
Int. J. Appl. Math. Comput. Sci., 2011, Vol. 21, No. 4, 697–702
DOI: 10.2478/v10006-011-0055-5

POSITIVE STABLE REALIZATIONS OF FRACTIONAL CONTINUOUS–TIME
LINEAR SYSTEMS

TADEUSZ KACZOREK

Faculty of Electrical Engineering
Białystok Technical University, ul. Wiejska 45D, 15–351 Białystok, Poland

e-mail: kaczorek@isep.pw.edu.pl

Conditions for the existence of positive stable realizations with system Metzler matrices for fractional continuous-time
linear systems are established. A procedure based on the Gilbert method for computation of positive stable realizations of
proper transfer matrices is proposed. It is shown that linear minimum-phase systems with real negative poles and zeros
always have positive stable realizations.
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1. Introduction

A dynamical system is called positive if its trajectory
starting from any nonnegative initial state remains fo-
rever in the positive orthant for all nonnegative inputs.
An overview of the state of the art in positive system
theory is given in the monographs of Farina and Rinal-
di (2000) as well as Kaczorek (2002). A variety of mo-
dels having positive behavior can be found in engine-
ering, economics, social sciences, biology and medicine,
etc. An overview of the positive realization problem is gi-
ven by Benvenuti and Farina (2004), Farina and Rinaldi
(2000), or Kaczorek (2002; 2009b). The realization pro-
blem for positive continuous-time and discrete-time linear
systems has been considered by Kaczorek (2004; 2006a;
2006b; 2006c) along with the positive minimal realization
problem for singular discrete-time systems with delays
(2005) as well as the realization problem for fractional li-
near systems (2008b; 2011) and for positive 2D hybrid
systems (2008c). Mathematical fundamentals of the frac-
tional calculus and some applications are given by Kilbas
et al. (2006) and Podlubny (1999), while some selected
problems in fractional systems theory are presented by
Kaczorek (2008a; 2009a; 2011). In this paper sufficient
conditions will be established for the existence of positive
stable realizations with the Metzler system matrix of frac-
tional continuous-time linear systems and a procedure for
computation of the realizations of proper transfer matrices
will be proposed.

The paper is organized as follows. In Section 2 so-

me definitions and theorems concerning fractional posi-
tive continuous-time linear systems are recalled and the
problem formulation is given. A problem solution is pre-
sented in Sections 3 and 4. In Section 3, a procedure based
on the Gilbert method is presented and in Section 4, the
problem is solved for minimum-phase systems with nega-
tive real poles and zeros. Concluding remarks and open
problems are presented in Section 5. The following no-
tation is used: R means the set of real numbers, R

n×m

stands for the set of n×m real matrices, Rn×m
+ is the set of

n×m matrices with nonnegative entries and R
n
+ = R

n×1
+ ,

R
n×m[s] signifies the set of n×m polynomial matrices in

s with real coefficients, Mn denotes the set of n × n Met-
zler matrices (real matrices with nonnegative off-diagonal
entries), In is the n × n identity matrix.

2. Preliminaries and problem formulation

Consider the continuous-time linear system

0D
α
t x(t) = Ax(t) + Bu(t), 0 < α < 1, (1a)

y(t) = Cx(t) + Du(t), (1b)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p are the state,

input and output vectors, and A ∈ R
n×n, B ∈ R

n×m,
C ∈ R

p×n, D ∈ R
p×m,

0D
α
t x(t) =

dαx(t)
dtα

=
1

Γ(1 − α)

∫ t

0

ẋ(τ)
(t − τ)α

dτ,

ẋ(τ) =
dx(τ)

dτ
(2)
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is the Caputo definition of the α-th order derivative, α ∈
(0, 1), while

Γ(α) =
∫ ∞

0

e−ttα−1dt (3)

is the Euler gamma function.

Definition 1. (Kaczorek, 2011) The fractional system (1)
is called (internally) positive if x(t) ∈ R

n
+, y(t) ∈ R

p
+,

t ≥ 0 for any initial conditions x(0) = x0 ∈ R
n
+ and all

inputs u(t) ∈ R
m
+ , t ≥ 0.

Theorem 1. (Kaczorek, 2011) The fractional system (1)
is positive if and only if

A ∈ Mn, B ∈ R
n×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ .

(4)
The transfer matrix of the fractional system (1) is given by

T (sα) = C[Insα − A]−1B + D

= C[Inλ − A]−1B + D, sα = λ.
(5)

The transfer matrix is called proper if

lim
λ→∞

T (λ) = K ∈ R
p×m, (6)

and it is called strictly proper if K = 0.

Definition 2. The matrices (4) are called a positive re-
alization of the transfer matrix T (λ) ∈ R

p×m(λ) if they
satisfy Eqn. (5). The realization is called minimal if the di-
mension of A is minimal among all realizations of T (λ).
The realization is called (asymptotically) stable if and on-
ly if all eigenvalues λi of the matrix A satisfy the condi-
tions arg λi > απ/2, i = 1, . . . , n.

The problem under consideration can be stated as fol-
lows: Given a rational matrix T (λ) ∈ R

p×m(λ), find a
positive stable realization with the system Metzler matrix
A of T (λ), i.e.,

A ∈ MnS , B ∈ R
n×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ ,

(7)
where MnS is the set of n × n (asymptotically) stable
Metzler matrices.

3. Problem solution

Using the Gilbert method (Kaczorek, 1992), a procedure
for finding positive stable realizations with system Met-
zler matrices will be presented for transfer matrices with
real negative poles. Consider a stable positive continuous-
time linear system (1) with a given proper transfer matrix
of the form

T (λ) =

⎡
⎢⎣

T11(λ) ... T1,m(λ)
... ...

...
Tp,1(λ) ... Tp,m(λ)

⎤
⎥⎦ ∈ R

p×m(λ),

Ti,j(λ) =
ni,j(λ)
di,j(λ)

, i = 1, . . . , p, j = 1, . . . , m, (8)

where R
p×m(λ) is the set of proper rational real matrices

in sα = λ. The matrix D can be found with the use of the
formula

D = lim
λ→∞

T (λ), (9)

and the strictly proper transfer matrix

Tsp(λ) = T (λ) − D, (10)

which can be written in the form

Tsp(λ) =
N(λ)
d(λ)

∈ R
p×m(λ), (11)

where N(λ) ∈ R
p×m[λ] and

d(λ) = λn + an−1λ
n−1 + · · · + a1λ + a0. (12)

It is assumed that the equation d(λ) = 0 has only
distinct real negative roots λ1, λ2, . . . , λn (λi �= λj for
i �= j), i.e., d(λ) = (λ−λ1)(λ−λ2) . . . (λ−λn). In this
case, the transfer matrix (11) can be written in the form

Tsp(λ) =
n∑

i=1

Ti

λ − λi
, (13)

where

Ti = lim
λ→λi

(λ − λi)Tsp(λ)

=
N(λi)

n∏
j=1
j �=i

(λi − λj)

, i = 1, . . . , n. (14)

Let
rank Ti = ri ≤ min(p, m). (15)

It is easy to show (Kaczorek, 1992) that

Ti = CiBi, rank Ci = rank Bi = ri, (16a)

i = 1, . . . , n, where

Ci = [ Ci,1 Ci,2 . . . Ci,ri ] ∈ R
p×ri ,

Bi =

⎡
⎢⎢⎢⎣

Bi,1

Bi,2

...
Bi,ri

⎤
⎥⎥⎥⎦ ∈ R

ri×m. (16b)

We shall show that the matrices are the desired posi-
tive stable realization with the system Metzler matrix

A = blockdiag[ Ir1λ1 . . . Irnλn ],

B =

⎡
⎢⎣

B1

...
Bn

⎤
⎥⎦ , C = [ C1 . . . Cn ].

(17)
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Using (13), (16) and (17), we obtain

T (λ)

= C[Iλ − A]−1B

= [ C1 . . . Cn ]blockdiag[Ir1(λ − λ1)−1

. . .Irn(λ − λn)−1]

⎡
⎢⎣

B1

...
Bn

⎤
⎥⎦

=
n∑

i=1

CiBi

λ − λi
=

n∑
i=1

Ti

λ − λi
.

(18)

From (17), it follows that

(i) if λ1, λ2, . . . , λn are real negative, then the matrix A
is stable and is a Metzler matrix;

(ii) if
Ti ∈ R

p×m
+ for i = 1, . . . , n, (19)

then we can choose

Ci ∈ R
p×ri

+ , Bi ∈ R
ri×m
+ (20)

for i = 1, . . . , n and

B ∈ R
n̄×m
+ , C ∈ R

p×n̄
+ , n̄ =

n∑
i=1

ri.

If T (∞) ∈ R
p×m
+ , then from (9) we have D ∈

R
p×m
+ . Therefore, the following theorem has been proved.

Theorem 2. There exists a positive stable realization (17),
(9) of the proper transfer matrix (8) if the following con-
ditions are satisfied:

(i) The poles of T (λ) are distinct, real and negative,
i.e.,λi �= λj for i �= j, λi < 0, i = 1, . . . , n.

(ii) Ti ∈ R
p×m
+ for i = 1, . . . , n.

(iii) T (∞) ∈ R
p×m
+ .

If the conditions of Theorem 1 are satisfied, the fol-
lowing procedure can be used to find the desired positive
stable realization with the system Metzler matrix.

Procedure 1.
Step 1. Using (9), find the matrix D and the strictly proper
transfer matrix (10) and write it in the form (11).
Step 2. Find the real zeros λ1, λ2, . . . , λn of the polyno-
mial (12).
Step 3. Using (14), find the matrices T1, . . . , Tn and their
decomposition (16).
Step 4. Using (17), find the matrices A, B and C.

Example 1. Using Procedure 1, find a positive stable re-
alization with the system Metzler matrix of the transfer
matrix

T (λ) =

⎡
⎢⎢⎣

λ + 3
λ + 1

2λ + 5
λ + 2

1
λ + 2

λ + 4
λ + 3

⎤
⎥⎥⎦ . (21)

Employing Procedure 1, we deliver the following.

Using (9) for (20), we obtain

D = lim
λ→∞

T (λ) =
[

1 2
0 1

]
(22)

and the strictly proper transfer matrix

Tsp(λ) = T (λ) − D =

⎡
⎢⎢⎣

2
λ + 1

1
λ + 2

1
λ + 2

1
λ + 3

⎤
⎥⎥⎦ ,

which can be written in the form

Tsp(s)

=
1

(λ + 1)(λ + 2)(λ + 3)

×
[

2(λ + 2)(λ + 3) (λ + 1)(λ + 3)
(λ + 1)(λ + 3) (λ + 2)(λ + 1)

]

=
N(λ)
d(λ)

.

(23)

In this case, d(λ) = (λ+1)(λ+2)(λ+3), λ1 = −1,
λ2 = −2, λ3 = −3 and the condition (i) of Theorem 1 is
met. Using (14) and (16), we obtain

T1 =
1

(λ + 2)(λ + 3)

×
[

2(λ + 2)(λ + 3) (λ + 1)(λ + 3)
(λ + 1)(λ + 3) (λ + 2)(λ + 1)

]∣∣∣∣
λ=−1

=
[

2 0
0 0

]
,

r1 = rankT1 = 1, T1 = C1B1,

B1 = [ 1 0 ], C1 =
[

2
0

]
,

(24a)
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T2 =
1

(λ + 1)(λ + 3)

×
[

2(λ + 2)(λ + 3) (λ + 1)(λ + 3)
(λ + 1)(λ + 3) (λ + 2)(λ + 1)

]∣∣∣∣
λ=−2

=
[

0 1
1 0

]
,

r2 = rankT2 = 2, T2 = C2B2,

B2 =
[

B21

B22

]
=

[
0 1
1 0

]
,

C2 = [ C21 C22 ] =
[

1 0
0 1

]
,

(24b)
T3 =

1
(λ + 1)(λ + 2)

×
[

2(λ + 2)(λ + 3) (λ + 1)(λ + 3)
(λ + 1)(λ + 3) (λ + 2)(λ + 1)

]∣∣∣∣
∣∣∣∣
λ=−3

=
[

0 0
0 1

]
,

r3 = rankT3 = 1, T3 = C3B3,

B3 = [ 0 1 ], C3 =
[

0
1

]
.

(24c)

From (23), it follows that the conditions (ii) of The-
orem 1 are satisfied. Using (17) and (23), we obtain

A =

⎡
⎣ Ir1λ1 0 0

0 Ir2λ2 0
0 0 Ir1λ3

⎤
⎦

=

⎡
⎢⎢⎣

−1 0 0 0
0 −2 0 0
0 0 −2 0
0 0 0 −3

⎤
⎥⎥⎦ ,

B =

⎡
⎣ B1

B2

B3

⎤
⎦ =

⎡
⎢⎢⎣

1 0
0 1
1 0
0 1

⎤
⎥⎥⎦ ,

C = [ C1 C2 C3 ] =
[

2 1 0 0
0 0 1 1

]
.

(25)

The desired positive stable realization of (20) is given by
(25) and (22). This approach can be extended to transfer
matrices with multiple real negative poles (Shaker and Di-
xon, 1977). �

4. Minimum-phase systems with real poles
and zeros

Consider the stable strictly proper irreducible transfer
function

Tsp(λ) =
b̄n−1λ

n−1 + · · · + b̄1λ + b̄0

λn + an−1λn−1 + · · · + a1λ + a0

=
b̄n−1(λ − z1) · · · (λ − zn−1)

(λ − λ1)(λ − λ2) · · · (λ − λn)
(26)

where λ1, . . . , λn are the real negative poles and
z1, . . . , zn−1 are real negative zeros of the transfer func-
tion.

Theorem 3. There exists a positive stable realization of
(26) if

λk < zk < λk+1 for k = 1, . . . , n − 1. (27)

Proof. From (14), we have

Ti

=
(λi − z1)(λi − z2) . . . (λi − zn−1)

(λi − λ1) . . . (λi − λi−1)(λi − λi+1) . . . (λi − λn)
> 0 (28)

for i = 1, . . . , n if the condition (ii) is satisfied. By The-
orem 1, the matrices

A = diag[ λ1 . . . λn ],

B =

⎡
⎢⎣

b1

...
bn

⎤
⎥⎦ , C = [ c1 . . . cn ],

Ti = bici, i = 1, . . . , n

(29)

are a positive stable realization of the transfer func-
tion (26). �

Example 2. Let us find a positive realization of the strictly
proper transfer function

Tsp(λ) =
λ + 2

λ2 + 4λ + 3
. (30)

In this case, λ1 = −1, λ2 = −3, z1 = −2 and the condi-
tion (27) is satisfied. Using (14), we obtain

T1 =
λ + 2
λ + 3

∣∣∣∣
λ=−1

=
1
2
, T2 =

λ + 2
λ + 1

∣∣∣∣
λ=−3

=
1
2

and

T1 = b1c1 =
1
2
, b1 = 1, c1 =

1
2
,

T2 = b2c2 =
1
2
, b2 = 1, c2 =

1
2
.

The desired positive realization has the form

A =
[

λ1 0
0 λ2

]
=

[ −1 0
0 −3

]
,

B =
[

b1

b2

]
=

[
1
1

]
,

C = [ c1 c2 ] =
[

1
2

1
2

]
.

(31)
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Now let us consider the strictly proper transfer matrix
(11) rewritten in the form

Tsp(λ) =
1

(λ − λ1) · · · (λ − λn)

×

⎡
⎢⎣

(λ − z1
11) · · · (λ − zn11

11 ) · · ·
... · · ·

(λ − z1
p,1) · · · (λ − z

np,1
p,1 ) · · ·

(λ − z1
1,m) · · · (λ − z

n1,m

1,m )
...

(λ − z1
p,m) · · · (λ − z

np,m
p,m )

⎤
⎥⎦ .

(32)

where λ1, . . . , λn are real negative poles and zk
ij , i =

1, . . . , p, j = 1, . . . , m, k = 1, . . . , nij are real nega-
tive zeros.

Theorem 4. There exists a positive stable realization (17)
of (32) if

λk ≤ zk
i,j ≤ λk+1 (33)

for i = 1, . . . , p, j = 1, . . . , m, and k = 1, . . . , nij .

The proof is similar to that of Theorem 3. If the con-
dition (33) is satisfied, then a positive stable realization
(17) of (32) can be found with the use of Procedure 1.

Example 3. Using Procedure 1, we wish to find a positive
realization of the strictly proper transfer matrix

Tsp(λ) =
1

(λ + 1)(λ + 3)(λ + 5)

×
[

(λ + 2)(λ + 4) (λ + 1)(λ + 4)
(λ + 2)(λ + 5) (λ + 2)(λ + 4)

]
.

(34)

In this case, we have λ1 = −1, λ2 = −3, λ3 = −5,
z1
11 = −2, z2

11 = −4, z1
12 = −1, z2

12 = −4, z1
21 = −2,

z2
21 = −5, z1

22 = −2, z2
22 = −4, and the conditions (33)

are satisfied. Therefore, by Theorem 4, there exists a po-
sitive stable realization of the transfer matrix (34). Using
(14) and (34), we obtain

T1 =
1

(λ + 3)(λ + 5)

×
[

(λ + 2)(λ + 4) (λ + 1)(λ + 4)
(λ + 2)(λ + 5) (λ + 2)(λ + 4)

]∣∣∣∣
λ=−1

=

⎡
⎢⎣

3
8

0

1
2

3
8

⎤
⎥⎦ ,

rankT1 = 2, T1 = C1B1,

C1 =

⎡
⎢⎣

3
8

0

1
2

3
8

⎤
⎥⎦ , B1 =

[
1 0
0 1

]
,

(35a)

T2 =
1

(λ + 1)(λ + 5)

×
[

(λ + 2)(λ + 4) (λ + 1)(λ + 4)
(λ + 2)(λ + 5) (λ + 2)(λ + 4)

]∣∣∣∣
λ=−3

=

⎡
⎢⎣

1
4

1
2

1
2

1
4

⎤
⎥⎦ ,

rankT2 = 2, T2 = C2B2,

C2 =

⎡
⎢⎣

1
4

1
2

1
2

1
4

⎤
⎥⎦ , B2 =

[
1 0
0 1

]
,

(35b)

T3 =
1

(λ + 1)(λ + 3)

×
[

(λ + 2)(λ + 4) (λ + 1)(λ + 4)
(λ + 2)(λ + 5) (λ + 2)(λ + 4)

]∣∣∣∣
λ=−5

=

⎡
⎢⎣

3
8

1
2

0
3
8

⎤
⎥⎦ ,

rankT3 = 2, T3 = C3B3,

C3 =

⎡
⎢⎣

3
8

1
2

0
3
8

⎤
⎥⎦ , B3 =

[
1 0
0 1

]
,

(35c)

The desired positive stable realization has the form

A =

⎡
⎣ Ir1λ1 0 0

0 Ir2λ2 0
0 0 Ir3λ3

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −3 0 0 0
0 0 0 −3 0 0
0 0 0 0 −5 0
0 0 0 0 0 −5

⎤
⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎣ B1

B2

B3

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
0 1
1 0
0 1
1 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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C = [ C1 C2 C3 ] =
1
8

[
3 0 2 4 3 4
4 3 4 2 0 3

]
.

(36)
�

5. Concluding remarks

Conditions for the existence of positive stable realizations
with system Metzler matrices of fractional continuous-
time linear systems have been established (Theorem 2). A
procedure based on the Gilbert method for computation of
positive stable realizations of proper transfer matrices has
been proposed. It has been shown that minimum-phase
systems with real negative poles and zeros always have the
positive stable realizations (Theorems 3 and 4). The deli-
berations have been illustrated by numerical examples.

The following are open problems for fractional
continuous-time linear systems:

1. Find necessary and sufficient conditions for the exi-
stence of positive stable realizations with system
Metzler matrices of proper transfer matrices.

2. Give a method for finding positive stable realizations
with system Metzler matrices which is not based on
the Gilbert method of proper transfer matrices.
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