
Int. J. Appl. Math. Comput. Sci., 2011, Vol. 21, No. 4, 757–767
DOI: 10.2478/v10006-011-0060-8

PARTITIONED ITERATED FUNCTION SYSTEMS WITH DIVISION
AND A FRACTAL DEPENDENCE GRAPH

IN RECOGNITION OF 2D SHAPES

KRZYSZTOF GDAWIEC, DIANA DOMAŃSKA

Institute of Computer Science
University of Silesia, Będzińska 39, 41–200 Sosnowiec, Poland

email: kgdawiec@ux2.math.us.edu.pl, ddomanska@poczta.onet.pl

One of the approaches in pattern recognition is the use of fractal geometry. The property of self-similarity of fractals has
been used as a feature in several pattern recognition methods. All fractal recognition methods use global analysis of the
shape. In this paper we present some drawbacks of these methods and propose fractal local analysis using partitioned
iterated function systems with division. Moreover, we introduce a new fractal recognition method based on a dependence
graph obtained from the partitioned iterated function system. The proposed method uses local analysis of the shape, which
improves the recognition rate. The effectiveness of our method is shown on two test databases. The first one was created
by the authors and the second one is the MPEG7 CE-Shape-1PartB database. The obtained results show that the proposed
methodology has led to a significant improvement in the recognition rate.

Keywords: fractal, partitioned iterated function system, shape recognition, dependence graph.

1. Introduction

The shape of an object (shape is a group of touching fo-
reground pixels, i.e., a connected binary region (Burger
and Burge, 2008)) is very important in object recognition.
Using the shape of an object for object recognition is a
growing trend in computer vision. Good shape descriptors
and matching measures are a central issue in these applica-
tions. Based on the silhouette of objects, a variety of shape
descriptors and matching methods have been proposed in
the literature, e.g., shape contexts (Belongie et al., 2002),
the generative model (Tu and Yuille, 2004), the curvatu-
re scale space (Mokhtarian and Bober, 2003), polygonal
multiresolution (Attalla and Siy, 2005), the inner distan-
ce (Ling and Jacobs, 2005), the shape-tree (Felzenszwalb
and Schwartz, 2007) as well as the X-graph and Y-graph
(Chang et al., 2010).

The idea of fractals was first presented by Mandel-
brot in the 1970s (Mandelbrot, 1983). Barnsley presen-
ted a couple of revolutionary ideas based on the hypo-
thesis presented by Mandelbrot, emphasizing the practi-
cal aspect of fractals. He provided methods to model na-
tural fractals and the idea of the Iterated Function Sys-
tem (IFS) as a tool to generate fractals (Barnsley, 1988).
Since then fractals have found many applications, e.g.,

in image compression (Fisher, 1995; Nikiel, 2007), ge-
nerating terrains (Meng et al., 2009), generating plants
(Prusinkiewicz and Lindenmayer, 1996), image proces-
sing (Ghazel et al., 2003), or medicine (Dey, 2005) and
economics (Peters, 1994). One such application is the
use of fractals in pattern recognition. The motivation to
use fractals in pattern recognition was the fact that with
the help of fractals we are able to represent the shape
much better than with the help of classical Euclidean geo-
metry. Fractal recognition methods have found applica-
tions in face recognition (Chandran and Kar, 2002; Ko-
uzani, 2008; Skarbek and Ignasiak, 1996), signature ve-
rification (Huang and Yan, 2000), character recognition
(Linnell and Deravi, 2004; Mozaffari et al., 2006), ga-
it recognition (Zhao et al., 2007), plant identification
(Bruno et al., 2008; Plotze et al., 2005), or as a gene-
ral recognition method (Neil and Curtis, 1997; Yokoyama
et al., 2004).

In this paper we present some weaknesses of fractal
recognition methods and how to improve them. Moreover,
we introduce a new fractal recognition method which will
be used in the recognition of 2D shapes. As fractal featu-
res we used a dependence graph (Domaszewicz and Va-
ishampayan, 1995) achieved from a Partitioned Iterated
Function System (PIFS) (Fisher, 1995).

kgdawiec@ux2.math.us.edu.pl
ddomanska@poczta.onet.pl

758 K. Gdawiec and D. Domańska

In Section 2 we introduce the notion of a fractal
(fractal as an attractor (Barnsley, 1988)) which is used in
this paper and some basic information about fractals. In
Section 3, we briefly present fractal image compression
(Fisher, 1995), which gives us the PIFS code. Then, in
Section 4 we present fractal pattern recognition with di-
vision. We show an observation presenting a weakness of
the fractal recognition methods and introduce the notion
of the PIFS with division and other related notions. Then,
in Section 5 we present how to modify the existing fractal
recognition methods using the PIFS with division. In Sec-
tion 6 we present the definition of the dependence graph
(Domaszewicz and Vaishampayan, 1995) and our fractal
recognition method of 2D shapes which uses the depen-
dence graph for recognition. The effectiveness of our me-
thod is shown on two test databases (Section 7). The first
one is database created by the authors and the second one
is the MPEG7 CE-Shape-1 Part B database. Finally, in
Section 8 we present conclusions and plans for the future.

2. Fractal as an attractor

We can find many nonequivalent definitions of a frac-
tal in the literature. Starting from an invariant measure
(Kolumbán et al., 2003), through the definition of a frac-
tal as an attractor (Barnsley, 1988) or as a set for which
the Hausdorff dimension is greater than the topological
dimension (Mandelbrot, 1983). In this section we will in-
troduce the definition which we use in this paper. First we
must introduce some notions.

Definition 1. A metric space is a pair (X, ρ), where X
is a nonempty set and ρ : X ×X → [0, +∞) satisfies the
following conditions:

1. ∀x,y∈X ρ(x, y) = 0 ⇐⇒ x = y.

2. ∀x,y∈X ρ(x, y) = ρ(y, x).

3. ∀x,y,z∈X ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

Definition 2. A metric space (X, ρ) is called a complete
metric space if every sequence (xn)n∈N of elements of X
satisfying the condition

∀ε>0∃N∈N∀n,m>N ρ(xn, xm) < ε (1)

is convergent.

Let us take any complete metric space (X, ρ) and de-
note by H(X) the space of nonempty, compact subsets
of X . In this space we introduce a metric h : H(X) ×
H(X) → [0, +∞) which is defined as follows:

h(R, S) = max{max
x∈R

min
y∈S

ρ(x, y), max
y∈S

min
x∈R

ρ(y, x)},
(2)

where R, S ∈ H(X).

The space H(X) with the metric h is a complete me-
tric space (Barnsley, 1988). Another necessary notion is a
contraction mapping.

Definition 3. A transformation w : X → X on a metric
space (X, d) is called a contraction mapping if there exists
a constant 0 ≤ s < 1 such that

∀x,y∈X d(w(x), w(y)) ≤ s · d(x, y). (3)

Any such number s is called a contractivity factor for w.

Definition 4. We say that a set W = {w1, . . . , wN}, whe-
re wi is a contraction mapping with contractivity factor si

for i = 1, . . . , N , is an iterated function system.

An IFS so defined determines the so-called Hutchin-
son operator (Barnsley, 1988), which is defined as follows:

∀A∈H(X) W (A) =
N⋃

i=1

wi(A) =
N⋃

i=1

{wi(a) : a ∈ A}.
(4)

The Hutchinson operator is a contraction map-
ping with a contractivity factor s = max{s1, . . . , sN}
(Barnsley, 1988). Let us consider the following recurrent
sequence:

{
W 0(A) = A,

W k(A) = W (W k−1(A)) if k ≥ 1,
(5)

where A ∈ H(X).
The next theorem is a consequence of the Banach fi-

xed point theorem (Barnsley, 1988).

Theorem 1. Let (X, ρ) be a complete metric space and
W = {w1, . . . , wN} be an IFS. Then only one set B ∈
H(X) exist such that W (B) = B. Furthermore, the se-
quence defined by Eqn. (5) is convergent and

∀A∈H(X) lim
k→∞

W k(A) = B. (6)

Definition 5. The limit (6) in Theorem 1 is called an at-
tractor of the IFS or a fractal.

3. Fractal image compression

Fractal image compression can be described in many dif-
ferent ways (Barni, 2006; Fisher, 1995). In every method
the fact that every image has partial self-similarity is used.
Below we introduce a basic algorithm of fractal compres-
sion which is necessary in the proposed recognition me-
thod and many other fractal recognition techniques. First
we describe the notion of a partitioned iterated function
system (Fisher, 1995).

Definition 6. We call a set

P = {(T1, A1), . . . , (TN , AN)}

Partitioned iterated function systems with division and a fractal dependence graph. . . 759

a partitioned iterated function system, where Ti is a con-
traction mapping, Ai is the area of the image which we
transform with the help of Ti for i = 1, . . . , N .

In much the same way as in the case of the IFS, the
PIFS has a unique fixed point, the image that it encodes.

In the image space we use affine transformations T :
R

3 → R
3 as the contraction mappings of the following

form:

T (

⎡

⎣
x
y
z

⎤

⎦) =

⎡

⎣
a1 a2 0
a3 a4 0
0 0 a7

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦+

⎡

⎣
a5

a6

a8

⎤

⎦ , (7)

where x, y ∈ R are the co-ordinates of the pixel that we
transform, z ∈ R is the pixel intensity, the coefficients
a1, a2, a3, a4, a5, a6 ∈ R describe a geometric transfor-
mation (translation, change of scale, rotation, shearing),
and coefficients a7, a8 ∈ R are responsible for contrast
and brightness.

The compression algorithm, whose idea is presented
in Fig. 1, can be described as follows. We divide an image
into a fixed number of nonoverlapping areas of the ima-
ge called range blocks. We create a list of domain blocks.
The list consists of overlapping areas of the image, lar-
ger than the range blocks (usually two times larger) and
transformed using the following mappings:

[
x′

y′

]
=
[
1 0
0 1

] [
x
y

]
,

[
x′

y′

]
=
[−1 0

0 1

] [
x
y

]
, (8)

[
x′

y′

]
=
[−1 0

0 −1

] [
x
y

]
,

[
x′

y′

]
=
[
1 0
0 −1

] [
x
y

]
. (9)

These four mappings are transformations of the rec-
tangle (identity, 180◦ rotation and two symmetries of the
rectangle). Next, for every range block R we look for the
domain block D so that the value ρ(R, T (D)) is the smal-
lest, where ρ is a metric (usually Euclidean) and blocks
R, T (D) are treated as vectors, T is a transformation de-
termined by the position of R and D, the size of these
in relation to itself and one of the four mappings defined
by Eqns. (8) and (9), the coefficients a7, a8 are calcula-
ted with the help of Eqns. (10) and (11). This is the most
time-consuming step of the algorithm:

a7 =
k

k∑
i=1

gihi −
k∑

i=1

gi

k∑
i=1

hi

k
k∑

i=1

g2
i −

(k∑
i=1

gi

)2
, (10)

a8 =
1
k

[
k∑

i=1

hi − a7

k∑

i=1

gi

]
, (11)

where k is the number of pixels in the range block,
g1, . . . , gk are the pixel intensities of the transformed and
resized domain block, h1, . . . , hk are the pixel intensities

of the range block. If

k

k∑

i=1

g2
i −

(
k∑

i=1

gi

)2

= 0,

then we fix (Fisher, 1995)

a7 = 0, a8 =
1
k

k∑

i=1

hi.

Domain blocks Range blocks

Fig. 1. Fractal image compression.

This algorithm is very simple and therefore used only
in fractal image recognition. Moreover, in recognition of
two-dimensional shapes in binary images, the coefficients
a7 and a8 are omitted. In practice, when we compress an
image, we use adaptive methods of partitioning such as
the quad-tree, HV partition and others (Fisher, 1995).

4. Fractal pattern recognition with division

All fractal recognition methods of objects in which we use
the PIFS obtained from fractal image compression are ba-
sed on a global analysis of the shape. In practice we get
better results using a local analysis. This is due to the fact
that, when we compare two objects, the difference betwe-
en them occurs only in regions where the object was chan-
ged, and the parts of the object which were not changed
are identical. In this section we will present some observa-
tion which will help us to bring local analysis into fractal
recognition methods. Moreover, we will present mathe-
matical formalism of partitioned iterated function systems
with division (Gdawiec, 2009b).

4.1. Fractal recognition methods and division into
sub-images. Let us take a look at fractal compression
(presented in Section 3) from the point of view of a doma-
in block D. Further, assume that this block fits into several
range blocks (Fig. 2(a)). Each of these fits corresponds to
one mapping in the PIFS. Now let us suppose that block
D was changed into block D′ (e.g., the shape was cut or
deformed). This situation is shown in Fig. 2(b). In this ca-
se, domain D′ can not only fit into the same range blocks

760 K. Gdawiec and D. Domańska

as D (to all or only some), but it can also fit into some
other range blocks. This change of fitting causes a change
of the mapping in the PIFS. In the worst case all mappings
can be changed.

D

(a)

D′

(b)

Fig. 2. Fractal image compression: starting situation (a), situ-
ation after the change of D into D′ (b).

Now we divide the image into several non-
overlapping sub-images, e.g., into four sub-images
(Fig. 3(a)), and compress each of them independently (the
coordinates of the domain and range blocks are determi-
ned in relation to the original image, not the sub-image).
Again let us consider the same domain block D and the sa-
me range blocks. This time, block D fits only into the ran-
ge blocks from the same sub-image, the other range blocks
from different sub-images fit into other domain blocks D1,
D2 (Fig. 3(a)). Now suppose that block D was changed
in the same way as earlier (Fig. 3(b)). The change of the
block influences only the sub-image in which block D′ is
placed. The fitting in other sub-images does not change.
This time in the worst case only mappings corresponding
to this sub-image change, and all the other mappings re-
main the same. So, a local change in the shape has only
local influence on the transformations of the PIFS and not
global one as in the previous case.

D

D1

D2

(a)

D′

D1

D2

(b)

Fig. 3. Fractal image compression with division: starting situ-
ation (a), situation after the change of D into D′ (b).

4.2. Partitioned iterated function system with divi-
sion. Let us take a space of images F = {f : I2 → I}
with the supremum metric, where I = [0, 1].

Definition 7. A division of the unit square I2 is every
family of sets Π = {P1, . . . , PN} such that

1.
⋃N

n=1 Pn = I2,

2. ∀i�=j,i,j∈{1,...,N} Pi ∩ Pj = ∅.

Definition 8. Let f ∈ F . A division into sub-images of
the image f is a family of functions Γ = {f1, . . . , fN}
such that fi = f |Pi for i = 1, . . . , N , where Π =
{P1, . . . , PN} is a division of the unit square I2.

Let us notice that straight from Definition 8 we have
that, if Γ = {f1, . . . , fN} is a division into sub-images of
the image f , then

N⋃

i=1

fi = f, (12)

where the notation
⋃N

i=1 fi is understood as a composition
of functions graphs.

Let us fix a division of the unit square Π =
{P1, . . . , PN}, and let us take any f ∈ F . The division
Π determines a division into sub-images of this image
Γ = {f1, . . . , fN}. Every sub-image fi ∈ Γ is compres-
sed with the help of the fractal algorithm obtaining a PIFS
Wi for i = 1, . . . , N .

We define an operator W : F → F in the following
way:

∀g∈F W (g) =
N⋃

i=1

Wi(g|Pi), (13)

and the n-th iteration of this operator as

∀g∈F Wn(g) =
N⋃

i=1

Wn
i (g|Pi). (14)

Then, for any g ∈ F we have

lim
n→∞Wn(g) = lim

n→∞

N⋃

i=1

Wn
i (g|Pi)

=
N⋃

i=1

lim
n→∞Wn

i (g|Pi).

(15)

Because for every i = 1, . . . , N operator Wi is a PIFS,
limn→∞ Wn

i (g|Pi) = fi. Therefore,

lim
n→∞Wn(g) =

N⋃

i=1

fi = f. (16)

From this we see that, if we introduce the division
of image into sub-images and then compress each of this
sub-image with the fractal image compression algorithm,
then when we iterate the operator determined by the PI-
FSs of the sub-images we obtain the starting image. Let

Partitioned iterated function systems with division and a fractal dependence graph. . . 761

us notice that the “usual” fractal image compression algo-
rithm is a special case of compression with division into
sub-images. Indeed, if we take a division of the image into
one sub-image, i.e., the image is a division of itself, then
the iterations of the operator W are simply next iterations
of the PIFS of that image.

Definition 9. Let Π = {P1, . . . , PN} be a division of the
unit square I2 and f ∈ F . A set W = {W1, . . . , WN},
where Wi is a PIFS of the sub-image fi for i = 1, . . . , N ,
is called a partitioned iterated function system with divi-
sion (PIFS with division).

Let us fix a division of the unit square Π =
{P1, . . . , PN}. Mark with PΠ a set of all PIFSs with di-
vision Π. Consider a function dρ : PΠ × PΠ → [0, +∞)
given by the following formula:

∀W,V ∈PΠ dρ(W, V) =
N∑

i=1

ρ(Wi, Vi), (17)

where ρ is an arbitrary metric for PIFSs.

Theorem 2. Let Π = {P1, . . . , PN} be a fixed division of
the unit square I2. Then (PΠ, dρ) is a metric space.

Proof. This follows from the fact that ρ is a metric. �

Theorem 3. Let Π = {P1, . . . , PN} be a fixed division of
the unit square I2 and W be a PIFS with division for an
image f ∈ F . Then f is a unique fixed point of W , i.e.,
W (f) = f .

Proof. First we show that f is a fixed point of W . For
every i = 1, . . . , N the operator Wi is a PIFS of the sub-
image fi, so fi is a unique fixed point of Wi, i.e. Wi(fi) =
fi. Then

W (f) =
N⋃

i=1

Wi(f |Pi) =
N⋃

i=1

f |Pi = f. (18)

Now we show that f is a unique fixed point of W .
Let us assume that W possess at least two fixed points.
Let g and h be two fixed points of W , i.e., W (g) = g and
W (h) = h.

From the fact that W (g) = g, we obtain that⋃N
i=1 Wi(g|Pi) =

⋃N
i=1 g|Pi . Because Wi : Pi × I →

Pi × I , we get Wi(g|Pi) = g|Pi . Hence g|Pi is a fi-
xed point of Wi. In an analogical way we can show that
Wi(h|Pi) = h|Pi . Thus h|Pi is a fixed point of Wi.

For all i = 1, . . . , N the mapping Wi is a PIFS, so it
possesses only one fixed point. Therefore, g|Pi = h|Pi for
i = 1, . . . , N . Then

g =
N⋃

i=1

g|Pi =
N⋃

i=1

h|Pi = h. (19)

So we have shown that if W possesses at least two
fixed points, then they are equal. Moreover, from the first

part of the proof we know that f is a fixed point of W .
Therefore, we obtain that W has a unique fixed point,
which is f . �

5. Existing fractal recognition methods with
division

The known fractal recognition methods use two different
approaches to recognition. One is the application of the
fractal dimension (Bruno et al., 2008; Plotze et al., 2005),
and the other is the employment of the PIFS. In the lat-
ter case, we use the fact that the attractor is a fixed point
of the PIFS (Kouzani, 2008; Neil and Curtis, 1997; Skar-
bek and Ignasiak, 1996) or we extract some features from
the coefficients of the PIFS, e.g., multiple mapping vec-
tor accumulator matrices (Mozaffari et al., 2006), multiple
domain-range co-location matrix (Mozaffari et al., 2006),
mapping vectors (Yokoyama et al., 2004), or even only
coefficients (Chandran and Kar, 2002).

In the case of methods that use the PIFS, we can
modify them employing the PIFS with division from Sec-
tion 4.2. Independently of the approach (attractor as a fi-
xed point or extracting the features), we replace the PIFS
with the PIFS with a fixed division. In the case of me-
thods that use the fixed point fact, this is all we do, but
in the case of methods that extract the features from the
PIFS, we must also modify the extracting process. Having
a PIFS with division we extract the features from each of
the PIFS separately using the methodology from the exa-
mined (original) method. In this way we obtain a new set
of features. Next, we modify the similarity measure. For
this purpose we use the original similarity measure S from
the method considered and define a new one

dS(Q1, Q2) =
N∑

i=1

S(Q1
i , Q

2
i), (20)

where Q1 = {Q1
1, . . . , Q

1
N}, Q2 = {Q2

1, . . . , Q
2
N} are

sets of features.

6. Fractal dependence graph method

Domaszewicz and Vaishampayan (1995) introduced the
notion of a dependence graph. The graph reflects how do-
main blocks are assigned to range blocks. They used this
graph for three different purposes. The first was an analy-
sis of the convergence of fractal compression. The second
was a reduction of the decoding time, and the last one was
the improvement upon collage coding.

Before we give the definition of the dependence
graph, we will introduce the definition of a directed graph
and the adjacency matrix of a graph (Harris et al., 2008).

Definition 10. We say that a pair G = (V, E) is a directed
graph (digraph) if V is a finite, nonempty set and E is a

762 K. Gdawiec and D. Domańska

set of ordered pairs from V . The elements of V are called
vertices, and the elements of E are called edges.

Definition 11. Let G = (V, E) be a directed graph and
|V | = n, where |A| means the cardinality of a set A. The
adjacency matrix of G is a matrix M of size n× n whose
elements mij for i, j ∈ {1, . . . , n} are defined by

mij =

{
1 if (vi, vj) ∈ E,

0 if (vi, vj) �∈ E,
(21)

where vi, vj ∈ V .
The definition of a dependence graph is as follows.

Definition 12. Let W be the PIFS with a set of range
blocksR. The dependence graph of W is a directed graph
G = (V, E) where V = R and for all Ri, Rj ∈ R we
have (Ri, Rj) ∈ E if and only if the domain block D
corresponding to Rj overlaps Ri, i.e., D ∩ Ri �= ∅.

Figure 4 presents an example of an image and a de-
pendence graph corresponding to the PIFS which encodes
the image. The fractal coding was done using partition in-
to 3 × 3 = 9 range blocks.

(a) (b)

Fig. 4. Example of an image (a) and its dependence graph (b).

For the PIFS with division, the dependence graph is
created by taking all the dependence graphs of the sub-
image PIFSs.

Now we are ready to introduce the Fractal Depen-
dence Graph (FDG) method. First, we fix the partition of
the unit square Π = {P1, . . . , PN}. Next, for each PIFS
Wi encoding the sub-image fi we fix the number of map-
pings of which the PIFS consists and denote it by ni for
i = 1, . . . , N . Let

M =
N∑

i=1

ni (22)

be the number of all mappings of forming the PIFS with
division.

The fractal dependence graph method is as follows:

1. Binarise the image and extract the object.

2. Find a set of correct orientations Θ.

3. Choose any correct orientation θ ∈ Θ and rotate the
object through θ.

4. Find a normalized PIFS with division W , i.e., for
which the space is [0, 1]2.

5. Determine the adjacency matrix G for the PIFS with
division W .

6. In the base, find the adjacency matrix H which mi-
nimizes the Frobenius matrix norm (Golub and van
Loan, 1996) of the matrix G− H, i.e.,

dH = ‖G− H‖ =

√√√√
M∑

i=1

M∑

j=1

|gij − hij |2. (23)

7. Choose an image from the base which corresponds
to dH.

The normalization of the PIFS is used to make the
method robust to translations and change in scale of the
object. The correct orientation is used to make the method
robust to rotations and is defined as follows.

Definition 13. A correct orientation is an angle by which
we need to rotate an object so that it fulfils the following
conditions:

1. The area of the bounding box is the smallest.

2. The height of the bounding box is smaller than the
width.

3. The left half of the object has at least as many pixels
as the right.

Figure 5 presents examples of objects and their cor-
rect orientations. In the case of the triangle we see three
different orientations. If we want to add such an object to
the base for each of the correct orientations, we find the
corresponding normalized PIFS with division, determine
the dependence graph of this PIFS with division, and add
the corresponding adjacency matrix to the base.

To find a normalized PIFS with division, firstly we
find a PIFS with division P described in Section 4.2.
Next, we make the normalization: For each transforma-
tion (T, A) belonging to P , we take A and divide the x-
coordinate of the points defining the area by the width of
the image, the y-coordinate of these points by the height
of the image, and in similar way we normalize the trans-
lation vector [a5, a6]T of the transformation T .

Partitioned iterated function systems with division and a fractal dependence graph. . . 763

Fig. 5. Examples of objects and their correct orientations.

7. Experiments

Experiments were performed on two databases. The first
was created by the authors, and the second was the
MPEG7 CE-Shape-1 Part B database (Latecki et al.,
2000).

Our base consists of three datasets. In each we have 5
classes of objects, 20 images per class. Figure 6 presents
the base images used to create the three datasets. In the
first dataset we have base objects changed by elementary
transformations, i.e., rotation, scaling, translation. Exam-
ple images from this dataset are presented in Fig. 7(a). In
the second dataset we have objects changed by elementa-
ry transformations, and we add small changes to the sha-
pe locally, e.g., shapes are cut and/or they have something
added. Figure 7(b) presents example images from this da-
taset. Finally, in the third set, similar to the other two sets,
the objects were modified by elementary transformations,
and we add to the shape large changes locally. The large
changes are made such that the shape is still recognizable.
Example images from the third dataset are presented in
Fig. 7(c).

Because the notion of a local small/large change is
very subjective, we are not able to define it unambigu-
ously. We could give some percent intervals indicating
how the shape changed, but it would be good only for glo-
bal changes. When we consider local changes as in our
case, this kind of approach would not prove itself because
locality is also a subjective notion. For a person locality
means some small area of the shape and for another per-
son practically the whole shape. So the notion of a local
small/large change in the shape will be based on subjecti-
ve feelings.

The MPEG7 CE-Shape-1 Part B database consists of
1400 silhouette images from 70 classes. Each class has 20
different shapes. Figure 8 presents some sample images
from the MPEG7 CE-Shape-1 Part B base.

In the test we used several different divisions of the
unit square. One was a partition into 1 × 1 parts which
corresponds to global analysis. The other divisions were
2×2 and 4×4. Figure 9 presents the divisions of the ima-
ge which were used in the experiments. The number of

Fig. 6. Base images used to create three datasets.

(a) (b)

(c)

Fig. 7. Example images from the authors’ base: elementary
transformations (a), local small changes (b), local large
changes (c).

Fig. 8. Example images from the MPEG7 CE-Shape-1 Part B
base.

764 K. Gdawiec and D. Domańska

transformations used in fractal compression of each sub-
image depends on the division. For the 1 × 1 division we
used 256 transformations per sub-image (16 × 16 range
blocks division), for the 2× 2 division 64 transformations
per sub-image (8× 8 range blocks division), and 16 trans-
formations per sub-image (4×4 range blocks division) for
the 4 × 4 division. So in each case the PIFS with division
consists of 256 transformations.

(a) (b) (c)

Fig. 9. Divisions of the image into sub-images: 1× 1 (a), 2× 2
(b), 4 × 4 (c).

To estimate the error rate, we used the leave-one-out
method (Witten and Frank, 2005) for the three datasets
created by the authors, and for the MPEG7 CE-Shape-1
Part B base we used a stratified 10-fold cross validation
(Witten and Frank, 2005).

To compare our method, in the test we used several
fractal recognition methods: the Neil–Curtis method (Neil
and Curtis, 1997) (N–C method), a method which uses
PIFS coefficients (Chandran and Kar, 2002) (coeff. me-
thod), the multiple mapping vector accumulator method
(Mozaffari et al., 2006) (MMVA method). In the case of
the MMVA method, only matrices of size 5 × 5 and the
Euclidean distance were used. Each of the method was
implemented in the original form (partition 1 × 1) and in
the modified form using the PIFS with division.

All the tested methods were implemented in Matlab,
and the tests were performed on a computer with the AMD
Athlon x2 6400+ processor, 4GB DDR2 RAM memory
and with Microsoft Windows XP installed.

Tables 1(a)–(c) present the results of tests for the au-
thors’ base with elementary transformation. From the ta-
bles we clearly see that with smaller divisions into sub-
images the error of all methods has decreased and the ti-
me of the test has shortened (even three times). Moreover,
we see that the Neil–Curtis method and the fractal depen-
dence graph method yielded the lowest values of the error
(1%) for the 4 × 4 division, while the time of the test for
the Neil–Curtis method was the longest. The fractal de-
pendence graph method obtained the shortest time. From
the results we see that all the methods for the 4 × 4 di-
vision yielded the error of 1–2%, which shows that these
methods are not sensitive to elementary transformations
(translation, rotation, change of scale).

Tables 2(a)–(c) present the results of tests for the au-
thors’ base with local small changes. From the results we

see that the values of the error are bigger than in the case
of the base with elementary transformations. In much the
same way as in the previous case, the values of the error
decreased with the smaller division into sub-images. The
best results were also produced in the 4 × 4 case. The va-
lue of 1% was produced by the fractal dependence graph
method, all the other methods yielded errors of 3–4%. The
times of the test has shortened with the smaller division.
The smallest reduction of the time was obtained for the
Neil–Curtis method—only 0.007% between the time for
the 1×1 division and 4×4 division, and the biggest reduc-
tion was for the fractal dependence graph method—70%
between the time for the 1× 1 division and 4× 4 division.
All the tested methods produced the error rate between 1%
and 4%, which shows that the methods are robust to local
small changes in shape.

Tables 3(a)–(c) present the results of tests for the au-
thors’ base with local large changes. From the obtained
results again we see that with the smaller division of the
image into sub-images the values of the error decreased
and the times of the tests are shorter. Moreover, we see
that the fractal dependence graph method and the MMVA
method yielded the lowest value of the error (7%) for the
4× 4 division. The Neil–Curtis method for the 4× 4 divi-
sion produced the value of the error only about 1% worse
than the best methods. Similarly to the previous tests, the
fractal dependence graph method yielded the shortest time
(2190 s) for the 4 × 4 division.

Tables 4(a)–(c) present the results of tests for the
MPEG7 CE-Shape-1 Part B base. From the tables we see
that for the division 1 × 1 the best results are given by
the Neil–Curtis method (29.45%). The fractal dependence
graph method concedes the Neil–Curtis method by about
6.43%. When we look at the results for the 2 × 2 divi-
sion, we see that the values of the error decreased. Also in
this case the Neil–Curtis method is the best (19.17%), but
the difference between this method and the fractal depen-
dence method has decreased to 0.2%. The other methods
have the error rate greater than 40%. And, finally, for the
division 4 × 4, we see a further decrease in the error rate.
The difference in the value of the error between the frac-
tal dependence graph method and the Neil–Curtis method
decreased to 0.14% on the advantage of the Neil–Curtis
method which produced the error value of 18.02%. The
times of the tests in the case of the MPEG7 base were not
measured, but we noticed that the same dependency be-
tween the division into sub-images and time occurs that in
the case of the authors’ base, i.e., the time for the Neil–
Curtis method decreased a little and for the other methods
the time decreased significantly with the smaller division.

Table 5 presents the error rates for nonfractal me-
thods known from the literature. The table comes from the
work of Xu et al. (2009). Comparing fractal methods with
the ones from Table 5, we see that only the Neil–Curtis
and the proposed FDG method for division 4 × 4 are bet-

Partitioned iterated function systems with division and a fractal dependence graph. . . 765

Table 1. Results of tests for the author’s base—elementary transformations for divisions: 1 × 1 (a), 2 × 2 (b), 4 × 4 (c).
(a)

Method Error [%] Time [s]

FDG 2.00 8044

N-C 2.00 17917

coeff. 4.00 7915

MMVA 10.00 7964

(b)
Method Error [%] Time [s]

FDG 2.00 4824

N-C 2.00 17824

coeff. 3.00 4874

MMVA 3.00 5195

(c)
Method Error [%] Time [s]

FDG 1.00 2462

N-C 1.00 17738

coeff. 2.00 2671

MMVA 2.00 2962

Table 2. Results of tests for the authors’ base—local small changes for divisions: 1 × 1 (a), 2 × 2 (b), 4 × 4 (c).
(a)

Method Error [%] Time [s]

FDG 6.00 7260

N-C 4.00 16448

coeff. 11.00 7123

MMVA 18.00 7054

(b)
Method Error [%] Time [s]

FDG 3.00 4065

N-C 3.00 16381

coeff. 10.00 4393

MMVA 12.00 4535

(c)
Method Error [%] Time [s]

FDG 1.00 2204

N-C 3.00 16331

coeff. 4.00 2465

MMVA 3.00 2706

Table 3. Results of tests for the authors’ base—local large changes for divisions: 1 × 1 (a), 2 × 2 (b), 4 × 4 (c).
(a)

Method Error [%] Time [s]

FDG 14.00 6684

N-C 11.00 16625

coeff. 37.00 6772

MMVA 32.00 6734

(b)
Method Error [%] Time [s]

FDG 7.00 3998

N-C 9.00 16617

coeff. 20.00 4302

MMVA 13.00 4422

(c)
Method Error [%] Time [s]

FDG 7.00 2190

N-C 8.00 16622

coeff. 16.00 2639

MMVA 7.00 2667

Table 4. Results of tests for the MPEG7 CE-Shape-1 Part B base for divisions: 1 × 1 (a), 2 × 2 (b), 4 × 4 (c).
(a)

Method Error [%]

FDG 35.88

N-C 29.45

coeff. 52.74

MMVA 49.03

(b)
Method Error [%]

FDG 19.37

N-C 19.17

coeff. 42.89

MMVA 42.03

(c)
Method Error [%]

FDG 18.16

N-C 18.02

coeff. 32.88

MMVA 24.59

ter than the three last methods from the table, i.e., the cu-
rvature scale space, the generative model, shape contexts.
The other two methods (MMVA, coefficient method) for
all the divisions considered are worse than all the methods
from the table.

Table 5. Error rates of nonfractal methods obtained on the
MPEG7 CE-Shape-1 Part B base.

Method Error [%]

Contour flexibility 10.69

Shape-tree 12.30

HPM-Fn 13.65

Inner distance 14.60

Multiscale representation 15.07

Polygonal multiresolution 15.67

Chance probability function 17.31

Curvature scale space 18.88

Generative model 19.97

Shape contexts 23.49

8. Conclusions

A modification of the standard fractal image compression
and a new recognition method of 2D shapes has been pre-
sented in this paper. The method was based on a depen-
dence graph. The modification of the compression scheme
using the PIFS with division led to a significant decrease
in the recognition error. Moreover, the PIFS with division
also brings an improvement in the speed of achieving the
fractal description of the shape. This is due to the fact that,
in the case of dividing the image into sub-images and then
compressing them, the list of the domain blocks on which
we perform the search process is smaller than in the clas-
sical case. We can obtain a further speed improvement in
the compression using graphics hardware (Erra, 2005).

The proposed fractal dependency graph method pro-
duced the lowest values of the error for the authors’ base
and was the fastest method. In the case of the MPEG7
base, the best values of the error were obtained for the
Neil–Curtis method, but the times compared with other
methods, were huge. The fractal dependency graph me-

766 K. Gdawiec and D. Domańska

thod performed for the division 4 × 4 error only about
0.14% worse than the Neil–Curtis method, but the time
was several times better.

In our further work we will concentrate on taking into
account the number of matching sub-images in the simi-
larity measure, which may bring a further decrease in the
value of error. Moreover, we shall perform tests with other
divisions of the image into sub-images to see the influence
of different divisions on the recognition rate. Furthermore,
because the value of the error decreases with the smaller
sub-images division, we shall search for an optimal divi-
sion into sub-images. We shall also try to bring the divi-
sion into sub-images into other known fractal recognition
methods. The correct orientation used to align objects is
very simple so there is research under way to find a better
method for aligning the objects.

All the fractal methods of 2D shape recognition are
based on the silhouette of the shape and none of them
uses the shape contour. Thus we shall try to develop a sha-
pe descriptor using fractal descriptions of the contour. In
the literature there are many other methods, than fractal
compression, of finding a fractal description of the conto-
ur (Gdawiec, 2009a; Skarbek et al., 1996), and we shall
try to use these methods in our further research.

Acknowledgment

The authors would like to thank Professor W. Kotarski
for his perspicacious comments and suggestions. Special
thanks go to the anonymous reviewers for their valuable
comments that helped to improve the presentation of this
paper.

References
Attalla, E. and Siy, P. (2005). Robust shape similarity retrieval

based on contour segmentation polygonal multiresolution
and elastic matching, Pattern Recognition 38(12): 2229–
2241.

Barni, M. (2006). Document and Image Compression, CRC
Press, Boca Raton, FL.

Barnsley, M. (1988). Fractals Everywhere, Academic Press, Bo-
ston, MA.

Belongie, S., Malik, J. and Puzicha, J. (2002). Shape mat-
ching and object recognition using shape contexts, IEEE
Transactions on Pattern Analysis and Machine Intelligen-
ce 24(4): 509–522.

Bruno, O.M., Plotze, R.d.O., Falvo, M. and Castro, M.d. (2008).
Fractal dimension applied to plant identification, Informa-
tion Science 178(12): 2722–2733.

Burger, W. and Burge, M.J. (2008). Digital Image Processing:
An Algorithmic Introduction Using Java, Springer, New
York, NY.

Chandran, S. and Kar, S. (2002). Retrieving faces by the PIFS
fractal code, 6th IEEE Workshop on Applications of Com-
puter Vision, Orlando, FL, USA, pp. 8–12.

Chang, Y.F., Lee, J.C., Mohd Rijal, O. and Syed Abu Bakar,
S.A.R. (2010). Efficient online handwritten Chinese cha-
racter recognition system using a two-dimensional func-
tional relationship model, International Journal of Applied
Mathematics and Computer Science 20(4): 727–738, DOI:
10.2478/v10006-010-0055-x.

Dey, P. (2005). Basic principles and applications of fractal geo-
metry in pathology—A review, Analytical & Quantitative
Cytology & Histology 27(5): 284–290.

Domaszewicz, J. and Vaishampayan, V.A. (1995). Graph-
theoretical analysis of the fractal transform, 1995 Interna-
tional Conference on Acoustics, Speech, and Signal Pro-
cessing, Detroit, MI, USA, Vol. 4, pp. 2559–2562.

Erra, U. (2005). Toward real time fractal image compression
using graphics hardware, in G. Bebis, R. Boyle, D. Kora-
cin and B. Parvin (Eds.), Advances in Visual Computing,
Lecture Notes in Computer Science, Vol. 3804, Springer,
Heidelberg, pp. 723–728.

Felzenszwalb, P.F. and Schwartz, J. (2007). Hierarchical mat-
ching of deformable shapes, IEEE Conference on Com-
puter Vision and Pattern Recognition, Minneapolis, MN,
USA, Vol. 1, pp. 1–8.

Fisher, Y. (1995). Fractal Image Compression: Theory and Ap-
plication, Springer-Verlag, New York, NY.

Gdawiec, K. (2009a). Fractal interpolation in modeling of 2D
contours, International Journal of Pure and Applied Ma-
thematics 50(3): 421–430.

Gdawiec, K. (2009b). Local Fractal Analysis in Recognition of
2D Shapes, Ph.D. thesis, University of Silesia, Sosnowiec,
(in Polish).

Ghazel, M., Freeman, G.H. and Vrscay, E.R. (2003). Fractal
image denoising, IEEE Transactions on Image Processing
12(12): 1560–1578.

Golub, G.H. and van Loan, C.F. (1996). Matrix Computations,
3rd Edn., The Johns Hopkins University Press, Baltimore,
MD.

Harris, J.M., Hirst, J.L. and Mossinghoff, M.J. (2008). Combi-
natorics and Graph Theory, 2nd Edn., Springer, New York,
NY.

Huang, K. and Yan, H. (2000). Signature verification using frac-
tal transformation, 15th International Conference on Pat-
tern Recognition, Barcelona, Spain, Vol. 2, pp. 855–858.

Kolumbán, J., Soós, A. and Varga, I. (2003). Self-similar random
fractal measures using contraction method in probabilistic
metric spaces, International Journal of Mathematics and
Mathematical Sciences 2003(52): 3299–3313.

Kouzani, A.Z. (2008). Classification of face images using lo-
cal iterated function systems, Machine Vision and Applica-
tions 19(4): 223–248.

Latecki, L.J., Lakamper, R. and Eckhardt, T. (2000). Shape de-
scriptors for non-rigid shapes with a single closed contour,
IEEE Conference on Computer Vision and Pattern Reco-
gnition, Hilton Head, SC, USA, Vol. 1, pp. 424–429.

Partitioned iterated function systems with division and a fractal dependence graph. . . 767

Ling, H. and Jacobs, D.W. (2005). Using the inner-distance for
classification of articulated shapes, IEEE Conference on
Computer Vision and Pattern Recognition, San Diego, CA,
USA, Vol. 2, pp. 719–726.

Linnell, T.A. and Deravi, F. (2004). Mapping vector accumula-
tor: fractal domain feature for character recognition, Elec-
tronic Letters 40(22): 1406–1407.

Mandelbrot, B. (1983). The Fractal Geometry of Nature,
W.H. Freeman and Company, New York, NY.

Meng, D., Cai, X., Su, Z. and Li, J. (2009). Photorealistic ter-
rain generation method based on fractal geometry theory
and procedural texture, 2nd IEEE International Conferen-
ce on Computer Science and Information Technology, Be-
ijing, China, pp. 341–344.

Mokhtarian, F. and Bober, M. (2003). Curvature Scale Space
Representation: Theory, Applications, and MPEG-7 Stan-
dardization, Springer, Heidelberg.

Mozaffari, S., Faez, K. and Faradji, F. (2006). One dimensional
fractal coder for online signature recognition, 18th Inter-
national Conference on Pattern Recognition, Hong Kong,
China, Vol. 2, pp. 857–860.

Neil, G. and Curtis, K.M. (1997). Shape recognition using fractal
geometry, Pattern Recognition 30(12): 1957–1969.

Nikiel, S. (2007). A proposition of mobile fractal ima-
ge decompression, International Journal of Applied Ma-
thematics and Computer Science 17(1): 129–136, DOI:
10.2478/v10006-007-0012-5.

Peters, E.E. (1994). Fractal Market Analysis: Applying Chaos
Theory to Investment and Economics, John Wiley & Sons
Inc., New York, NY.

Plotze, R.d.O., Falvo, M., Páuda, J.G., Bernacci, L.C., Vieira,
M.L.C., Oliveira, G.C.X. and Bruno, O.M. (2005). Le-
af shape analysis using the multiscale Minkowski fractal
dimension, a new morphometric method: A study with
passiflora (passifloraceae), Canadian Journal of Botany
83(3): 287–301.

Prusinkiewicz, P. and Lindenmayer, A. (1996). The Algorithmic
Beauty of Plants, Springer-Verlag, New York, NY.

Skarbek, W. and Ignasiak, K. (1996). Asynchronous nonlinear
fractal operators and their applications, Image Processing
& Communications 2(2): 3–20.

Skarbek, W., Ignasiak, K. and Ghuwar, M. (1996). Fractal repre-
sentation of planar shapes, in S. Miguet, A. Montanvert and
S. Ubéda (Eds.), Discrete Geometry for Computer Image-
ry, Lecture Notes in Computer Science, Vol. 1176, Sprin-
ger, Heidelberg, pp. 73–84.

Tu, Z. and Yuille, A.L. (2004). Shape matching and recogni-
tion using generative models and informative features, 8th
European Conference on Computer Vision, Prague, Czech
Republic, pp. 195–209.

Witten, I.H. and Frank, E. (2005). Data Mining—Practical Ma-
chine Learning Tools and Techniques, 2nd Edn., Morgan
Kaufmann Publishers, San Francisco, CA.

Xu, C., Liu, J. and Tang, X. (2009). 2D shape matching by con-
tour flexibility, IEEE Transactions on Pattern Analysis and
Machine Intelligence 31(1): 180–186.

Yokoyama, T., Sugawara, K. and Watanabe, T. (2004).
Similarity-based image retrieval system using partitioned
iterated function system codes, Artifical Life and Robotics
8(2): 118–122.

Zhao, G., Cui, L. and Li, H. (2007). Gait recognition using frac-
tal scale, Pattern Analysis & Applications 10(3): 235–246.

Krzysztof Gdawiec received the M.Sc. degree in
mathematics from the University of Silesia (Po-
land) in 2005, and the Ph.D. degree in computer
science from the same university in 2010. Cur-
rently he is an assistant professor at the Institute
of Computer Science of the University of Silesia.
He is an author or co-author of several journal
and conference publications. His main research
interests include applications of fractal geometry,
pattern recognition, and computer graphics.

Diana Domańska holds the B.Sc. degree in com-
puter science and the M.Sc. degree in mathema-
tics from the University of Silesia (Poland). Cur-
rently she is a Ph.D. student at the Institute of
Computer Science of the same University. She is
an author or co-author of several journal and con-
ference publications. Her research interests cover
data mining, fuzzy numbers, shape recognition,
and fractals.

Received: 29 October 2010
Revised: 17 April 2011

	Introduction
	Fractal as an attractor
	Fractal image compression
	Fractal pattern recognition with division
	Fractal recognition methods and division into sub-images
	Partitioned iterated function system with division

	Existing fractal recognition methods with division
	Fractal dependence graph method
	Experiments
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

