm often used in industrial
solutions and its variation—the WRR (Weighted Round-

Adaptive control of cluster-based Web systems using neuro-fuzzy models 367

Robin) algorithm (Cardellini et al., 2002). The FNRD al-
gorithm uses a neuro-fuzzy model, in which only the para-
meters of the defuzzification membership function are es-
timated in the adaptation process. In this paper, we present
a distribution algorithm in which the whole fuzzy model
is transformed into a neural network. Owing to such an
approach, it is possible to build a system which adjusts
better to a time-varying operation environment.

3. Problem formulation

A key element of the Web cluster is a Web switch. It uses
a proper request distribution mechanism, makes decisions
based on the request distribution algorithm and contains
the executor carrying out the decisions. The design of an
adequate switch constitutes a basis for creating an efficient
cluster-based Web system.

The main goal of the operation of the Web switch
proposed in the paper is minimizing the response time
for each single HTTP request. For a request service, the
switch should choose a Web server with the shortest re-
sponse time.

In order to describe the conception let us introduce
the following notation: xi: HTTP request, xi ∈ X , whe-
re X is a set of HTTP requests serviced correctly in the
Web service; i: index of the HTTP request, i = 1, . . . , I ,
where I is the time-varying number of requests serviced;
Os

i : load of the s-th Web server at the moment of i-th re-
quest arrival (the load is precisely described in Section 4);
S: number of Web servers in the system; t̃i: response time
for the i-th request, measured from the moment of sen-
ding the request from the Web switch to the server, up to
receiving the HTTP response by the switch; t̂si : estimated
response time of the i-th request for s-th Web server; wi:
decision, a Web server chosen to service the i-th request.

The main task is to propose such a Web switch design
which for each coming request xi, i = 1, . . . , I , will de-
termine, based on the knowledge on the load O1

i , . . . , OS
i

of the Web servers and the knowledge on the past respon-
se times to requests t̃1, . . . , t̃i−1, the Web server wi out
of S servers for which the estimated response time t̂si ,
s = {1, . . . , S}, is shortest.

It is assumed that each WWW server in a local clu-
ster may service each of the HTTP requests accepted for
service within a given Web service. The Web switch ini-
tiates the request service following the FCFS (First Come
First Served) strategy, i.e., according to the order they co-
me to its input queue. All requests are treated in the same
way.

Figure 2 shows an overall diagram of the decision
making process in the LFNRD system according to which
a basic distribution algorithm and an adaptation algorithm
can be distinguished. The decision making algorithm de-
termines the decision and the adaptation algorithm tunes
the parameters of the basic distribution algorithm.

4. LFNRD switch design

The Web system proposed in the paper, containing a local-
ly distributed Web cluster, is called the LFNRD system,
and the Web switch—the LFNRD switch.

The LFNRD switch consists of the following main
components: a request analysis module, server models, a
decision module, an execution module and a measurement
module. Figure 3 shows the LFNRD switch diagram.

The request analysis module in the LFNRD switch
analyzes the i-th request and takes the HTTP address ui

of the requested object.
The server model estimates the response time to the

request xi. The switch contains S server models, that is,
the number of WWW servers in the cluster. Each server
model is assigned exactly to one WWW server and it es-
timates the response time t̂si of the assigned server, where
s ∈ {1, . . . , S}. The server model estimates the respon-
se time on the basis of information on the address ui of
the object requested and the load Os

i of the WWW server.
When the request service is done, the server model upda-
tes information on the HTTP request service time based
on the measured response time t̃i to request xi. The struc-
ture and the way of operation of the server model module
are discussed in the next subsection.

The decision module selects a server to service the
request xi. Decision wi is made according to the assump-
tion wi : t̂wi

i = min
{
t̂1i , . . . , t̂

s
i , . . . , t̂

S
i

}
.

Adaptation
algorithm

Base distribution
algorithm

Web
Cluster

i
t
~

S

i

s

ii
OOO ,,,,

1
��

i
t
~

i
w

i
x

Fig. 2. Decision making process in the LFNRD system.

WWW
Server #1

WWW
Server #S

Server
Module #1

Server
Module #S

Decision
Module

Executor

1
ît

iw

. . .
s
it

~

. . .

. . .

. . .

Server
Module #s

s
it̂

S
it̂

S
iO

s
iO

1
iO

ixix
Request
Analysis
Module

iu

LFNRD WEB SWITCH WEB CLUSTER

WWW
Server #s

Measurement
Module

Fig. 3. LFNRD switch and the WWW server cluster.

368 K. Zatwarnicki

The execution module physically transfers the requ-
est xi to the selected server wi. This module also super-
vises the process of sending a response from the server
to the client. The architecture applied in the switch is the
two-way architecture.

The measurement module measures an actual re-
sponse time t̃i to an HTTP request. This time is transfer-
red to the server model corresponding to the server which
performed the request service. This module also measu-
res the Web servers loads O1

i , . . . , Os
i , . . . , O

S
i . The term

Os
i = [as

i , b
s
i]

T characterizes the load of the s-th WWW
server and the backend server, where as

i is the number of
all HTTP requests serviced simultaneously by the WWW
server and bs

i is the number of HTTP requests serviced si-
multaneously and related to dynamic objects whose con-
tent is created by the application and/or database server
after receiving the requests.

4.1. Structure of the server model. The server model
is a key element of the Web switch. Owing to its appli-
cation, it is possible to determine the results of a decision
before it is finally made. The model used should provide
decision making in real time. The adopted server model
consists of four functional modules: a classifying module,
an estimation mechanism, an adaptation mechanism and
a server parameters module. Figure 4 shows a diagram of
the server model.

In what follows, we will drop the index s in the per-
taining formulae, thus assuming that all calculations will
refer to the s-th Web server.

The classification module automatically classifies all
objects requested by a client. Response times for the ob-
jects belonging to the same class should be similar. The
address ui of the requested object is transferred to the in-
put to the module. The classification module possesses in-
formation on the sizes and types of HTTP objects availa-
ble in the service. For static objects (files on the Web se-
rver disks), requests are classified based on the size of the
objects requested. For each dynamic object, the content of
which is created at the moment of the request arrival, a
separate class is determined. At the output of the mecha-
nism, a class ki of the requested object is obtained, where
ki ∈ {1, . . . , K}, and K is the number of classes determi-
ned.

Adaptation
Mechanism

Server
Parameters iU

Estimation
Module

Classification
Mechanism

iO

kiU
iu

)1(+ikU

kiU

it̂

it
~

ik

Adaptation
Mechanism

Server
Parameters iU

Estimation
Module

Classification
Module

iO

kiU
iu

)1(+ikU

kiU

it̂

it
~

ik

Fig. 4. WWW server model.

The server parameters module stores informa-
tion Ui on parameters used by the estimation me-
chanism to designate the time t̂i. The vector Ui =
[U1i, . . . , Uki, . . . , UKi] contains information concerning
parameter sets for the k-th class requests, where

Uki = [Aki, Bki, Yki] ,

Aki =
[
α1ki, . . . , αlki, . . . , α(L−1)ki

]
,

Bki =
[
β1ki, . . . , βmki, . . . , β(M−1)ki

]
,

Yki = [t1ki, . . . , tjki, . . . , tJki]

are the parameters of neuro-fuzzy model to be defined la-
ter on, k ∈ {1, . . . , K}.

The estimation mechanism estimates the response ti-
me t̂i for the i-th request. The response time is estimated
based on the server load Oi and current data Uki|k=ki for
the ki-th class of the object requested.

The adaptation mechanism updates information
Uki|k=ki based on the system load Oi, as well as the esti-
mated and measured response times t̂i and t̃i, respectively.

The model of the HTTP request service system can
work in estimation and adaptation modes. In the estima-
tion mode the system model estimates a response time to
a request. In this mode the adaptation mechanism does
not participate in calculations. When operating in the ad-
aptation mode, the Web server model adjusts to the time-
varying environment, thus improving the quality of opera-
tion in the estimation mode. Adaptation is carried out by
the adaptation mechanism after the client’s request servi-
ce is completed and the measured response time t̃i to the
request is obtained.

The estimation and adaptation mechanisms form a
neuro-fuzzy model of the Web system, whose the para-
meters for the particular classes of objects are stored in
the server parameters module. Later in the paper we show
how to estimate the response time and how to update the
parameters of the model for the particular ki-th class. For
the clarity of pertaining formulae, we assume that k = ki.

4.2. Estimation of the HTTP request response time.
The operation of the Web system model in the estimation
mode is equivalent to the operation of the fuzzy model,
whose diagram is shown in Fig. 5. The model consists
of fuzzification, rule base, inference and defuzzification
blocks.

Let us assume that loads a and b are linguistic varia-
bles. The real physical domain of the linguistic variables
a and b is the set [0,∞). Let us also assume that a and
b are not only the denotations of linguistic variables but
also of the elements from the real physical domain of va-
riables (such an approach is often taken in practical issues
(Driankov et al., 1996)). The set of linguistic values of the
linguistic variable a is {Za1, . . . , Zal, . . . , ZaL}, where L
is the number of fuzzy sets of the linguistic variable a.

Adaptive control of cluster-based Web systems using neuro-fuzzy models 369

For the linguistic variable b, the set of linguistic values
is {Zb1, . . . , Zbm, . . . , ZbM}, where M is the number of
fuzzy sets of the linguistic variable b.

In the process of fuzzification, the values of degre-
es of membership in the input fuzzy sets are calculated.
It is assumed that the particular fuzzy sets are denoted
in the same way as their linguistic values. The value of
the degree of membership is contained in the range [0, 1]
(Zadeh, 1996).

It has been assumed that membership functions for
all input fuzzy sets are triangular functions. The functions
are piece-wise linear and have a limited support, and the-
refore the process of calculating the degrees of member-
ship is not time-consuming. Also the shape of the func-
tion is described with a low number of parameters, which
may be tuned in the adaptation process. In addition, the
author’s experience strengthens the understanding of the
linguistic space in terms of triangular membership func-
tions.

Figure 6 shows a graphic representation of the mem-
bership functions for the input a. The membership func-
tions for the input b can be presented in a similar way.

Parameters α1ki, . . . , αlki, . . . , α(L−1)ki determine
the supports and shapes of the membership functions
for the input a. The membership functions for the in-
put b look similarly, and the parameters are denoted

Defuzzification
Block

Rule Base
R1: If (a=Za1) and (b=Zb1) then (y=T1)

…
Rj: If (a=Zal) and (b=Zbm) then (y=Tj)

…
RJ: If (a=ZaL) and (b=ZbM) then (y=TJ)

1aZ aLZ
1

a

1bZ bMZ
1

b

alZμ
bmZμ

Jj TTTT 21
1

y

1Rμ

Rjμ

RJμ

ia

ib

it̂

kiki BA , kiY

Fuzzification
Block

Inference Block

Server Parameters iU

Fig. 5. Fuzzy model of the WWW server.

()iZa aμ

1

5,0

a

1aZ 2aZ alZ aLZ

ki1α kil)1(−α…
ki0α kiL)1(−α…

… …

Fig. 6. Membership functions of fuzzy sets to input a.

by β1ki, . . . , βmki, . . . , β(M−1)ki. The membership func-
tions μZal (ai), l = 1, . . . , L, for the input a, whose cur-
rent value at the moment of arrival of the request xi is ai,
are relegated to Appendix.

Membership functions for the input b can be descri-
bed with similar formulae, and the functions are denoted
by μZbm

(bi), where m = 1, . . . , M . The triangular mem-
bership functions applied meet the condition of the unit
division for both inputs, hence

L∑

l=1

μZal
(ai) = 1, ∀ai ∈ [0,∞) ,

M∑

m=1

μZbm
(bi) = 1, ∀bi ∈ 〈0,∞).

The values of the degrees of membership in the parti-
cular fuzzy sets are obtained at the output of the fuzzifica-
tion block and they are transferred to the inference block.

Further on, the membership functions for the output
will be discussed. A linguistic variable t will appear in
the conclusion of fuzzy rules to follow. Its real domain
is in the range [0,∞) and the set of its linguistic values is
{T1, . . . , Tj, . . . , TJ}, where J is the number of fuzzy sets
for the output t. Output fuzzy sets are singletons indica-
ting some values t1ki, . . . , tjki, . . . , tJki, which are equal
to request service times assigned to the same ki-th class
for various loads of the HTTP request service system. The
membership functions for the output can be expressed as

μTj (ti) =

{
1 if ti = tjki,

0 if ti �= tjki,
(1)

where j = 1, . . . , J , and ti is the value of variable t.
In the process of adaptation, the parameter values of

the membership functions for inputs and outputs may be
time-varying.

The rule base of the model discussed is linguistically
and numerically complete and contains J = LM rules of
the following forms:

R1 : IF (a = Za1)AND (b = Zb1)THEN (t = T1) ,

R2 : IF (a = Za1)AND (b = Zb2)THEN (t = T2) ,

R3 : IF (a = Za1)AND (b = Zb3)THEN (t = T3) ,

...

Rj : IF (a = Zal)AND (b = Zbm)THEN (t = Tj) ,

...

RJ : IF (a = ZaL)AND (b = ZbM)THEN (t = TJ) ,

where l = 1, . . . , L, m = 1, . . . , M , j = 1, . . . , J ,
R1, . . . , Rj, . . . , RJ denote consecutive rules.

370 K. Zatwarnicki

In the inference block, the degrees of the activation
levels for the particular fuzzy rules are calculated. Initial-
ly, it is necessary to calculate the degree of a rule premise
for the particular rules. The degree of activation for rule
Rj is calculated according to

μRj (ai, bi) = T (μZaL (ai) , μZbm
(bi)) , (2)

where ai and bi are load values at the moment of arrival
of the i-th request, and T is the T -norm operator, adopted
here as the PROD operator, i.e., the product. Therefore,
(2) assumes the form

μRj (ai, bi) = μZal
(ai)μZbm

(bi) . (3)

Having calculated the degrees of membership of the
rule premises, the degrees of membership of fuzzy rule
conclusions should be computed, that is, an inference is
carried out. In the model presented, the inference is based
on the implication using the PROD operator, i.e., an al-
gebraic product, which is also called the Larsen rule. The
membership function of the fuzzy rule conclusion is ob-
tained through limiting the full membership function of
the rule conclusion to the level determined by the degree
of the rule activation level. The formula (4) shows the
inference-modified membership function of the fuzzy rule
conclusion obtained:

μT∗
j

(tj) =

{
μRji if ti = tjki,

0 if ti �= tjki,
(4)

where μRji = μRj (ai, bi). In practice, a value of the
function μT∗

j
(ti) is equal to μRj (ai, bi). At the output

of the inference block (Fig. 5), the values of the member-
ship degrees for the premises of the particular rules μRji,
j = 1, . . . , J , are obtained.

In the defuzzification block, a crisp value of the mo-
del output is calculated. There are many defuzzification
methods; for the fuzzy model discussed the height me-
thod was chosen, which requires an insignificant amount
of calculation and thanks to which the model is ‘sensiti-
ve’ to input changes. The defuzzification result, that is, an
estimator of the HTTP request response time, is obtained
from the formula

t̂i =

J∑

j=1

(
tjkiμT∗

j i

)

J∑

j=1

μT∗
j i

, (5)

where μT∗
j i = μT∗

j
(tjki). Because μT∗

j
(tjki) = μRji and

accounting for the unity division condition for the mem-
bership functions for both inputs

J∑

j=1

μRji = 1,

(5) may be rewritten in the following form:

t̂i =
J∑

j=1

tjkiμRji. (6)

In the process of estimation, the following data are
used:

Aki = [α1ki, . . . , αlki, . . . , αLki] ,

Bki = [β1ki, . . . , βmki, . . . , βMki] ,

Yki = [t1ki, . . . , tjki, . . . , tJki] ,

which are the parameters of the membership functions
for inputs and outputs. The parameters are weights in the
neuro-fuzzy model, which can be determined after trans-
formation of the fuzzy model described into the neuro-
fuzzy model.

4.3. Adaptation of the server model. Let us now di-
scuss the model operation in the adaptation mode. The es-
sence of adaptation is that, within each class of HTTP ob-
jects, the consecutive request will be renumerated with a
new subindex g (corresponding to but not substituting for
i). We now have the reindexed requests xg within each
class kg ∈ {1, . . . , K}, with g = 1, . . . , Gk. Note that
∑K

k=1 Gk = I . Now, adaptation will be performed se-
parately within each class kg ∈ {1, . . . , K}. Specifical-
ly, the incoming request will be classified to a particular
class, within which adaptation will be solely proceeded.
Thus we can say that we have separate neural networks for
each of S servers. Possible (minor) cross-adaptation in all
the remaining classes, the task being conceivable in some
Web-related applications, will be a subject of the author’s
future research.

1aZμ

aLZμ

.

.

.

1Zbμ

bMZμ

.

.

.

.

.

.

Σ

π
.
.
.

gt̂

1

1

1

1

π

π

π

π

π

π

π

.

.

.

.

.

.

.

.

.

.

.

.

ga

Server Parameters

gb

1Rμ

Rjμ

)1(+jRμ

RJμ

gU

Fuzzification

kgkg BA
kgY

Defuzzification Inference

11tRμ

jRjtμ

)1()1(++ jjR tμ

JRJ tμ

Fig. 7. Neuro-fuzzy model of a WWW server.

Adaptive control of cluster-based Web systems using neuro-fuzzy models 371

Figure 7 shows an overall diagram of the neuro-fuzzy
model created as a result of the fuzzy model transforma-
tion.

In the neuro-fuzzy network presented, the input layer
of neurons consists of two parts, each of which is respon-
sible for fuzzification of a different input value. Each part
contains the number of neurons which is equal to the num-
ber of fuzzy sets for a given input, hence the input layer
contains L+M neurons. The value of the degree of mem-
bership in the particular inputs of fuzzy sets is obtained at
the output of each neuron of the fuzzification layer.

The degrees of membership μT∗
j

(tg) = μRj (ag, bg),
j = 1, . . . , J , being the inference modified function of
membership in the output fuzzy sets, are calculated in the
inference layer of the neuro-fuzzy network described. The
number of neurons in this layer corresponds to the number
of rules in the rule base and is equal to J . The structure of
the fuzzification layer in the neuro-fuzzy model depends
on the fuzzification method adopted. As has been mentio-
ned before, the height method was applied in the model
discussed. The defuzzification layer contains J + 1 neu-
rons, of which J neurons calculate the product of time
tjkg taken from the server parameters module for the kg-
th class and the activation level μRjg for the j-th fuzzy
rule, j = 1, . . . , J . The remaining neuron calculates the
sum of the products over j = 1, . . . , J . This sum is the
output value, that is, the estimated request response time
t̂g.

Adaptation in the neuro-fuzzy model is carried out
through the adjustment of its parameters based on infor-
mation on the estimation error eg = t̂g − t̃g (Horikowa
et al., 1992). The parameters of the fuzzy sets of inputs
and outputs will be subjected to the process of adapta-
tion. The backpropagation method developed by Werbos
(1974) is used in the adaptation method. The adaptation
algorithm updates the parameters to minimize the value of
the mean square error Eg = (eg)

2 /2. A gradient descent
rule developed by Widrow and Hoff (1960) was used in
the minimization process for the mean square error, ac-
cording to which parameters are tuned based on the for-
mula δ(g+1) = δg − η∂Eg/∂δg, where δ(g+1) is the upda-
ted value of the parameter δg, η is the learning rate, and
∂Eg/∂δg is the partial error.

Partial errors for the parameters of the fuzzy sets for
the output are calculated according to

∂Eg

∂tνkg
=
(
t̂g − t̃g

) ∂t̂g
∂tνkg

=
(
t̂g − t̃g

) ∂

∂tνkg

J∑

j=1

μRjgtjkg

=
(
t̂g − t̃g

)
μRνg,

(7)

where ν ∈ {1, . . . , J}. New parameter values of the fuzzy

sets of the output are calculated according to

tνk(g+1) = tνkg + ηyμRνg

(
t̃g − t̂g

)
, (8)

where ηy is the learning rate for fuzzy output parameters.
To calculate the partial errors for the parameters of

the input fuzzy sets (6), is converted to the following form:

t̂ (ag, bg)

=
M∑

m=1

L∑

l=1

μZal
(ag)μZbm

(bg) t((m−1)L+1)kg , (9)

where L is the number of fuzzy sets for the input a and
M is the number of fuzzy sets for the input b. The error
introduced to the neuro-fuzzy network by the parameters
of the fuzzy sets of input a can be expressed with

∂Eg

∂αφkg

=
(
t̂g − t̃g

) ∂t̂g
∂αφkg

=
(
t̂g − t̃g

)

× ∂

∂αφkg

M∑

m=1

L∑

l=1

μZal
(ag)μZbm

(bg) t((m−1)L+l)kg

=
(
t̂g − t̃g

)

×
M∑

m=1

(

μZbm
(bg)

∂

∂αφkg

L∑

l=1

μZal
(ag) t((m−1)L+l)kg

)

=
(
t̂g − t̃g

)

×
M∑

m=1

(

μZbm
(bg)

L∑

l=1

t((m−1)L+l)kg
∂μZal

(ag)
∂αφkg

)

,

(10)

where φ ∈ {1, . . . , L − 1}.

Updated parameter values of the fuzzy sets for the
input a can be calculated as

αφk(g+1)

= αφkg + ηa

(
t̃g − t̂g

)

×
M∑

m=1

(

μZbm
(bg)

L∑

l=1

t((m−1)L+l)kg
∂μZal

(ag)
∂αφkg

)

.

(11)

Updated parameter values of the fuzzy sets for the input b

372 K. Zatwarnicki

can be calculated in a similar way,

βγk(g+1)

= βγkg + ηb

(
t̃g − t̂g

)

×
L∑

l=1

(

μZal
(ag)

M∑

m=1

t((l−1)M+m)kg
∂μZbm

(bg)
∂βγkg

)

,

(12)

where γ ∈ {1, . . . , M − 1}.
The elements ∂μZal

(ag) /∂αφkg and
∂μZbm

(bg) /∂βγkg in (11) and (12) are the partial
derivatives calculated for triangular membership func-
tions of the inputs a and b. The unfavorable feature
of the adopted membership functions is the fact that
they are piecewise linear and thus there are points for
which a partial derivative cannot be calculated. For
non-differentiable points, such as peaks, it is assumed
after Pilinski (1996) that a derivative in these points is
equal to the mathematical average of the two neighboring
derivatives. The parameters of the fuzzy sets are updated
online every time the request service is completed.

The number of the fuzzy sets for the inputs and the
assumed learning rates ηa, ηb and ηt influence the adapta-
tion rate and the accuracy of the described model for the
system modeled. The higher the number of the fuzzy sets
for the input, the more accurately the model describes the
system behavior; however, at the same time it decreases
the convergence rate to the actual system. The adaptation
rate also depends, to a large extent, on the learning rate
adopted. The higher the values of the rate, the faster the
adaptation proceeds, but at the same time the model loses
the properties of generalization. After numerous prelimi-
nary investigations, not discussed in this paper, it was as-
sumed that the number of fuzzy sets for both inputs will
be the same, L = M = 4, for each of the experiments
to be presented further in the paper. Based on these in-
vestigations and experiments similar to those of Lee et al.
(1995), also the learning rates ηa = ηb = 0.1 and ηt = 0.3
were determined. Since the adaptation algorithm operates
online, the values of the learning rates are constant du-
ring the operation of the Web switch. It is adopted that
the initial values of parameters tjki, where j = 1, . . . , J ,
k = 1, . . . , K , g = 1, should be zero. Parameters αlkg ,
and βmkg of membership functions for the input fuzzy
sets, where l = 1, . . . , L − 1, m = 1, . . . , M − 1,
k = 1, . . . , K , g = 1, are adopted to uniformly cover
the actual span of the inputs ag and bg, where the valu-
es of the parameters of terminal fuzzy sets are adopted as
α0kg = 0, α3kg = 100, β0kg = 0, β3kg = 100.

5. Simulation model and experiment results

In order to determine the quality of the operation of the
switch working under the control of the LFNRD algo-
rithm, an adequate testbed was prepared and simulation

Table 1. Workload model parameters.
Category Distribution Parameters

Number of page views Reverse μ = 3.86,
per session Gaussian λ = 9.46

User’s think time Pareto α = 1.4,
k = 1

Number of objects Pareto α = 1.33,
on site k = 2

Browser think time Weibul α = 7.640,
σ = 1.705

Size of HTML Lognormal μ = 7.630,
page frame Pareto σ = 1.001,

k = 10240,
α = 1

Embedded object size Lognormal μ = 8.215,
σ = 1.46

experiments were carried out. For the development of the
simulation program, the CSIM19 packet (CSIM, 2008)
was used. The simulator included the following modules:
a request generator, an LFNRD switch, a WWW server,
and a database server. The simulator scheme is shown in
Fig. 8.

The widely used, and well known from the literatu-
re, HTTP request generator model, which made modeling
the clients’ behavior possible, was adopted in simulation
experiments (Barford et al., 1999; Casalicchio and Cola-
janni, 2001; Xia et al., 2005). Advantages of this model
were confirmed by Williams et al. (2005). Owing to the
model applied, the generated request traffic complied with
the actual traffic observed on the Internet, which is charac-
terized by bursts and self-similarity. Such a traffic may be
generated using long-tail distributions, such as Pareto and
lognormal distributions. During its operation, the request
generator created a given number of simulation clients wi-
thin one second. Table 1 shows probability distributions
and distribution parameter values used in the HTTP requ-
est generator.

The simulated WWW service was able to service

Client

CPU

HDD

WWW Server DB Serwer

CPU

HDD

WWW Server DB Serwer

Web
Switch

Client

Client

Request
Generator

…

…

…

……

…

cache misses

cache misses

Fig. 8. Simulation model

Adaptive control of cluster-based Web systems using neuro-fuzzy models 373

both static (referring to static objects) and dynamic requ-
ests (referring to dynamic objects) in the simulation pro-
gram. The latter were serviced by the WWW server and
the database server whereas the former were serviced by
the WWW server only (Menasce and Almeida, 1998; Pai
et al., 1998). It was assumed for testing purposes that 80%
of the requests referred to static resources and 20% to dy-
namic ones.

The dynamic requests were divided into three classes
(Cardellini et al., 2001):

• high intensive, applying a heavy load on the database
server, constituting 1% of dynamic requests;

• medium intensive, applying a medium load on the
database server, constituting 14% of dynamic requ-
ests;

• low intensive, applying a small load on the database
server, constituting 85% of dynamic requests;

It was assumed that the size of all the static objects
provided by the service was 400 MB. The size and structu-
re of the simulated Web object were generated according
to distributions presented in Table 1.

Clients send requests to the module of the LFNRD
switch in the simulation program. It is assumed that the
link between the clients and the switch is of an infinite
transfer capacity.

In order to compare the quality of service for the clu-
ster being under control of the LFNRD algorithm with the
quality of service under other reference algorithms and
the algorithms used most often in industrial solutions, the
FNRD, LARD, CAP, WRR and RR algorithms were also
implemented in the switch module. The LARD algorithm
assigns incoming requests taking into account the content
of the Web servers caches. The CAP algorithm assigns re-
quests according to the RR policy separately for different
types of requests. The WRR algorithm assigned a diffe-
rent number of clients’ requests to Web servers according
to the weights adopted. Weights for the particular servers
were calculated with a definite interval based on the num-
ber of HTTP requests actively serviced by the particular
servers. This measure reflects a server load well and is
often used in request distribution algorithms (Casalicchio
and Colajanni, 2001; Cardellini et al., 2002). The algori-
thm redirected more requests to the less-loaded servers.

The WWW server module included a processor, a
hard disk and cache. This model is recognized in the li-
terature and was introduced by Pai et al. (1998).

The processor and the disk were modeled as queue
systems with a single queue and one service. Request se-
rvice times were determined in our experimental tests for
the server with an Intel Pentium 4, 2 GHz processor and a
Seagate ST340810A 80GB IDE hard disk. Linux Fedora

Core 6 the operating system and the WWW server softwa-
re Apache 2.2.4 with modules PHP 5.1 were installed on
the server (Zatwarnicki, 2011).

Costs connected with the request service time can be
described in the following way:

• service cost on the processor:

– TCP/IP connection cost is 0.10097 ms;

– request analysis and HTTP response prepara-
tion cost is 0.14533 ms;

– data transfer cost is 0.004291z ms;

• service cost on the disk was modeled according to
Eqn. (13)

SD (z)

=

{
4.5 if z ∈ [0, 128] ,

0.03813125z − 0.3808 if z ∈ (128,∞) ,

(13)

where the service time on disk SD is given in millise-
conds, and z is the size of the requested object given in
KB.

It is assumed after Pai et al. (1998) that the WWW
server cache in the server model operates according to the
LRU (Least Recently Used—the least recently used ob-
jects are the first to be removed) policy. The database se-
rver was modeled as a queue system with a single queue
to a resource and one service. Dynamic requests service
times were modeled according to the hyperexponential di-
stribution after Cardellini et al. (2001), as well as Casalic-
chio and Colajanni (2001). Dynamic requests service ti-
mes depended on the request type (high, medium and low
intensive). Table 2 shows the assumed dynamic requests
service times on the database server. During the simula-
tion experiments the request response time and the 95-th
percentile of the Web page response time were measured.
The response time of the page was calculated as a sum of
response times for objects of the page Tpage =

∑N
n=1 t̃i,

where N is the number of objects embedded in the page
plus one object of the HTML page frame, t̃i is the respon-
se time to an HTTP request referring to the page object
(Cardellini et al., 2002). The indicated service quality me-
asure reflects the client’s perspective of work with a given
Internet service. Often the clients may not register the fact
of downloading a single HTTP object by a browser but

Table 2. Request service times on the database server.
Dynamic request type Average service time [ms]

Low intensive 10
Medium intensive 50

High intensive 100

374 K. Zatwarnicki

(a) (b)

(c) (d)

(e) (f)

Fig. 9. 95-th percentile of the page response vs. the number of new clients for configurations: Hom3s (a), Hom5s (b), Hom7s (c),
Het1s/2s (d), Het2s/3s (e), Het3s/4s (f).

they will pay attention to the loading time of the whole
Web page consisting of a larger group of objects.

The investigations were carried out for six configura-
tions of the servers in a cluster. Homogeneous WWW and
database servers, whose description and configuration ha-
ve been shown above, were used in the first three con-
figurations. The first configuration (denoted as Hom3s)
consisted of three WWW and database servers. The se-
cond configuration (Hom5s) was composed of five sets
of servers. In the third configuration (Hom7s), seven sets
of servers were used. Subsequent configurations compri-
sed WWW and database servers described above, and the
servers set having all request service times extended by
33%. In the fourth configuration (Het1s/2s), the cluster
consisted of three WWW and database servers, with one
set having all request service times extended by 33%. The
fifth configuration (Het2s/3s) was composed of five sets of
servers, and two sets were slower then others. In the last

configuration (Het3s/4s), seven sets of servers were used,
and two sets of servers had extended service times.

Figure 9 presents diagrams of the 95-th percentile
of the Web page response time in a function of the load
(number of new clients created per second) for four confi-
gurations of the server cluster. In Fig. 10, the diagrams of
mean request response time for three of the configurations
are presented.

As can be noticed, the tendencies on the graphs in
Figs. 9 and 10 are the same. The diagrams show that the
best results, that is, the lowest values for the 95-th percen-
tile of the page response time and the mean request re-
sponse time, are obtained for the LFNRD algorithm both
in the case of homogeneous and heterogeneous clusters.
Good results for this algorithm are obtained for the smal-
ler three-server and five-cluster system, as well as for the
bigger seven-server cluster. In the case of heterogeneous
server clusters, the LFNRD algorithm results are signifi-

Adaptive control of cluster-based Web systems using neuro-fuzzy models 375

cantly better than those for the other algorithms, with re-
sponse times at heavy load being almost twice shorter for
this algorithm than for the other ones.

(a)

(b)

(c)

Fig. 10. Mean request response time vs. the number of new
clients for configurations: Het1s/2s (a), Het2s/3s (b),
Het3s/4 (c).

In the clusters with three sets of servers, similar re-
sults are obtained for the FNRD algorithm as for the
LFNRD algorithm. The FNRD algorithm worked better
for smaller clusters because parameters which were not
tuned in this algorithm were initially set for three and
four Web server clusters. For homogeneous cluster con-
figurations quite good results are obtained for the CAP
algorithm. The above results indicate that the LFNRD-
controlled Web switch provides the service of the highest
quality in relation to all other algorithms comparatively
analyzed.

In addition to the experiments described above, an
analysis of the request capacity of the Web switch was
made, in terms of the number of requests redirected per se-
cond and mean decision time. The results were obtained
for the server with two Intel Dual-Core Xeon 5160 pro-

cessors with non-optimized software and performed for
four concurrently operating processes, and for the cluster
model containing three Web servers. The obtained results
show that the Web switch working under the LFNRD has
a relatively low request capacity as compared to the re-
maining algorithms. However, the maximum number of
requests redirected per second is equal to 616000 for the
LFNRD algorithm, which is sufficiently high even for a
heavily loaded modern Web cluster. Also, the mean time
to make an LFNRD decision equals 0.000001623 s, and is
three times of magnitude smaller than the response time.
This proves that the highest quality LFNRD Web switch
can indeed operate in real time. However, the decision ma-
king time (including the adaptation time) depends on the
number of Web servers operating in the cluster. The time
to estimate the response time for one Web server is con-
stant and is equal for each of the servers. Consequently,
the time worst-case complexity depends linearly on the
number of Web servers in the cluster O(S). For this re-
ason the LFNRD Web cluster should not contain too many
Web servers—its number should not exceed 7. If the num-
ber of Web servers is bigger, then a different architecture
of the cluster should be used. In such a case a Web switch
with a simple distribution algorithm should be placed in
the front-end of the cluster. This switch should receive all
requests destined for the Web cluster and distribute them
between two or more LFNRD Web switches (Cardellini
et al., 2002).

6. Conclusion

The paper has presented a design of a high quality Web
switch applying a new LFNRD request distribution me-
thod using neuro-fuzzy models of Web servers. The appli-
cation of these models has made it possible to (i) essential-
ly improve the Web cluster operation quality as compared
with the other reference algorithms, and (ii) forecast the
decision making effects well before realization. The simu-
lation experiments have shown that the approach proposed
is adequate, and owing to the application of the algorithm
developed it is possible to shorten request response times
significantly. Further research has also shown that the pro-
posed distribution method is computationally efficient and
the operation of a Web switch in real time is possible.

In our future work we are going to apply neuro-fuzzy
models in Web systems guaranteeing service quality both
in locally and globally distributed systems. We suppose
that the presented model can estimate the service time not
only of single request but also of all of the Web page. This
could be used to derive a method that helps to keep the
Web page response time within established boundaries in
such a way that, at a heavy workload, page response time
both for small and complex pages would not exceed the
imposed time limit.

376 K. Zatwarnicki

References
AlSa’deh, A. and Yahya, A.H. (2008). Shortest remaining

response time scheduling for improved web server per-
formance, in J.Filipe and J. Cordeiro (Eds.), Web Infor-
mation Systems and Technologies, Lecture Notes in Bu-
siness Information Processing, Vol. 18, Springer-Verlag,
Berlin/Heidelberg, pp. 80–92.

Andreolini, M., Casolari, S. and Colajanni, M. (2008). Auto-
nomic request management algorithms for geographically
distributed internet-based systems, Proceedings of the 2nd
IEEE International Conference on Self-Adaptive and Self-
Organizing Systems, Venezia, Italy, pp. 171–180.

Barford, P., Bestavros, A., Bradley, A. and Crovella, M. (1999).
Changes in web client access patterns: Characteristics and
caching implications, World Wide Web 2(1): 15–28.

Borzemski, L. (2006). The use of data mining to predict web
performance, Cybernetics and Systems 37(6): 587–608.

Borzemski, L. and Suchacka, G. (2010). Business-oriented ad-
mission control and request scheduling for e-commerce
websites, Cybernetics and Systems 41(8): 592–609.

Borzemski, L. and Zatwarnicki, K. (2003). A fuzzy adaptive
request distribution algorithm for cluster-based web sys-
tems, 11th Euromicro Workshop on Parallel, Distributed
and Network-Based Processing, PDP 2003, Genoa, Italy,
pp. 119–126.

Borzemski, L. and Zatwarnicki, K. (2006). Fuzzy-neural web
switch supporting differentiated service, in B. Gabrys, R.J.
Howlett and L.C. Jain (Eds.), Knowledge-Based Intelli-
gent Information and Engineering Systems, Lecture Notes
in Artificial Intelligence, Vol. 4252, Springer-Verlag, Ber-
lin/Heidelberg, pp. 195–203.

Borzemski, L., Zatwarnicki, K. and Zatwarnicka, A. (2007). Ad-
aptive and intelligent request distribution for content deli-
very networks, Cybernetics and Systems 38(8): 837–857.

Cardellini, V., Casalicchio, E., Colajanni, M. and Mambelli, M.
(2001). Web switch support for differentiated services,
ACM Performance Evaluation Review 29(2): 14–19.

Cardellini, V., Casalicchio, E., Colajanni, M. and Yu, P.S. (2002).
The state of the art in locally distributed web-server sys-
tems, ACM Computing Surveys 34(2): 263–311.

Casalicchio, E. and Colajanni, M. (2001). A client-aware dispat-
ching algorithm for web clusters providing multiple servi-
ces, Proceedings of the 10th International World Wide Web
Conference, Hong Kong, China, pp. 535–544.

Cherkasova, L. and Karlsson, M. (2001). Scalable webserver
cluster design with workload-aware request distribution
strategy ward, Proceedings of the 3rd International Work-
shop on Advanced Issues of e-Commerce and Web-Based
Information Systems (WECWIS), Washington, DC, USA,
p. 212.

CSIM (2008). Mesquite software 2008: Deve-
lopment toolkit for simulation and modeling,
http://www.mesquite.com.

Driankov, D., Hellendoorn, H. and Reinfrank, M. (1996). An
Introduction to Fuzzy Control, Springer, New York, NY.

Elnikety, S., Nahum, E., Tracey, J. and Zwaenepoel, W. (2004).
A method for transparent admission control and request
scheduling in e-commerce web sites, WWW’04: Proce-
edings of the 13th International Conference on World Wide
Web, New York, NY, USA, pp. 276–286.

Gilly, K., Juiz, C. and Puigjaner, R. (2011). An up-to-date survey
in web load balancing, World Wide Web 14(2): 105–131.

Harchol-Balter, M., Schroeder, B., Agrawal, M. and Bansal, N.
(2003). Size-based scheduling to improve web performan-
ce, ACM Transactions on Computer Systems 21(2): 207–
233.

Horikowa, S., Furuhashi, T. and Uchikawa, Y. (1992). On fuz-
zy modeling using fuzzy neural networks with the back-
propagation algorithm, IEEE Transactions on Neural Ne-
tworks, Los Alamitos, CA, USA, pp. 801–806.

Kwok, Y.-K. and Cheung, L.-S. (2004). A new fuzzy-decision
based load balancing system for distributed object com-
puting, Journal of Parallel and Distributed Computing
64(2): 238–253.

Kun-Ming, V., Chou, Y. and Wang, Y. (2004). A fuzzy-based
dynamic load-balancing algorithm, Journal of Information,
Technology and Society 4(2): 55–63.

Lee, K.M., Kwak, D.H. and Leekwang, H. (1995). Tuning of
fuzzy models by fuzzy neural networks, Fuzzy Sets and
Systems 76(1): 47–61.

Lee, S.C.M., Lui, J.C.S. and Yau, D.K.Y. (2004). A proportional-
delay diffserv-enabled web server: Admission control and
dynamic adaptation, IEEE Transactions on Parallel and
Distributed Systems 15(5): 385–400.

Mamdani, E. H. (1977). Application of fuzzy logic to approxi-
mate reasoning using linguistic synthesis, IEEE Transac-
tions on Computers C-26(12): 1182–1191.

Menasce, D. and Almeida, V. (1998). Capacity Planning for Web
Performance. Metrics, Models, and Methods, Prentice-
Hall, New York, NY.

Pai, V.S., Aron, M., Banga, G., Svendsen, M., Druschel, P., Zwa-
enepoel, W. and Nahum, E. (1998). Locality-aware requ-
est distribution in cluster-based network servers, ACM SIG-
PLAN Notices 33(11): 205–215.

Pilinski, M. (1996). Universal network trainer, Proceedings of
the 2nd Conference on Neural Networks and Their Appli-
cations, Częstochowa, Poland, Vol. 2, pp. 383–391.

Quan, Z. and Chung, J.-M. (2005). Statistical admission control
for real-time services under earliest deadline first schedu-
ling, Computer Networks 48(2): 137–154.

Riska, A., Sun, W., Smirni, E. and Ciardo, G. (2002). Adap-
tload: Effective balancing in clustered web servers under
transient load conditions, 22nd International Conference
on Distributed Computing Systems (ICDCS 2002), Vienna,
Austria, pp. 103–111.

Simiński, K. (2010). Rule weights in a neuro-fuzzy system
with a hierarchical domain partition, International Jour-
nal of Applied Mathematics and Computer Science 20(2):
337–347, DOI: 10.2478/v10006-010-0025-3.

Adaptive control of cluster-based Web systems using neuro-fuzzy models 377

Wei, J. and Xu, C.-Z. (2006). Provisioning of client-perceived
end-to-end QoS guarantees in web servers, IEEE Transac-
tions on Computers 55(12): 1543–1556.

Wei, J., Zhou, X. and Xu, C.-Z. (2005). Robust proces-
sing rate allocation for proportional slowdown differentia-
tion on internet servers, IEEE Transactions on Computers
54(8): 964–977.

Williams, A., Arlitt M., Williamson, C. and Barker, K. (2005).
Web workload characterization: Ten years later, in X. Tang,
I. Xu and S.T. Chanson (Eds.), Web Content Delivery, Web
Information Systems Engineering and Internet Technolo-
gies, Vol. 2, Springer-Verlag, Berlin/Heidelberg, pp. 3–21.

Xia, C.H., Liu, Z., Squillante, M.S., Zhang, L. and Malo-
uch, N. (2005). Web traffic modeling at finer time sca-
les and performance implications, Performance Evaluation
61(2): 181–201.

Zadeh, L.A. (1965). Fuzzy sets, Information and Control
8(3): 338–353.

Zadeh, L. A. (1996). Fuzzy logic-computing with words, IEEE
Transactions on Fuzzy Systems 4(2): 104–111.

Zatwarnicki, K. (2010). Neuro-fuzzy models in global HTTP
request distribution, in J. Pan, S. Chen and N.T. Nguyen
(Eds.), Computational Collective Intelligence, Lecture No-
tes in Computer Science, Vol. 6421, Springer-Verlag, Ber-
lin/Heidelberg, pp. 1–10.

Zatwarnicki, K. (2011). Identification of the Web server, in A.
Kwiecień, P. Gaj and P. Stera (Eds.), Computer Networks,
Communications in Computer and Information Science,
Vol. 160, Springer-Verlag, Berlin/Heidelberg, pp. 45–54.

Zhou, X., Wei, J. and Xu, C.-Z. (2007). Quality-of-service diffe-
rentiation on the internet: A taxonomy, Journal of Network
and Computer Applications 30(1): 354–383.

Krzysztof Zatwarnicki received his M.Sc. and
Ph.D. degrees in computer science from the Fa-
culty of Computer Science and Management,
Wrocław University of Technology, in 1998 and
2003, respectively. He is an assistant professor
at the Institute of Control and Computer Engine-
ering, Opole University of Technology, Poland.
He has authored or co-authored some 50 papers.
His research interests concentrate on the problem
of improving the quality of the Web service.

Appendix

Membership functions for input fuzzy sets

μZa1 (ai)

=

⎧
⎨

⎩

ai − α1ki

α0ki − α1ki
if 0 ≤ ai < α1ki,

0 otherwise,
...

μZal
(ai)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ai − α(l−2)ki

α(l−1)ki − α(l−2)ki
if α(l−2) < ai ≤ α(l−1)ki,

ai − αlki

α(l−1)ki − αlki
if α(l−1)ki < ai < αlki,

0 otherwise,

...

μZaL (ai)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a − α(L−2)ki

α(L−1)ki − α(L−2)ki
if α(L−2)ki < ai < α(L−1)ki,

1 if α(L−1)ki ≤ ai,

0 otherwise,
(14)

where l = 1, . . . , L and α0ki = 0.

Received: 3 March 2011
Revised: 12 August 2011
Re-revised: 28 September 2011

	Introduction
	Related work
	Problem formulation
	LFNRD switch design
	Structure of the server model
	Estimation of the HTTP request response time
	Adaptation of the server model

	Simulation model and experiment results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

