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This paper studies an LMI optimization problem of delay-dependent robust stability criteria for stochastic systems with
polytopic and linear fractional uncertainties. The delay is assumed to be time-varying and belong to a given interval, which
means that lower and upper bounds of this interval time-varying delay are available. The uncertainty under consideration in-
cludes polytopic-type uncertainty and linear fractional norm-bounded uncertainty. Based on the new Lyapunov–Krasovskii
functional, some inequality techniques and stochastic stability theory, delay-dependent stability criteria are obtained in
terms of Linear Matrix Inequalities (LMIs). Moreover, the derivative of time delays is allowed to take any value. Finally,
four numerical examples are given to illustrate the effectiveness of the proposed method and to show an improvement over
some results found in the literature.
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1. Introduction

Time-delay occurs in many dynamical systems such as
biological systems, chemical, metallurgical processing
and nuclear reactors, long-transmission lines in pneu-
matic and hydraulic systems as well as electrical net-
works (Kolmanoskii and Myshkis, 1992). Frequently,
it has been a source of the oscillations, instability and
poor performance. Considerable effort has been applied
to different aspects of linear time-delay systems in re-
cent years (Hale and Verduyn lunel, 1993; Huang and
Zhou, 2000; Ivanesu et al., 2000; Mahmoud and Al-
Muthairi, 1994; Liu, 2005; Xue and Qiu, 2000; Xia and
Jia, 2003). Moreover, the stability analysis of interval
time-varying systems has been focused on as a topic of
theoretical and practical importance (He et al., 2006; Jiang
and Han, 2008; Yue, 2006; Jiang and Han, 2006; Kwon
and Park, 2008). Systems with interval time-varying de-
lays mean that the lower bound of the time delay which
guarantees the stability of the system is not restricted to
zero. A typical example of dynamical systems with in-

terval time-varying delays is a networked control system
(Yue, 2006).

Uncertainties are frequently encountered in various
engineering and communication systems. The character-
istics of dynamic systems are significantly affected by the
presence of uncertainties, even to the extent of instability
in an extreme situation (Zhou et al., 2006).

In engineering applications, it is very common that
one does not know exactly the system under investigation;
that is, the system contains some elements (blocks) that
are uncertain. Usually it is known that these uncertain ele-
ments belong to some specific admissible domains, which
in turn depend on the nature of the elements and also
on the information available about the system. In other
words, it is known only that the system belongs to the
family of systems that arises when the uncertain elements
(blocks) range over the admissible domains and therefore
one may treat the family as a new object for analysis. This
family is referred to as an uncertain system. When it is
possible to show that all systems of the family are sta-
ble, the stability of the original system that is a particular
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member of the family is guaranteed. The robust stability
problem considers the stability problem of systems that
contain some uncertainties.

Over the past decade, much effort has been spent on
the analysis and synthesis of uncertain systems with time-
delay (see, e.g., the works of Chen (2002) Kim (2001),
Liu and Zhang (2005) and the references therein).

In this paper, the stability analysis for stochastic sys-
tem is investigated under polytopic type uncertainty and
linear fractional uncertainty. First, polytopic uncertain-
ties can arise when the uncertain matrix in norm-bounded
uncertainties provides some prior known structures of un-
certainties. Therefore the polytopic type uncertainty can
be regarded as an important class of parameter uncer-
tainty. Recently, the problem of robust stability and sta-
bilization for delayed systems with polytopic uncertain-
ties have been studied and LMI-based approaches have
been developed (Li et al., 2008; Xia and Jia, 2002; He
et al., 2004; Geromel and Colaneri, 2006; Chesi et al.,
2007; Ramos and Peres, 2001; Xu et al., 2004). As is well
known, usually fractional uncertainties are more general
than norm-bounded uncertainties. Recently, some results
on the stability of systems with linear fractional uncer-
tainty have been reported (Li et al., 2007; Balasubrama-
niam et al., 2009; Gu et al., 2003; Balasubramaniam and
Lakshmanan, 2011).

In recent years, increasing efforts have been made to
study stochastic systems with time-delays. The stability
and control problem for uncertain stochastic delayed sys-
tems has been extensively investigated by a considerable
number of researchers (Miyamura and Aihara, 2004; Yan
et al., 2009; Zhang et al., 2009; 2008; Chen et al., 2005;
Yue and Han, 2005; He et al., 2010). Tian et al. (2010),
dealt with the problem of robust H∞ control design for
nonlinear networked control systems, which are presented
in the form of a T–S fuzzy model with a time-varying in-
put delay and the whole variation interval of the delay is
divided into two subintervals of equal length, which is dif-
ferent from the existing method. Recently, only few au-
thors have discussed stability criteria for a system with
linear fractional and polytopic uncertainties.

Based on the above motivations, this paper aims to
develop an LMI optimization problem of delay-dependent
robust stability criteria for stochastic systems by con-
structing a new Lyapunov–Krasovskii functional with in-
tegral terms involving lower and upper bounds of interval
time-varying delays such as

∫ t
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2
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] [
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]
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yT (θ)R4y(θ) dθ,

τM

2
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∫ −τm
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t+s

yT (θ)R6y(θ) dθ.

by employing some analytical techniques, sufficient con-
ditions are derived for the stochastic systems considered
in terms of LMIs, which can be easily calculated by the
MATLAB LMI Control Toolbox. Moreover, a polytopic-
type and linear fractional uncertainty which includes as a
norm-bounded uncertainty as a special case is discussed.
Some numerical examples are given to illustrate the effec-
tiveness and conservativeness of the proposed method.

Notation. Throughout this paper, R
n and R

n×n denote,
respectively, the n-dimensional Euclidean space and the
set of all n × n real matrices. The superscript T denotes
the transposition and the notation X ≥ Y (respectively
X > Y ), where X and Y are symmetric matrices, means
that X − Y is positive semi-definite (respectively posi-
tive definite). In is the n × n identity matrix. | · | is the
Euclidean norm in R

n. Moreover, let (Ω,F ,P) be a com-
plete probability space with a filtration {Ft}t≥0 satisfying
the usual conditions (that is, the filtration contains all P-
null sets and is right continuous). The asterisk ∗ always
denotes the symmetric block in one symmetric matrix.
Sometimes, the arguments of a function or a matrix will
be omitted in the analysis when no confusion can arise.

2. Problem description and preliminaries

Consider the following stochastic system with state delay:

dx(t) = [A(t)x(t) + B(t)x(t − τ(t))] dt

+ [C(t)x(t) + D(t)x(t − τ(t))] dw(t),
x(t) = φ(t), t ∈ [−τM , 0],

(1)

where x(t) ∈ R
n is the state vector, A(t) = A +

ΔA(t), B(t) = B + ΔB(t), C(t) = C + ΔC(t) and
D(t) = D + ΔD(t), A, B, C and D are known real ma-
trices of appropriate dimensions, ΔA(t), ΔB(t), ΔC(t)
and ΔD(t) are unknown real matrices of appropriate di-
mensions representing system time-varying parameter un-
certainties; ω(t) denotes one dimensional Brownian mo-
tion satisfying E{dω(t)} = 0 and E{dω(t)2} = dt. It
is defined on a complete probability space (Ω,F ,P) with
a natural filtration {Ft}. Here φ(t) is any given initial
data in L2

F0
([−τM , 0]; Rn). Furthermore, τ(t) denotes the

time varying bounded delay and is assumed to satisfy

0 ≤ τm ≤ τ(t) ≤ τM , τ̇(t) ≤ μ, (2)

where τm, τM and μ are constants. We consider robust
stability of the system described by (1) and (2) subject to
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polytopic uncertainty. For polytopic uncertainty, matrices
A, B, C and D in (1) can be expressed as

[
A B C D

]

=
r∑

i=1

λi

[
A(i) B(i) C(i) D(i)

]
, (3)

where
r∑

i=1

λi = 1, 0 ≤ λi ≤ 1.

Next, we address the linear fractional norm-bounded
uncertainty. Suppose that matrices A, B, C and D
have parameter perturbations ΔA(t), ΔB(t), ΔC(t) and
ΔD(t), which are in the form of

[
ΔA(t) ΔB(t) ΔC(t) ΔD(t)

]

= HΛ(t)
[
E E1 E2 E3

]
, (4)

where E, E1, E2 and E3 are given matrices. The class of
parametric uncertainties Λ(t) that satisfy

Λ(t) = [I − F (t)J ]−1F (t) (5)

is said to be admissible, where J is also a known matrix
satisfying

I − JJT > 0, (6)

and F (t) is an uncertain matrix satisfying

FT (t)F (t) ≤ I. (7)

Definition 1. The stochastic time-delay system (1) is said
to be robustly stochastically stable if there exists a positive
scalar c > 0 such that for all admissible uncertainties

lim
T−→∞

E

∫ T

0

xT (t)x(t) dt ≤ c sup
s∈[−τM ,0]

E‖φ(s)‖2.

In obtaining the main results of this paper, the fol-
lowing lemmas will be essential for the proof.

Lemma 1. (Boyd et al., 1994) (Schur complement)
Given constant matrices Ω1, Ω2 and Ω3 of appropriate
dimensions, where ΩT

1 = Ω1 and ΩT
2 = Ω2 > 0, we have

Ω1 + ΩT
3 Ω−1

2 Ω3 < 0

if and only if

[
Ω1 ΩT

3

∗ −Ω2

]
< 0, or

[ −Ω2 Ω3

∗ Ω1

]
< 0.

Lemma 2. (Gu, 2000) For any constant matrix M > 0,
any scalars a and b with a < b and a vector function
x(t) : [a, b] −→ R

n such that the integrals concerned are
well defined, we have

[ ∫ b

a

x(s) ds
]T

M
[ ∫ b

a

x(s) ds
]

≤ (b − a)
[ ∫ b

a

xT (s)Mx(s) ds
]
.

Lemma 3. (Li et al., 2007) Suppose Λ(t) is given by (5)–
(7). Given matrices M = MT , S and N of appropriate
dimensions, the inequality

M + SΛ(t)N + NT ΛT (t)ST < 0

holds for F (t) such that FT (t)F (t) ≤ I if, and only if,
for some ε > 0⎡

⎣ M S εNT

ST −εI εJT

εN εJ −εI

⎤
⎦ < 0.

3. Main results

Consider the uncertain stochastic system (1) with time
varying delays. We take

y(t) = A(t)x(t) + B(t)x(t − τ(t)), (8)

g(t) = C(t)x(t) + D(t)x(t − τ(t)). (9)

Then the system (1) becomes

dx(t) = y(t)dt + g(t) dω(t). (10)

Moreover, the following equality holds:

x(t) − x(t − τ(t))

=
∫ t

t−τ(t)

y(s) ds +
∫ t

t−τ(t)

g(s) dω(s). (11)

The above equality is used in the proof of the main re-
sult. Now the following theorem will discussed without
uncertainties.

Theorem 1. For given scalars τM , τm and μ, the equi-
librium point of the stochastic system (1) is asymptotically
stable in the mean square sense if there exist matrices
P > 0, [

Q1 Q2

QT
2 Q3

]
> 0,

[
Q4 Q5

QT
5 Q6

]
> 0,

Rk > 0, k = 1 . . . , 6, such that for any matrices Ni and
Mi (i = 1, . . . , 8), the following LMI is feasible:

Ω =

⎡
⎢⎢⎢⎣

Ω11 Ω12 . . . Ω18

∗ Ω22 . . . Ω28

...
...

. . .
...

∗ ∗ . . . Ω88

⎤
⎥⎥⎥⎦ < 0, (12)
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where

Ω11 = Q4 + Q1 + R1 + R2 + R3 − R4 − R5

+ N1A + AT NT
1 + M1C + CT MT

1 ,

Ω12 = N1B + AT NT
2 + M1D + CT MT

2 ,

Ω13 = Q2 + R4 + AT NT
3 + CT MT

3 ,

Ω14 = AT NT
4 + CT MT

4 ,

Ω15 = Q5 + R5 + AT NT
5 + CT MT

5 ,

Ω16 = AT NT
6 + CT MT

6 ,

Ω17 = P + AT NT
7 + CT MT

7 − N1,

Ω18 = AT NT
8 + CT MT

8 − M1,

Ω22 = −R6 − (1 − μ)R1 + N2B + BT NT
2

+ M2D + DT MT
2 ,

Ω23 = BT NT
3 + DT MT

3 ,

Ω24 = R6 + BT NT
4 + DT MT

4 ,

Ω25 = BT NT
5 + DT MT

5 ,

Ω26 = BT NT
6 + DT MT

6 ,

Ω27 = BT NT
7 + DT MT

7 − N2,

Ω28 = BT NT
8 + DT MT

8 − M2,

Ω33 = Q3 − Q1 − R4, Ω34 = −Q2,

Ω35 = Ω36 = 0, Ω37 = −N3,

Ω38 = −M3, Ω44 = −Q3 − R2 − R6,

Ω45 = Ω4,6 = 0, Ω47 = −N4, Ω48 = −M4,

Ω55 = Q6 − Q4 − R5, Ω56 = −Q5,

Ω57 = −N5, Ω58 = −M5,

Ω66 = −Q6 − R3, Ω67 = −N6,

Ω68 = −M6,

Ω77 =
(τm

2

)2

R4 +
(τM

2

)2

R5 + δ2R6 − N7 − NT
7 ,

Ω78 = −NT
8 − M7,

Ω88 = P − M8 − MT
8 ,

N =
[
NT

1 NT
2 NT

3 NT
4 NT

5 NT
6 NT

7 NT
8

]T

,

M =
[
MT

1 MT
2 MT

3 MT
4 MT

5 MT
6 MT

7 MT
8

]T

,

δ = τM − τm.

Proof. Consider the Lyapunov–Krasovskii functional

V (xt, t)
= V1(xt, t) + V2(xt, t) + V3(xt, t) + V4(xt, t), (13)

where

V1(xt, t) = xT (t)Px(t),

V2(xt, t)

=
∫ t

t−τ(t)

xT (s)R1x(s) ds +
∫ t

t−τm

xT (s)R2x(s) ds

+
∫ t

t−τM

xT (s)R3x(s) ds,

V3(xt, t)

=
∫ t

t− τm
2

[
x(s)

x(s − τm

2 )

]T [
Q1 Q2

QT
2 Q3

] [
x(s)

x(s − τm

2 )

]
ds

+
∫ t

t− τM
2

[
x(s)

x(s − τM

2 )

]T [
Q4 Q5

QT
5 Q6

] [
x(s)

x(s − τM

2 )

]
ds,

V4(xt, t)

=
τm

2

∫ 0

− τm
2

ds

∫ t

t+s

yT (θ)R4y(θ) dθ

+
τM

2

∫ 0

− τM
2

ds

∫ t

t+s

yT (θ)R5y(θ) dθ

+ δ

∫ −τm

−τM

ds

∫ t

t+s

yT (θ)R6y(θ) dθ.

�
Then it can be obtained by Itō’s formula that

dV (xt, t) = LV (xt, t) dt + 2xT (t)Pg(t) dω(t), (14)

where

LV1(xt, t) = 2xT (t)Py(t) + gT (t)Pg(t),

LV2(xt, t) ≤ xT (t)R1x(t) + xT (t)R2x(t)

− (1 − μ)xT (t − τ(t))R1x(t − τ(t))

− xT (t − τm)R2x(t − τm) + xT (t)R3x(t)

− xT (t − τM )R3x(t − τM ),

LV3(xt, t) =

[
x(t)

x(t − τm

2
)

]T [
Q1 Q2

QT
2 Q3

] [
x(t)

x(t − τm

2
)

]

−
[
x(t − τm

2
)

x(t − τm)

]T [
Q1 Q2

QT
2 Q3

][
x(t − τm

2
)

x(t − τm)

]

+

[
x(t)

x(t − τM

2
)

]T [
Q4 Q5

QT
5 Q6

] [
x(t)

x(t − τM

2
)

]

−
[
x(t − τM

2
)

x(t − τM )

]T [
Q4 Q5

QT
5 Q6

] [
x(t − τM

2
)

x(t − τM )

]
,
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LV4(xt, t)

= yT (t)
[(τm

2

)2

R4 +
(τM

2

)2

R5 + δ2R6

]
y(t)

− τm

2

∫ t

t− τm
2

yT (s)R4y(s) ds

− τM

2

∫ t

t− τM
2

yT (s)R5y(s) ds

− δ

∫ t−τm

t−τM

yT (s)R6y(s) ds,

LV4(xt, t)

≤ yT (t)
[(τm

2

)2

R4 +
(τM

2

)2

R5 + δ2R6

]
y(t)

− τm

2

∫ t

t− τm
2

yT (s)R4y(s) ds

− τM

2

∫ t

t− τM
2

yT (s)R5y(s) ds

− δ

∫ t−τm

t−τ(t)

yT (s)R6y(s) ds.

Using the note discussed by Kwon et al. (2010), we have

− 1 = −(τm)−1
(τm

2

)
−

(
1 − (τm)−1

(τm

2

))
. (15)

Using (11), (15) and Lemma 2, an upper bound of
the integral term

−
∫ t

t− τm
2

yT (s)R4y(s) ds

can be obtained as

−
∫ t

t− τm
2

yT (s)R4y(s) ds

= −(τm)−1
(τm

2

)∫ t

t− τm
2

yT (s)R4y(s) ds

−
[
1 − (τm)−1

(τm

2

)]∫ t

t− τm
2

yT (s)R4y(s) ds

= −(τm)−1
(τm

2

)∫ t

t− τm
2

yT (s)R4y(s) ds

− (τm

2

)−1(
1 −

(
τm

)−1(τm

2
)
)(τm

2

)

×
∫ t

t− τm
2

yT (s)R4y(s) ds

≤ −(τm)−1

[ ∫ t

t− τm
2

yT (s) ds

]
R4

[∫ t

t− τm
2

y(s) ds

]

−
(τm

2

)−1(
1 − (τm)−1

(τm

2

))

×
[∫ t

t− τm
2

yT (s) ds

]
R4

[ ∫ t

t− τm
2

y(s) ds

]

≤ −
(τm

2

)−1
[∫ t

t− τm
2

yT (s) ds

]
R4

[∫ t

t− τm
2

y(s) ds

]

= −
(τm

2

)−1
[
x(t) − x(t − τm

2
) −

∫ t

t− τm
2

g(s) dω(s)

]T

× R4

[
x(t) − x

(
t − τm

2

)
−

∫ t

t− τm
2

g(s) dω(s)

]

= −
(τm

2

)−1([
x(t) − x

(
t − τm

2

)]T

× R4

[
x(t) − x

(
t − τm

2

)]

− 2
[
x(t) − x

(
t − τm

2

)]T

R4

[ ∫ t

t− τm
2

g(s) dω(s)
]

+
[ ∫ t

t− τm
2

g(s) dω(s)
]T

R4

[ ∫ t

t− τm
2

g(s) dω(s)
])

.

(16)

By using

−1 = −(τM )−1
(τM

2

)
−

(
1 − (τM )−1

(τM

2

))
,

−1 = −(τM − τm)−1(τM − τm)

−
(
1 − (τM − τm)−1(τM − τm)

)

and Lemma 2, upper bounds of the terms

−
∫ t

t− τM
2

yT (s)R5y(s) ds

and

−
∫ t−τm

t−τ(t)

yT (s)R6y(s) ds

are respectively obtained as

−
∫ t

t− τM
2

yT (s)R5y(s) ds

≤ −(
τM

2
)−1

([
x(t) − x(t − τM

2
)
]T

× R5

[
x(t) − x

(
t − τM

2

)]
− 2

[
x(t) − x

(
t − τM

2
)]T
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× R5

[ ∫ t

t− τM
2

g(s) dω(s)
]

+
[ ∫ t

t− τM
2

g(s) dω(s)
]T

R5

[ ∫ t

t− τM
2

g(s) dω(s)
])

, (17)

−
∫ t−τm

t−τ(t)

yT (s)R6y(s) ds

≤ −(τM − τm)−1
([

x(t − τm) − x(t − τ(t))
]T

× R6

[
x(t − τm) − x(t − τ(t))

]

− 2
[
x(t − τm) − x(t − τ(t))

]T

× R6

[ ∫ t−τm

t−τ(t)

g(s) dω(s)
]

+
[ ∫ t−τm

t−τ(t)

g(s) dω(s)
]T

R6

[ ∫ t−τm

t−τ(t)

g(s) dω(s)
])

.

(18)

From (8) and (9), for any matrices N and M we have

0 = 2ξT (t)N
[
A(t)x(t) + B(t)x(t − τ(t)) − y(t)

]
,

(19)

0 = 2ξT (t)M
[
C(t)x(t) + D(t)x(t − τ(t)) − g(t)

]
.

(20)

Substituting (16)–(18) into (14) and adding (19)–(20), we
have

LV (xt, t) ≤ ξT (t)Ωξ(t) + 2(ζ(t) dω(t)), (21)

where

ξT (t) =
[
xT (t) xT

(
t − τ(t)

)
xT (t − τm

2
) xT

(
t − τm

)

× xT
(
t − τM

2

)
xT (t − τM ) yT (t) gT (t)

]
.

(ζ(t)dω(t))

=
1

τm

[
x(t) − x(t − τm

2

]T

R4

[ ∫ t

t− τm
2

g(s) dω(s)
]

+
1

τM

[
x(t) − x(t − τM

2

]T

R5

[ ∫ t

t− τM
2

g(s) dω(s)
]

+
1

τM − τm

[
x(t − τm) − x(t − τ(t))

]T

× R6

[ ∫ t−τm

t−τ(t)

g(s) dω(s)
]

+ xT Pg(t) dω(t).

Taking expectation on both sides of (21), we have

E{LV (xt, t)} ≤ E{ξT (t)Ωξ(t)}. (22)

Now we proceed to prove that the system (1) is
stochastically stable by using a similar method as Chen
et al. (2004). Set λ0 = λmin(−Ω), then λ0 > 0 follows
from (12). From (22) and by using Itō’s formula (Shi and
Boukas, 1997),

EV (t) − EV (τM ) = E

∫ t

τM

LV (s) ds

≤ −λ0E

∫ t

τM

‖x(s)‖2 ds.

It follows that

E

∫ t

τM

‖x(s)‖2 ds ≤ 1
λ0

EV (τM ).

For the system (1), following Chen et al. (2004) it is easy
to prove that there exists a positive scalar c1 ≥ 1 such that

E‖x(s)‖2 ≤ c1 sup
s∈[−τM , 0]

E‖φ(s)‖2, t ∈ [0, τM ].

Therefore, by the definitions of V (t) and x(t), there al-
ways exists a scalar c > 0 such that

lim
T−→∞

E

∫ T

0

‖x(s)‖2 ds ≤ c sup
s∈[−τM ,0]

E‖φ(s)‖2,

which means that the system (1) is stochastically stable by
Definition 1. This completes the proof.

Remark 1. Theorem 1 provides delay-dependent sta-
bility criteria for the stochastic system (1). Such criteria
are derived based on the assumption that the time-varying
delay is differentiable and the value of μ is known. The
conditions in Theorem 1 are formulated in terms of the
solvability of LMIs (Boyd et al., 1994) and can be eas-
ily solved using MATLAB LMI Control Toolbox. It is
worth noting that, by applying convex optimization algo-
rithms, we can conclude that the maximum allowable up-
per bound of the interval time-varying delay, that is, τM ,
guarantees the feasibility of the presented LMIs.

We can obtain the maximum allowable upper bound
τM by solving the following optimization problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max τM

subject to the LMIs P > 0,

[
Q1 Q2

QT
2 Q3

]
> 0,

[
Q4 Q5

QT
5 Q6

]
> 0,

Rk > 0 (k = 1 . . . , 6), Ni, Mi (i = 1, . . . , 8)
and Ω < 0.

Remark 2. In this paper, in order to derive the sta-
bility criterion, we employ a new Lyapunov–Krasovskii
functional (13), which is mainly based on the information
about τm/2, τM/2 and (τM − τm); some suitable free-
weight matrices are also introduced.
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Theorem 2. For given scalars τM , τm and μ, the equi-
librium point of the stochastic system (1) subject to the
polytopic uncertainty (3) is asymptotically stable in the
mean square if there exist matrices P > 0,[

Q
(i)
1 Q

(i)
2

Q
(i)T
2 Q

(i)
3

]
> 0,

[
Q

(i)
4 Q

(i)
5

Q
(i)T
5 Q

(i)
6

]
> 0,

(i=1,2,. . . ,r), Rk > 0, k = 1 . . . , 6 such that for any ma-
trices Ni and Mi, (i = 1, . . . , 8) the following LMI is fea-
sible:

Ω̄i < 0, (23)

for i = 1, 2, . . . , r, where

Ω̄i =

⎡
⎢⎢⎢⎣

Ω̄11,i Ω̄12,i . . . Ω̄18,i

∗ Ω̄22,i . . . Ω̄28,i

...
...

. . .
...

∗ ∗ . . . Ω̄88,i

⎤
⎥⎥⎥⎦ < 0,

with

Ω̄11,i = Q
(i)
4 + Q

(i)
1 + R1 + R2 + R3 − R4 − R5

+ N1A
(i) + A(i)T NT

1 + M1C
(i) + C(i)T MT

1 ,

Ω̄12,i = N1B
(i) + A(i)T NT

2 + M1D
(i) + C(i)T MT

2 ,

Ω̄13,i = Q
(i)
2 + R4 + A(i)T NT

3 + C(i)T MT
3 ,

Ω̄14,i = A(i)T NT
4 + C(i)T MT

4 ,

Ω̄15,i = Q
(i)
5 + R5 + A(i)T NT

5 + C(i)T MT
5 ,

Ω̄16,i = A(i)T NT
6 + C(i)T MT

6 ,

Ω̄17,i = P + A(i)T NT
7 + C(i)T MT

7 − N1,

Ω̄18,i = A(i)T NT
8 + C(i)T MT

8 − M1,

Ω̄22,i = −R6 − (1 − μ)R1 + N2B
(i) + B(i)T NT

2

+ M2D
(i) + D(i)T MT

2 ,

Ω̄23,i = B(i)T NT
3 + D(i)T MT

3 ,

Ω̄24,i = R6 + B(i)T NT
4 + D(i)T MT

4 ,

Ω̄25,i = B(i)T NT
5 + D(i)T MT

5 ,

Ω̄26,i = B(i)T NT
6 + D(i)T MT

6 ,

Ω̄27,i = B(i)T NT
7 + D(i)T MT

7 − N2,

Ω̄28,i = B(i)T NT
8 + D(i)T MT

8 − M2,

Ω̄33,i = Q
(i)
3 − Q

(i)
1 − R4, Ω̄34,i = −Q

(i)
2 ,

Ω̄35,i = Ω36,i = 0, Ω̄37,i = −N3, Ω̄38,i = −M3,

Ω̄44,i = −Q
(i)
3 − R2 − R6, Ω̄45,i = Ω̄4,6,i = 0,

Ω̄47,i = −N4, Ω̄48,i = −M4,

Ω̄55,i = Q
(i)
6 − Q

(i)
4 − R5,

Ω̄56,i = −Q
(i)
5 , Ω̄57,i = −N5, Ω̄58,i = −M5,

Ω̄66,i = −Q
(i)
6 − R3, Ω̄67,i = −N6, Ω̄68,i = −M6,

Ω̄77,i =
(τm

2

)2

R4 +
(τM

2

)2

R5 + δ2R6 − N7 − NT
7 ,

Ω̄78,i = −NT
8 − M7, Ω̄88,i = P − M8 − MT

8 ,

Proof. By Schur’s complement, the matrix inequality
(23) implies

r∑
i=1

λiΩ̄i < 0

or Ω < 0, where

A =
r∑

i=1

λiA
(i), B =

r∑
i=1

λiB
(i),

C =
r∑

i=1

λiC
(i), D =

r∑
i=1

λiD
(i),

Q =
r∑

i=1

λiQ
(i)
j ,

j = 1, 2, . . . , 6. This completes the proof.
Similarly to the proof of Theorem 1, we can establish

the following result. �

Theorem 3. For given scalars τM , τm and μ, the equilib-
rium point of the stochastic system (1) subject to the lin-
ear fractional norm-bounded uncertainty (4) is robustly
asymptotically stable in the mean square if there exist
scalars ε1 > 0, ε2 > 0, matrices P > 0,

[
Q1 Q2

QT
2 Q3

]
> 0,

[
Q4 Q5

QT
5 Q6

]
> 0,

Rk > 0, k = 1 . . . , 6, such that for any matrices Ni and
Mi (i = 1, . . . , 8), the following LMI is feasible:

⎡
⎢⎢⎢⎢⎣

Ω NH ε1S
T
1 MH ε2S

T
2

∗ −ε1I ε1J
T 0 0

∗ ∗ −ε1I 0 0
∗ ∗ ∗ −ε2I ε2J

T

∗ ∗ ∗ ∗ −ε2I

⎤
⎥⎥⎥⎥⎦ < 0, (24)

Ω being defined in (12).
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Proof. Assume that the inequality (24) holds. It can be
seen that (24) can be rewritten as

Ψ =

⎡
⎢⎢⎢⎢⎣

Ω NH ε1S
T
1 MH ε2S

T
2

∗ −ε1I ε1J
T 0 0

∗ ∗ −ε1I 0 0
∗ ∗ ∗ −ε2I ε2J

T

∗ ∗ ∗ ∗ −ε2I

⎤
⎥⎥⎥⎥⎦ < 0,

S1 =
[
E E1 0 0 0 0 0 0

]T

,

S2 =
[
E2 E3 0 0 0 0 0 0

]T

.

Thus,

Ψ = Ω + NΛ(t)S1 + ST
1 Λ(t)NT

+ MΛ(t)S2 + ST
2 Λ(t)MT < 0

holds according to Lemma 3. It can be verified that Ψ is
exactly the same as Ω of (12) when A, B, C and D are
replaced respectively by A + HΛ(t)E, B + HΛ(t)E1,
C + HΛ(t)E2 and D + HΛ(t)E3 in (12).

Now, without considering the terms τM/2 and τm/2
in the Lyapunov–Krasovskii functional, the corresponding
result is discussed in the following corollary. �

Corollary 1. For given scalars τM , τm and μ, the
equilibrium point of the stochastic system (1) subject to
the linear fractional norm-bounded uncertainty (4) is ro-
bustly asymptotically stable in the mean square if there
exist scalars ε1 > 0, ε2 > 0, matrices P > 0, R1 > 0,
k = 1, 2, 3, R6 > 0 for any matrices N̄i and M̄i (i =
1, . . . , 6) the following LMI is feasible:

⎡
⎢⎢⎢⎢⎣

Ξ N̄H ε1S̄
T
1 M̄H ε2S̄

T
2

∗ −ε1I ε1J
T 0 0

∗ ∗ −ε1I 0 0
∗ ∗ ∗ −ε2I ε2J

T

∗ ∗ ∗ ∗ −ε2I

⎤
⎥⎥⎥⎥⎦ < 0, (25)

where Ξ = (Ξn×m)6×6 with

Ξ11 = R1 + R2 + R3 + N1A + AT NT
1

+ M1C + CT MT
1 ,

Ξ12 = N1B + AT NT
2 + M1D + CT MT

2 ,

Ξ13 = AT NT
3 + CT MT

3 ,

Ξ14 = AT NT
4 + CT MT

4 ,

Ξ15 = P + AT NT
5 + CT MT

5 − N1,

Ξ16 = AT NT
6 + CT MT

6 − M1,

Ξ22 = −(1 − μ)R1 − R6 + N2B + BT NT
2

+ M2D + DT MT
2 ,

Ξ23 = BT NT
3 + DT MT

3 + R6,

Ξ24 = BT NT
4 + DT MT

4 ,

Ξ25 = BT NT
5 + DT MT

5 − N2,

Ξ26 = BT NT
6 + DT MT

6 − M2,

Ξ33 = −R2 − R6, Ω34 = 0, Ξ35 = −N3,

Ξ36 = −M3,

Ω44 = −R3, Ξ45 − N4, Ξ46 = −M4, ,

Ξ55 = δ2R6 − N5 − NT
5 , Ξ56 = −NT

6 − M5,

Ω66 = P − M6 − MT
6 ,

N̄ =
[
NT

1 NT
2 NT

3 NT
4 NT

5 NT
6

]T

,

M̄ =
[
MT

1 MT
2 MT

3 MT
4 MT

5 MT
6

]T

,

S̄1 =
[
E E1 0 0 0 0

]T

,

S̄2 =
[
E2 E3 0 0 0 0

]T

.

Proof. Consider the Lyapunov–Krasovskii functional

V (xt, t) = V1(xt, t) + V2(xt, t) + V3(xt, t),

where

V1(xt, t) = xT (t)Px(t),

V2(xt, t) =
∫ t

t−τ(t)

xT (s)R1x(s) ds

+
∫ t

t−τm

xT (s)R2x(s) ds

+
∫ t

t−τM

xT (s)R3x(s) ds,

V3(xt, t) = δ

∫ −τm

−τM

ds

∫ t

t+s

yT (θ)R6y(θ) dθ.

Then, it can be obtained by Itō’s formula that

dV (xt, t) = LV (xt, t) dt + 2xT (t)Pg(t) dω(t),
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where

LV1(xt, t)

= 2xT (t)Py(t) + gT (t)Pg(t),

LV2(xt, t)

≤ xT (t)R1x(t)

− (1 − μ)xT (t − τ(t))R1x(t − τ(t))xT (t)R2x(t)

− xT (t − τm)R2x(t − τm) + xT (t)R3x(t)

− xT (t − τM )R3x(t − τM ),

LV3(xt, t)

= yT (t)δ2R6y(t)

− δ

∫ t−τm

t−τM

yT (s)R6y(s) ds

LV3(xt, t)

≤ yT (t)δ2R6y(t)

− δ

∫ t−τm

t−τ(t)

yT (s)R6y(s) ds.

�
From (8) and (9) for any matrices N and M we have

0 = 2ξT
1 (t)N

[
A(t)x(t) + B(t)x(t − τ(t)) − y(t)

]
,

0 = 2ξT
1 (t)M

[
C(t)x(t) + D(t)x(t − τ(t)) − g(t)

]
.

where

ξT
1 (t) =

[
xT (t) xT (t − τ(t)) xT (t − τm)

xT (t − τM ) yT (t) gT (t)
]
.

Following similar arguments as in the proof of Theorem 3,
we can obtain the desired result immediately, and hence
the detailed proof is omitted.

Remark 3. It is easy to see that, while setting J = 0,
the linear fractional norm-bounded uncertainty reduces to
a routine norm-bounded uncertainty. Therefore, one can
easily derive a corresponding result for the routine norm-
bounded uncertainty from Theorem 3.

4. Numerical examples

In this section, we will give four examples to show the
effectiveness of the established theoretical results.

4.1. Example. Consider the system (1) and (3) with
the following matrices:

A1 =
[ −2 0

0 −1

]
, A2 =

[ −2 −1
0 −2

]
,

B1 =
[ −0.1 0

−0.1 −0.1

]
, B2 =

[
0 1
1 0

]
,

C1 =
[ −0.2 0

0 −0.2

]
, C2 =

[
0.2 0
0 0.1

]
,

D1 =
[

0.5 0
0 0.7

]
, D2 =

[
0.2 0
0 −0.1

]
.

It was reported by Li et al. (2008) that the above system
is robustly asymptotically stable in the mean square when
the constant delay τM = 5. However, by Theorem 2 and
using Matlab LMI Toolbox for μ = 0, τm = 0, it is found
that the equilibrium point of an uncertain stochastic sys-
tem is asymptotically stable in the mean square for any
constant allowable upper bounds. This implies that our
stability criterion gives a less conservative result than the
methods discussed by Li et al. (2008).

4.2. Example. Consider the system (1) and (3) with
the following matrices:

A1 =
[ −2 0

0 −1

]
, A2 =

[ −1.5 −1
0 −2

]
,

B1 =
[

1 0
−0.1 0.85

]
, B2 =

[ −1 1
1 0.85

]
,

C1 =
[ −0.2 0

0 −0.2

]
, C2 =

[
0.2 0
0 0.1

]
,

D1 =
[

0.5 0
0 0.7

]
, D2 =

[
0.2 0
0 −0.1

]
.

It was reported by Li et al. (2008) that the above sys-
tem is robustly asymptotically stable in the mean square
for a constant delay of τM = 2.4019. However, by our
Theorem 2 and using Matlab LMI Toolbox for μ = 0,
τm = 0, it is found that the equilibrium point of an uncer-
tain stochastic system is asymptotically stable in the mean
square for any constant allowable upper bounds. This im-
plies that our stability criterion gives a less conservative
result than the methods discussed by Li et al. (2008).

4.3. Example. Consider the uncertain stochastic sys-
tem with time-varying delay described by

dx(t)

=
[
(A + ΔA(t))x(t) + (B + ΔB(t))x(t − τ(t))

]
dt

+
[
ΔC(t)x(t) + ΔD(t)x(t − τ(t))

]
dw(t),
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where

A =
[ −2 0

0 −0.9

]
, B =

[ −1 0
−1 −1

]
,

‖ΔA(t)‖ ≤ 0.2, ‖ΔB(t)‖ ≤ 0.2,

‖ΔC(t)‖ ≤ 0.2, ‖ΔD(t)‖ ≤ 0.2.

Then take the uncertainties as described by (4) as fol-
lows

H =
[

0.2 0
0 0.2

]
,

E = E1 = E2 = E3 =
[

1 0
0 1

]
.

According to Theorem 3, the upper bounds on the
time delay to guarantee that the system is robustly stochas-
tically stable are listed in Tables 1 and 2. Table 1 also lists
the upper bounds obtained from the criterion by Miya-
mura and Aihara (2004), Yan et al. (2009), Zhang et al.
(2009) and Zhang et al. (2008). Hence the method pro-
posed in this paper gives less conservative results than the
existing results found in the literature (Miyamura and Ai-
hara, 2004; Yan et al., 2009; Zhang et al., 2009; Zhang et
al., 2008).

4.4. Example. Consider the uncertain stochastic sys-
tem with time-varying delay described by

dx(t)

=
[
(A + ΔA(t))x(t) + (B + ΔB(t))x(t − τ(t))

]
dt

+
[
Cx(t) + Dx(t − τ(t))

]
dw(t),

where

A =
[ −2 0

1 −1

]
, B =

[ −1 0
−0.5 −1

]
,

‖ΔA(t)‖ ≤ 0.1, ‖ΔB(t)‖ ≤ 0.1,

C = D = diag(
√

0.1,
√

0.1),

E = E1 = diag(0.1, 0.1),

H =
[

1 0
0 1

]
.

According to Theorem 3, the upper bounds on the
time delay to guarantee that the system is robustly stochas-
tically stable are listed in Table 3, which also gives the
upper bounds obtained from the criterion by Yue and Han
(2005) as well as He et al. (2010). Hence the method pro-
posed in this paper gives less conservative results than the
results found in the literature (Yue and Han, 2005; He et
al., 2010).

-2
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x (t)1

x (t)2

Fig. 1. State trajectories of x1 and x2 for Example 4.3 with dif-
ferent initial conditions (1,−0.5).

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20

x (t)1
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Fig. 2. State trajectories of x1 and x2 for Example 4.4 with dif-
ferent initial conditions (1,−1).

5. Conclusion

Several sufficient conditions ensuring an LMI optimiza-
tion problem of delay-dependent robust stability criteria
for stochastic systems with polytopic and linear fractional
uncertainties have been proposed. By choosing a suitable
Lyapunov–Krasovskii functional and the free-weighting
matrix method, some less conservative stability criteria
have been obtained. The restriction that the derivative of
the time-varying delay is less than one has been removed.
In numerical comparisons, significant improvements over
the recent existing results have been observed.
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