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1. Introduction

The aim of several control problems is to drive a dynami-
cal system from an initial state to a desired one in a finite
time. Let us consider a distributed bilinear systems evolv-
ing on Ω ⊂ R

n and described by the equation

⎧
⎨

⎩

ż(t) = Az(t) + u(t)Bz(t), t ∈ [0, T ],

z(0) = z0 �= 0,
(1)

where A is the generator of a strongly continuous semi-
group (S(t))t≥0 on the state space Z =: L2(Ω) endowed
with its natural inner product 〈·, ·〉, and the correspond-
ing norm ‖ · ‖, B : Z → Z is a linear bounded operator,
while u ∈ L2[0, T ] is a control. The main result on the
controllability of the system (1) is due to the pioneering
work by Ball et al. (1982), which shows that, under the
above-mentioned conditions, a mild solution zu of (1) as-
sociated with the control u exists and the set of reachable
states from an initial state z0 is of dense complement in
the state space. This makes exact controllability difficult
to be achieved.

Most results are established for particular bilinear
systems (Ball et al., 1982; Joshi, 2005; Lenhart and Liang,
2000; Khapalov, 2002a; 2002b). Later the concept of
regional controllability for linear distributed systems has
been introduced and developed by El Jai and Zerrik and

concerns the transfer of such a system to a desired state
only on a region of the system spacial domain. The sys-
tem (1) is said to be exactly (respectively, approximately)
controllable in ω ⊂ Ω if for all zd ∈ L2(ω) there exists
a control u ∈ L2[0, T ] such that χωzu(T ) = zd (respec-
tively, ||χωzu(T ) − zd||L2(ω) ≤ ε, ε > 0), where zd is
a desired state in the space L2(ω), χω : Z −→ L2(ω)
is the restriction operator to ω. Many results for linear
and semi linear systems have been developed (see El Jai
et al., 1995; Zerrik and Kamal, 2007; Zerrik et al., 2007).

This concept finds its applications in many real world
problems. For example, the physical problem which con-
cerns a tunnel furnace where one has to maintain a pre-
scribed temperature only in a subregion of the furnace.
Also there exist systems which are controllable on some
subregion ω ⊂ Ω but not controllable in the whole domain
Ω and that controlling regionally a system is cheaper than
controlling it in the whole domain (see El Jai et al., 1995).
In this paper we discuss an extension of previous works
(El Jai et al., 1995; Zerrik and Kamal, 2007; Zerrik et
al., 2007) on regional controllability for linear and semi
linear systems to a bilinear one. More precisely, for the
system (1) defined on a spatial domain Ω, a nonempty
subset ω ⊂ Ω, with a positive Lebesgue measure and a
desired state zd in L2(ω), the problem of regional con-
trollability for (1) consists in finding a control function
with minimum energy in an appropriate control space that
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steers (1) from z0 to a final state close to zd on ω at time
T . This problem may be stated as follows:

{
Find u ∈ L2[0, T ] which minimizes ‖u‖2

L2[0,T ],

u ∈ Uad(ω),
(2)

while

Uad(ω)

= {u ∈ L2[0, T ] : ‖χ
ω
zu(T )−zd‖L2(ω) is minimum }.

We discuss the cases of Uad(ω) �= ∅ and Uad(ω) = ∅. To
characterize the optimal solution of (2), we propose an ap-
proach based on a quadratic cost control problem, which
involves the minimization of the control norm and the fi-
nal state error. This is the aim of this paper, which is orga-
nized as follows. In Section 2 we consider the quadratic
cost control problem associated with (2). In Section 3, we
give a characterization of a control solution of (2) and we
show that, under supplementary conditions, the unique-
ness may be ensured. In the last section, we develop a
numerical approach and give illustrations with numerical
examples and simulations.

2. Regional quadratic control problem

Given T > 0, let us associate with (2) the problem

min
u∈L2[0,T ]

Jε(u) (3)

with

Jε(u) = ‖χ
ω
zu(T ) − zd‖2

L2(ω)

+ ε

∫ T

0

u2(t) dt, ε > 0. (4)

Proposition 1.

1. For u ∈ L2[0, T ] and h ∈ L2[0, T ], ∀t ∈ [0, T ], we
have ‖zu+h(t) − zu(t)‖ = o(‖h‖) as h → 0.

2. There exists u∗ ∈ L2[0, T ] such that

Jε(u∗) = J∗ = min
v∈L2[0,T ]

Jε(v).

Let

y(t) =
∫ t

0

U(t, s)h(s)Bzu(s) ds.

Then
‖zu+h(t) − zu(t) − y(t)‖ = o(‖h‖)

as h → 0, where (U(t, s))t≥s is the evolution operator
generated by A + uB.

Proof.
1. We have

zu+h(t) − zu(t)

=
∫ t

0

S(t − s)u(s)B(zu+h(s) − zu(s)) ds

+
∫ t

0

S(t − s)h(s)Bzu+h(s) ds.

Using the boundedness of the semigroup (S(t))t≥0 on the
entire finite interval of [0, T ], i.e., the fact that there is an
M > 0 such that ‖S(t)‖ ≤ M , ∀t ∈ [0, T ], we have

‖zu+h(t) − zu(t)‖

≤ M‖B‖
(∫ t

0

[
|u(s)|‖zu+h(s) − zu(s)‖

+ |h(s)|‖zu+h(s)‖
]
ds
)
,

and

‖zu+h(t)‖ ≤ M
(
‖z0‖

+ ‖B‖
∫ t

0

|u(s) + h(s)|‖zu+h(s)‖ ds
)
.

Using the Gronwall inequality twice, we obtain
‖zu+h(t)‖ ≤ k1, and

‖zu+h(t) − zu(t)‖

≤ M‖B‖
(∫ t

0

|u(s)|‖zu+h(s) − zu(s)‖ ds

+k1

∫ t

0

|h(s)| ds

)

,

and, again by the Gronwall inequality, we obtain
‖zu+h(t) − zu(t)‖ = o(‖h‖) as h → 0.

2. The set E = {Jε(u) | u ∈ L2[0, T ]} is nonempty and
bounded from below, so the lower bound J∗ exists. Let
the sequence (un) in L2[0, T ] be such that

lim
n→+∞Jε(un) = J∗.

We have

ε

∫ T

0

u2
n(t) dt ≤ Jε(un).

Hence (un)n≥0 is bounded. Therefore, we can extract a
subsequence denoted by (unk

) which converges weakly
to u∗ in L2[0, T ]. This implies that zunk

converges to zu∗

strongly in C(0, T ; Z) (see Ball et al., 1982). Hence

Jε(u∗) ≤ lim inf
n→∞ Jε(un) = J∗ ≤ Jε(u∗).

3. Since u ∈ L2[0, T ] and B is a bounded linear operator
on Z , the operator A + uB ∈ L1[0, T ; D(A)]. Then
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A + u(t)B generates an evolution operator (U(t, s))t≥s

(cf. Pazy, 1983, Chapter 5, Remark 3.2). Thus

y(t) =
∫ t

0

U(t, s)h(s)Bzu(s) ds

is well defined.
Let Y (t) = zu+h(t) − zu(t) − y(t). We can write

Y (t) =
∫ t

0

S(t − s)u(s)BY (s) ds

+
∫ t

0

S(t − s)h(s)B(zu+h(s) − zu(s)) ds

+
∫ t

0

S(t − s)h(s)Bzu(s) ds

+
∫ t

0

S(t − s)u(s)By(s) ds − y(t).

Let

K(t) =
∫ t

0

S(t − s)h(s)Bzu(s) ds

+
∫ t

0

S(t − s)u(s)By(s) ds − y(t).

Then, for z0 ∈ D(A), we have

K̇(t) = A

∫ t

0

S(t − s)h(s)Bzu(s) ds

+ h(t)Bzu(t) + A

∫ t

0

S(t − s)u(s)By(s) ds

+ u(t)By(t) − ẏ(t).

Since ẏ(t) = (A + u(t)B)y(t) + h(t)Bzu(t) and
y(0) = 0, we get

y(t) =
∫ t

0

S(t − s)h(s)Bzu(s) ds

+
∫ t

0

S(t − s)u(s)By(s) ds,

which shows that K̇(t) = 0, and since K(0) = 0, it fol-
lows that K(t) = 0, ∀t ∈ [0, T ].

Then we have

Y (t) =
∫ t

0

S(t − s)u(s)BY (s) ds

+
∫ t

0

S(t − s)h(s)B(zu+h(s) − zu(s)) ds,

and

‖Y (t)‖ ≤ M‖B‖
(∫ t

0

|u(s)|‖Y (s)‖ ds

+
∫ t

0

|h(s)|‖zu+h(s) − zu(s)‖ ds

)

.

By Property 1, we have

M‖B‖
∫ t

0

|h(t)|‖zu+h(s) − zu(s)‖ ds

≤ k1‖h‖2, k1 ∈ R.

By the Gronwall inequality, we obtain

‖Y (t)‖ ≤ k2‖h‖2, k2 ∈ R,

that is,
‖Y (t)‖ = o(‖h‖),

and by the density of D(A) in Z we have the above in-
equality in Z . �

Now, the solution to the problem (3) is characterized
by the following result.

Theorem 1. A control which minimizes the problem (3)
is given by

u(t) = −1
ε
〈Bz(t), P (t)z(t) − U∗(T, t)χ∗

ω
zd〉, (5)

where P is the selfadjoint and nonnegative operator solu-
tion of the following equation:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d
dt

〈P (t)y, z〉 + 〈P (t)y, (A + u(t)B)z〉
+〈(A + u(t)B)y, P (t)z〉 = 0, ∀y, z ∈ D(A),

P (T ) = χ∗
ω
χ

ω
.

(6)
Here U∗(t, s) is the adjoint operator of U(t, s) and χ∗

ω
is

the adjoint operator of χ
ω

.

The minimum is given by

Jε(u) = 〈P (0)z0, z0〉 + 2〈χωU(T, 0)z0, zd〉

+ ‖zd‖2
L2(ω) + ε

∫ T

0

u2(t) dt.

Proof. Using Property 3 of the previous proposition, we
have

zu+h(t) = zu(t) + y(t) + o(h).

Then we obtain

〈χωzu+h(t) − zd, χωzu+h(t) − zd〉
= 〈χωzu(t) − zd, χωzu(t) − zd〉

+ 2〈χωzu(t) − zd, χωy(t)〉 + o(‖h‖).
Hence

Jε(u + h) − Jε(u) = 2〈χωzu(T ) − zd, χωy(T )〉

+ 2ε

∫ T

0

u(t)h(t) dt + o(‖h‖).
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For v ∈ L2[0, T ], define

Λv(t) = χωU(T, t)v(t)Bzu(t).

Since

y(T ) =
∫ T

0

U(T, s)h(s)Bzu(s) ds,

we obtain

Jε(u + h) − Jε(u)

= 2
∫ T

0

[〈χωzu(T ) − zd, Λh(t)〉εu(t)h(t)] dt

+ o(‖h‖).

Thus, the differential of Jε at u is

dJε(u)h = 2
∫ T

0

[
〈Λ∗(χωzu(T ) − zd), h(t)〉

+ εu(t)h(t)
]
dt.

Then dJε(u)h = 0, ∀h ∈ L2[0, T ] is equivalent to

u(t) = −1
ε
Λ∗(χωzu(T ) − zd).

Also, we have

Λ∗v(t) = z∗u(t)B∗U∗(T, t)χ∗
ωv(t),

which gives

u(t) = −1
ε
z∗u(t)B∗U∗(T, t)(χ∗

ωχωzu(T ) − χ∗
ωzd).

Let us consider the following nonnegative and self-
adjoint operator:

P (t)z = U∗(T, t)χ∗
ωχωU(T, t)z, ∀z ∈ D(A).

Since zu(t) = U(t, 0)z0, we have

P (t)zu(t) = U∗(T, t)χ∗
ωχωzu(T ),

and then we obtain (5).

Let us show that P (t) satisfies Eqn. (6). We have

∂U

∂s
(t, s)z = −U(t, s)(A + u(s)B)z, ∀z ∈ D(A).

Then, ∀y, z ∈ D(A) and we obtain

d
dt

〈U∗(T, t)χ∗
ωχωU(T, t)y, z〉

= −〈χωU(T, t)(A + u(t)B)y, χωU(T, t)z〉
− 〈χωU(T, t)y, χωU(T, t)(A + u(t)B)z〉,

which shows the right part of (6). Now, using

zu(t) = U(t, 0)z0,

〈χωzu(T ), χωzu(T )〉 = 〈P (0)z0, z0〉,
we have

Jε(u) = 〈P (0)z0, z0〉 + 2〈χωU(T, 0)z0, zd〉

+ ‖zd‖2
L2(ω) + ε

∫ T

0

u2(t) dt.

�

Remark 1. Equation (6) has a unique solution (cf. El
Alami, 1988).

If uε denotes the solution of (3) and zε the associ-
ated state of (1), the following result will be useful for the
sequel of the paper.

Proposition 2.

1. The sequence (Jε(uε))ε>0 is decreasing as ε → 0.

2. The sequence
(∫ T

0

u2
ε(t) dt

)

ε>0

is increasing as ε → 0.

3. The sequence
(‖χωzε(T )−zd‖2

L2(ω)

)

ε>0
is decreasing

as ε → 0, and ∀ ε > 0

‖χ
ω
zε(T ) − zd‖L2(ω) ≤ ‖χ

ω
S(T )z0 − zd‖L2(ω).

In particular, there exists a subsequence of
(
χ

ω
zε(T ) −

zd

)

ε>0
which converges weakly in L2(ω).

Proof. Let 0 < ε1 < ε2. Using consecutively the opti-
mality of uε1 for Jε1 and the optimality of uε2 for Jε2 , we
have

Jε1(uε1) = ‖χ
ω
zε1(T ) − zd‖2

L2(ω) + ε1

∫ T

0

u2
ε1(t) dt

≤ ‖χ
ω
zε2(T ) − zd‖2

L2(ω) + ε1

∫ T

0

u2
ε2(t) dt

≤ ‖χ
ω
zε2(T ) − zd‖2

L2(ω) + ε2

∫ T

0

u2
ε2(t) dt

≤ ‖χ
ω
zε1(T ) − zd‖2

L2(ω) + ε2

∫ T

0

u2
ε1(t) dt.

(7)

This implies that

Jε1(uε1) ≤ Jε2(uε2). (8)

From (7), we obtain

Jε2(uε2) − Jε1(uε2) ≤ Jε2(uε1) − Jε1(uε1),
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and then
∫ T

0

u2
ε2(t) dt ≤

∫ T

0

u2
ε1(t) dt.

Thus ‖χ
ω
zε1(T ) − zd‖2

L2(ω) ≤ ‖χ
ω
zε2(T ) − zd‖2

L2(ω),
which shows Statements 1 and 2 and the first part of State-
ment 3.

For u = 0, we have zu(T ) = S(T )z0 and ∀ε > 0,

‖χ
ω
zε(T ) − zd‖2

L2(ω) + ε

∫ T

0

uε(t)2 dt

≤ ‖χ
ω
S(T )z0 − zd‖2

L2(ω).

Then

0 ≤ ‖χ
ω
zε(T ) − zd‖2

L2(ω)

≤ ‖χ
ω
S(t)z0 − zd‖2

L2(ω), ∀ε > 0.

Finally, (‖χ
ω
zε(T ) − zd‖L2(ω))ε>0 is bounded. Then we

can extract a subsequence of (χ
ω
zε(T ) − zd)ε>0 which

converges weakly in L2(ω). �

3. Regional minimum energy control
problem

Here let us go back to the problem (2), and consider the
set

R(T ) =
⋃

u∈L2[0,T ]

{zu(T )}

of the states reachable at time T from z0.
We have the main result.

Theorem 2. Let uε be a solution of (3) and assume that
Uad(ω) is nonempty. Then we have

uε → u� as ε → 0 in L2[0, T ]

and
χ

ω
zε → χ

ω
zu� in C([0, T ]; L2(ω)).

Moreover, u� is a solution to the problem (2).

Proof. Using the optimality of uε for Jε, we have ∀ε > 0,
∀u ∈ L2[0, T ], Jε(uε) ≤ Jε(u), i.e.,

‖χωzε(T ) − zd‖2
L2(ω) + ε

∫ T

0

u2
ε(t) dt

≤ ‖χωzu(T ) − zd‖2
L2(ω) + ε

∫ T

0

u2(t) dt.

Uad(ω) is nonempty, which means that there exists v ∈
L2[0, T ] such that

‖χωzv(T ) − zd‖2
L2(ω) = min

z∈R(T )
‖χωz − zd‖2

L2(ω).

Thus, we have

∫ T

0

u2
ε(t) dt ≤

∫ T

0

u2(t) dt, ∀u ∈ Uad(ω), ∀ε > 0.

(9)
Therefore, we can extract a subsequence, also de-

noted by (uε)ε>0, such that uε → u� weakly in L2[0, T ]
and zε → zu� strongly in C([0, T ]; Z) as ε → 0 (see Ball
et al., 1982), and this implies that χ

ω
zε → χ

ω
zu� strongly

in C([0, T ]; L2(ω)). Since uε → u� weakly in L2[0, T ],
by the lower semi-continuity of the norm we have

lim inf
ε→0

∫ T

0

u2
ε(t) dt ≥

∫ T

0

u�2(t) dt (10)

and

lim inf
ε→0

Jε(uε) ≥ ‖χ
ω
zu�(T ) − zd‖2

L2(ω).

Moreover, Jε(uε) ≤ Jε(u) ∀u ∈ L2[0, T ], so

lim sup
ε→0

Jε(uε)

≤ ‖χ
ω
zu(T ) − zd‖2

L2(ω) ∀u ∈ L2[0, T ], (11)

and, in particular,

lim sup
ε→0

Jε(uε) ≤ ‖χ
ω
zv(T ) − zd‖2

L2(ω)

≤ ‖χωzu�(T ) − zd‖2
L2(ω)

≤ lim inf
ε→0

Jε(uε).

Hence

lim
ε→0

Jε(uε) = lim
ε→0

‖χ
ω
zε(T ) − zd‖2

L2(ω)

= ‖χ
ω
zu�(T ) − zd‖2

L2(ω)

= ‖χ
ω
zv(T ) − zd‖2

L2(ω).

(12)

Thus

lim
ε→0

‖χωzε(T ) − zd‖2
L2(ω) = min

z∈R(T )
‖χωz − zd‖2

L2(ω),

and u� ∈ Uad(ω).
Furthermore,

‖χ
ω
zε(T ) − zd‖2

L2(ω) + ε

∫ T

0

u2
ε(t) dt

≤ ‖χ
ω
zu�(T ) − zd‖2

L2(ω) + ε

∫ T

0

u�2(t) dt.

From (12) it follows that

∫ T

0

u2
ε(t) dt ≤

∫ T

0

u�2(t) dt, ∀ε > 0. (13)
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Equations (10) and (13) show that

∫ T

0

u2
ε(t) dt →

∫ T

0

u�2(t) dt as ε → 0.

This result, together with the weak convergence of
(uε)ε>0 towards u� in L2[0, T ], implies that

lim
ε→0

∫ T

0

(uε(t) − u�(t))2 dt = 0.

Using (9), we obtain

∫ T

0

u�2(t) dt ≤
∫ T

0

u2(t) dt, ∀u ∈ Uad(ω),

and hence u� is a solution to the problem (2). �

Remark 2.

1. From the proof of Theorem 2, it follows that, if the se-
quence (uε)ε>0 is bounded in L2[0, T ], then Uad(ω) �= ∅.

2. We do not give any result for the uniqueness except for
the global case (ω = Ω). We have the following result.

Proposition 3. Suppose that Uad(Ω) is nonempty and
L2(Ω) has an orthonormal basis (φn)n of eigenfunctions
of A. In addition, if A commutes with B, then the problem
(2) has only one solution.

Proof. First, the existence of a solution is ensured by The-
orem 2. With no loss of generality, we may suppose that
the eigenvalues of A are simple. Now, A and B commute,
so the mild solution of (1) can be written as

zu(t) = S(t) exp
(
B

∫ t

0

u(s) ds
)
z0,

where
(
exp
(
B
∫ t

s u(r) dr
))

t≥s
is the evolution operator

generated by uB. For z0 ∈ L2(Ω), we have

zu(t) =
+∞∑

n=1

exp λnt〈exp
(
B

∫ t

0

u(s) ds
)
z0, φn〉φn.

Then

zu(T ) − zd

=
+∞∑

n=1

〈exp (λnT ) exp
(
B

∫ T

0

u(s) ds
)
z0−zd, φn〉φn,

and

‖ zu(T ) − zd ‖2

=
+∞∑

n=1

〈exp (λnT ) exp
(
B

∫ T

0

u(s) ds
)
z0 − zd, φn〉2.

(14)

If u and v are two distinct solutions to the problem
(2), then (14) implies

∫ T

0

u(s) ds =
∫ T

0

v(s) ds.

The control w = (u + v)/2 lies in Uad(Ω), i.e.,

zw(T ) = S(T ) exp
(
B

∫ T

0

1
2
[u(s) + v(s)] ds

)
z0

= zu(T ),

and

‖w‖2
L2[0,T ] =

1
4
‖u + v‖2

L2[0,T ]

<
1
2
[‖u‖2

L2[0,T ] + ‖v‖2
L2[0,T ]]

= ‖u‖2
L2[0,T ].

This contradiction implies that the minimum energy con-
trol is unique. �

Remark 3.
1. The above results remain true in the case of multi-
controls, i.e., when the system is described by

ż(t) = Az(t) +
p∑

i=1

ui(t)Biz(t),

where ∀i, 1 ≤ i ≤ p, ui ∈ L2[0, T ], and Bi is a bounded
linear operator on Z .

2. In the same way we can solve the following general
problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min ‖u‖2
L2[0,T ]

with
〈χωzu(T ) − zd(T ), G(χωzu(T ) − zd(T ))〉L2(ω)

+
∫ T

0

〈χ
ω
zu(t) − zd(t), Q(χ

ω
zu(t) − zd(t))〉dt

minimum,
(15)

where zd is a desired regular function.
The problem associated with (15) is

{
min Φε(u),
u ∈ L2[0, T ] (16)

with

Φε(u)
= 〈χωzu(T ) − zd(T ), G(χωzu(T ) − zd(T ))〉L2(ω)

+
∫ T

0

[〈(χ
ω
zu(t) − zd(t), Q(χ

ω
zu(t) − zd(t))〉L2(ω)

+ εu2(t)] dt, ε > 0,
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whose solution is given by

u(t) = −1
ε
〈Bz(t), P (t)z(t) − U∗(T, t)χ∗

ω
Gzd(T )

−
∫ T

t

U∗(s, t)χ∗
ω
Qzd(s) ds〉.

where P is the self-adjoint and nonnegative operator solu-
tion of the equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d
dt

〈P (t)y, z〉 + 〈P (t)y, (A + u(t)B)z〉

+〈(A + u(t)B)y, P (t)z〉 + 〈χ∗
ωQχωy, z〉 = 0,

P (T ) = χ∗
ωGχω, where y, z ∈ D(A).

3. If zd(·) is exactly reachable with the control v, then

uε→v in L2[0, T ] strongly ,

χ
ω
zε→zd in C([0, T ]; L2(ω)) strongly,

as ε → 0, where uε is a control which minimizes in
L2[0, T ] the quadratic cost

Jε(u)

= ‖χωzu(T ) − zd(T )‖2
L2(ω)

+
∫ T

0

[〈χ
ω
zu(t) − zd(t), χω

zu(t) − zd(t)〉L2(ω)

+ εu2(t)] dt, ε > 0.

We now deal with the case where Uad(ω) is an empty
set.

Theorem 3. Suppose that Uad(ω) is empty. Then

lim
ε→0

‖χ
ω
zε(T ) − zd‖2

L2(ω) = inf
z∈R(T )

‖χ
ω
z − zd‖2

L2(ω).

Proof. Let

F = {‖χ
ω
z − zd‖L2(ω) | z ∈ R(T )}.

Then, F is a nonempty subset of R
+. Therefore, F has a

lower bound denoted by a. According to Proposition 1,
(Jε(uε))ε>0 is a decreasing sequence as ε → 0, and
Jε(uε) ≥ 0, ∀ε > 0.

Hence, it converges in R towards a limit denoted by
J . Similarly, (‖χ

ω
zε(T )− zd‖L2(ω))ε>0 is a nonnegative

and decreasing sequence. Thus, as ε → 0 it converges in
R towards a limit denoted by b. Let us show that b = a.
Suppose that b > a. Then there exists v ∈ L2[0, T ] such
that

a < ‖χ
ω
zv(T ) − zd‖L2(ω) < b. (17)

Now,

‖χ
ω
zε(T ) − zd‖2

L2(ω) + ε

∫ T

0

u2
ε(t) dt

≤ ‖χ
ω
zv(T ) − zd‖2

L2(ω) + ε

∫ T

0

v2(t) dt.

(18)

Equations (17) and (18) imply that

∫ T

0

u2
ε(t) dt ≤

∫ T

0

v2(t) dt.

Thus, according to Remark 2, UT
ad(ω) is nonempty, which

is a contradiction. �

Remark 4.

1. The family of controls (uε)ε>0 is not bounded in
L2[0, T ] (Remark 2) and for a fixed ε and for all χ

ω
zv(T )

such that

‖χ
ω
zε(T ) − zd‖L2(ω) = ‖χ

ω
zv(T ) − zd‖L2(ω)

according to (18) we have

∫ T

0

u2
ε(t) dt ≤

∫ T

0

v2(t) dt.

2. The approach used to solve the optimal control prob-
lem assumes a bounded control operator. However, the
unbounded case may be carried out in a similar manner
taking more regular controls which allow regular system
states. This means that the control is selected such that the
state z is in Z = L2(Ω).

4. Numerical approach and simulations

We have seen that, if an optimal control solution to the
problem (2) exists, such a control may be approximated
by the solution uε to the problem (3), which in turn may
be implemented by the following formula:

{
un+1(t) = −n〈Bzn(t), Pn(t)zn(t) − U∗

n(T, t)χ∗
ωzd〉,

u0 = 0,
(19)

where Pn is the selfadjoint and nonnegative operator so-
lution of the Riccati equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d
dt

〈Pn(t)y, z〉 + 〈Pn(t)y, (A + un(t)B)z〉

+〈(A + un(t)B)y, Pn(t)z〉 = 0,

Pn(T ) = χ∗
ωχω with y, z ∈ D(A),

(20)

whose solution can be achieved by the algorithm given by
El Alami (1988).
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This allows us to consider the following algorithm:

Step 1: Initialize system data: z0, u0 =0, desired state
zd, threshold accuracy ε, subregion ω and
sensor location b.

Step 2: Until ‖ un+1 − un ‖≤ ε repeat

� Solve Eqn. (20) which gives Pn.
� Solve Eqn. (1) which gives zn(t).
� Compute un+1 by the formula (19).

The control un steers the system to the desired state zd

at time T .

To illustrate the above algorithm, consider the fol-
lowing examples.

Example 1. Let Ω =]0, 1[ and consider the bilinear sys-
tem described by the following evolution equation:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂z

∂t
(x, t) = α

∂2z(x, t)
∂x2

+ βz(x, t)

+γu(t)z(x, t) in Ω×]0, T [,
z(x, 0) = z0(x) in Ω,
z(0, t) = z(1, t) = 0 on ]0, T [,

(21)
where α, β and γ are positive real numbers. This equa-
tion may represent a simplified model of the temperature
distribution in a furnace.

The system (21) looks like (1) with

Ã = α
∂2

∂x2
+ β

with the domain

D(Ã) =
{
z ∈ H2(0, 1) | z(0) = z(1) = 0

}
.

The operator Ã admits a set of eigenfunctions φi(·) asso-
ciated with the eigenvalues λi given by

φi(x) =
√

2 sin(iπx), λi = β − αi2π2, i ≥ 1.

The solution (21) is approximated by

z(x, t) �
M∑

i=1

ai(t)φi(x).

Let z0(x) = sin(πx), zd(x) = 8x(1 − x), α =
0.01, β = 0.01, γ = 0.02, ε = 0.0001 and T = 1. Aug-
menting the truncation order M beyond 5 does not im-
prove the simulation results.

Using the above algorithm for different regions of ω
and after the 7-th iteration, we have

(i) Case of ω =]0.4, 0.6[: see Figs. 1 and 2,

(ii) Case of ω =]0.6, 1[: see Figs. 3 and 4.
�

Fig. 1. Desired state zd (dashed line) and the reached state
zu7

(T ) (continuous line) in ω.

Fig. 2. Optimal control function u�(·) � u7(·).

(iii) Case of ω =]0.8, 1[: see Figs. 5 and 6.

Example 2. Let us consider the bilinear system with the
domain Ω =]0, 1[ described by the following equation:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂z

∂t
(x, t) = α

∂2z(x, t)
∂x2

+ βz(x, t) + γ̃u(t)z(x, t)
+δ(x − b)u(t) in Ω×]0, T [,

z(x, 0) = z0(x) in Ω,

z(0, t) = z(1, t) = 0 on ]0, T [.
(22)

The operator

Ã = α
∂2

∂x2
+ β

has the domain D(Ã) = {z ∈ H2(0, 1) | z(0) = z(1) =
0} and δ is the Dirac delta. Let z0(x) = 6.4x(1− x), α =
0.01, β = 0.01, γ̃ = 0.02, ε = 10−4, T = 1 and b = 0.1.

For
ω = [0.35, 0.65]
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Fig. 3. Desired state zd (dashed line) and the reached state
zu7

(T ) (continuous line) in ω.

Fig. 4. Optimal control function u�(·) � u7(·).

Fig. 5. Desired state zd (dashed line) and the reached state
zu7

(T ) (continuous line) in ω.

and

zd =

⎧
⎪⎨

⎪⎩

1.5 + 300(x− 0.3)2

×(x − 0.7)2 if x ∈ [0.35, 0.65],

0 otherwise,

Fig. 6. Optimal control function u�(.) � u7(.).

application of the above algorithm gives the results pre-
sented in Figs. 7 and 8.

5. Conclusion

A regional controllability problem for bilinear systems
was considered and an optimal control was characterized.
Under adding conditions, the uniqueness of such a control
was proved. Moreover, a numerical approach was devel-
oped based on a quadratic control problem. The obtained
results were successfully tested through numerical exam-
ples and simulations. Many questions remain still open,
e.g., the extension of the present results to a boundary sub-
region. The case of systems with time delays would also
be very interesting.
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