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A new algorithm for nonparametric wavelet estimation of Hammerstein system nonlinearity is proposed. The algorithm
works in the on-line regime (viz., past measurements are not available) and offers a convenient uniform routine for nonli-
nearity estimation at an arbitrary point and at any moment of the identification process. The pointwise convergence of the
estimate to locally bounded nonlinearities and the rate of this convergence are both established.
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1. Introduction

In the paper we present a novel nonparametric identifica-
tion algorithm based on orthogonal wavelet expansion and
recovering Hammerstein system nonlinearity in an on-line
fashion. In system identification, on-line algorithms are of
interest for several well-known reasons, e.g.,

• No need for measurements storing. The number of
measurements in nonparametric algorithms typically
exceeds thousands and keeping them in memory may
be a prohibitive overhead in some embedded system
applications.

• Recursive formulas. Usually simpler and less compu-
tationally demanding than their closed form counter-
parts, recursive formulas are favored in applications
with limited computational capabilities (and/or po-
wer constrained).

Various approaches to the problem are considered
in the literature (Rutkowski, 1980; Greblicki and Paw-
lak, 2008, Chapters 4–5). Kernel and orthogonal series se-
mirecursive algorithms were proposed by Greblicki and
Pawlak (1989) (for Hammerstein systems) and Rutkow-
ski (1980; 2004) (for memoryless nonlinear systems), re-
spectively. These algorithms are of the quotient form and
the term semirecursive is used to emphasize that both the
numerator and the denominator are computed recursive-
ly, but not the quotient itself. Fully recursive algorithms,
exploiting the stochastic approximation scheme, were in-

troduced by Greblicki (2002). The recursive order stati-
stics algorithm based on the Haar kernel was recently pro-
posed by Śliwiński and Hasiewicz (2009).

In all these algorithms, due to their kernel form, the
estimation points need to be set at the very beginning of
the identification routine. Otherwise, if the new estimation
points are to be added later in the course of the identifi-
cation experiment, then they need to be either computed
from scratch or some indirect scheme like, e.g., an inter-
polation algorithm (see, e.g., the work of Unser (1999))
should be applied.

Our wavelet algorithm is also semirecursive. Howe-
ver, in contrast to the kernel-like orthogonal series algori-
thms presented, e.g., by Rutkowski (1980; 2004), we di-
rectly exploit the series expansion formula and the main
idea of the algorithm consists in recursive estimation of
the successively incorporated wavelet orthogonal expan-
sion coefficients. The approach is inspired by the concept
of transform coding (exploited intensively in data com-
pression (Donoho et al., 1998)), where the target nonline-
arity is (globally) represented by the empirical orthogonal
series coefficients rather than (locally) by individual po-
ints. As a result, the algorithm offers the following practi-
cal benefits:

• It allows effective direct evaluation of the estima-
te values in arbitrarily selected points at any mo-
ment of the identification process. This is the ma-
in advantage over kernel on-line algorithms, where,
as has been mentioned, convenient computations can
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only be performed at (separate) preselected points
(Greblicki and Pawlak, 1989; Greblicki, 2002; Chen,
2004; Zhao and Chen, 2006).

• Wavelet bases employ only two functions, the fa-
ther and mother wavelets. This in turn is an advanta-
ge over on-line polynomial and trigonometric algori-
thms, where the number of basis polynomial func-
tions increases with the number of measurements
(Rutkowski, 1980; Greblicki and Pawlak, 1989; Gy-
örfi et al., 2002).

Moreover (Daubechies, 1992; Mallat, 1998),

• wavelet approximations offer the most parsimonious
representations for many important classes of nonli-
nearities (Donoho, 1993), which yields fast conver-
gence rates,

• multiscale (multiresolution) wavelet analysis founds
an elegant and intuitive theoretical framework for on-
line algorithms, and, finally,

• the compactness of wavelet function supports re-
duces the computation burden due to local proces-
sing of measurement data (Śliwiński and Hasie-
wicz, 2008).

The proposed type of on-line algorithm has not yet
been explored in the literature (a similar, order statistics,
algorithm used by Śliwiński et al. (2009) is also semire-
cursive and based on the estimation of the expansion co-
efficients but requires all measurements to be stored and
thus remains inapplicable in on-line conditions) and can
be seen as a direct on-line counterpart of off-line wave-
let algorithms examined, e.g., by Śliwiński and Hasiewicz
(2008) as well as Hasiewicz et al. (2005). Limit properties
of the algorithm, viz. convergence conditions and conver-
gence rates, are shown to be the same as those of off-line
algorithms, cf. the results of Greblicki and Pawlak (1986)
or Hsu et al. (2008).

m(x) { }i¸
xk yk

zk

Fig. 1. Identified Hammerstein system.

The Hammerstein system (Fig. 1), being a cascade of
a memoryless nonlinearity followed by a linear dynamics,
is a popular nonlinear system modeling tool and has al-
ready found applications in several areas, e.g., automatic
control, signal processing, economy, chemistry, and bio-
medical engineering, see the works of Coca and Billings
(2001), Chen et al. (1989), Srinivasan et al. (2005), Nord-
sjo and Zetterberg (2001), Giannakis and Serpedin (2001)
and the exhaustive reference set therein).

Example 1. An interesting application of the Hammer-
stein system in telecommunications can be found in the
work of Kang et al.(1999), where the system is used in
tandem with the Wiener one (cf. the results of Greblicki
(2001)) for the recursive identification algorithm of Wie-
ner systems) to linearize a high-power amplifier (HPA) in
the orthogonal frequency division multiplexing (OFDM)
system. Various applications in biomedical engineering,
like, e.g., in sensory systems, reflex loops, organ systems,
and tissue mechanics, are demonstrated by Westwick and
Kearney (2003, Chapters 6–8). �

2. Problem statement

Our goal is to recover on-line the Hammerstein system
nonlinearity from input-output data pairs (xk,yk), k =
1, 2, . . . , arriving and being processed sequentially in ti-
me, under the assumptions typical for nonparametric iden-
tification tasks (Greblicki and Pawlak, 1989; Hasiewicz
and Śliwiński, 2002; Lang, 1997; Mzyk, 2007; Pawlak
and Hasiewicz, 1998; Śliwiński et al., 2009):

1. The nonlinear characteristic, m (x), is an arbitrary
locally bounded function.

2. The dynamic subsystem is asymptotically stable. Its
impulse response, {λi, i = 0, 1, . . .}, is unknown.

3. The system is driven by a random i.i.d. signal,
{xk, k = . . . ,−1, 0, 1, . . .}, with a bounded proba-
bility density function f (x).

4. The external disturbance, represented in the form
{zk, k =. . . ,−1, 0, 1, . . .}, is a zero mean random
(independent of the input) noise of an arbitrary di-
stribution with a finite variance.

Note that, under the assumptions above, virtually any
nonlinearity in the Hammerstein system is admissible. For
instance, the characteristic m (x) can be differentiable or
not, continuous or piecewise-continuous with jumps (in
particular, it can be a polynomial of any order). The im-
pulse response, {λi}, can be finite or not (it can have, e.g.,
damped oscillation terms, cf. Assumption 2). Similarly,
the input xk can be of arbitrary density while the noise,
zk, of any distribution (with a variance). The latter can
also be white or correlated.

We emphasize that, due to the on-line design restric-
tions, the past measurements are not stored and only the
current measurement pair, (xk, yk), is available for pro-
cessing.

Remark 1. Under the fully nonparametric assumptions
1–4, not the genuine characteristicm (x) but a nonlineari-
ty μ (x) = λ0m (x) + ζ (where ζ = Em (x1) ·

∑
i>0 λi

is a system dependent constant) can at most be identified
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from input-output data (Greblicki and Pawlak, 1986). In-
deed, since the following holds:

E (yk |xk = x ) = λ0m (x) + Ezk + E
∑

i>0

λim (xk−i)

= λ0m (x) + ζ,

the true nonlinearitym (x) can only be recovered with ad-
ditional a priori information, e.g., the parametric know-
ledge about the subsystems (Chen, 2005; Zhao and Chen,
2006; Mzyk, 2009), or with the help of the active expe-
riment approach, viz. with a controlled input signal xk

(Chen, 2004, Remark 3). Specifically, if it is known that
m (0) = 0 (which is often the case in practice), then
ζ = μ (0), and, to eliminate this additive constant (and
to recover scaled-only version λ0m (x)), it suffices to es-
timate μ (x) − μ (0).

3. On-line algorithm

Let ϕ (x) and ψ (x) be compactly supported scaling
and wavelet functions whose dilations and transla-
tions, ϕMn (x) = 2M/2ϕ(2Mx − n) and ψmn (x) =
2m/2ψ(2mx − n) for m = M,M + 1, . . . , and n =
. . . ,−1, 0, 1, . . . , constitute an orthogonal basis of the
space of square integrable functions (Daubechies, 1992,
Chapter 6). Both ϕ (x) and ofψ (x) have the support [0, s],
for some natural s. Denote by g (x) the product μ (x) ·
f (x), and by αMn and βmn its expansion coefficients as-
sociated with basis functions ϕMn (x) and ψmn (x). Si-
milarly, by aMn and bmn, we denote the corresponding
coefficients of the input density function f (x).

The identification algorithm is comprised of two
computationally independent subroutines:

1. The estimation of expansion coefficients, and

2. The estimation of the nonlinearity.

The first subroutine is performed after each arrival
of the new measurement pair (xk, yk) and is based on
the observation that, under Assumptions 1–4, the coeffi-
cients αMn, aMn, βmn and bmn are equal to the respecti-
ve expectations (Greblicki, 1989; Hasiewicz et al., 2005):

αMn = E {ϕMn (x1) × y1} ,
aMn = E {ϕMn (x1)} , (1a)

and

βmn = E {ψmn (x1) × y1} ,
bmn = E {ψmn (x1)} , (1b)

and can be recursively estimated by the formulas proposed
below—referred further to as the empirical coefficients

(we will use a vector-like convention for conciseness of
presentation):

[
α̂

(k)
Mn

â
(k)
Mn

]

= k−1
k

[
α̂

(k−1)
Mn

â
(k−1)
Mn

]

+ 1
k

[
ϕMn(xk) · yk

ϕMn(xk)

]

︸ ︷︷ ︸
for k>0

,

(2a)

and

[
β̂

(k)

mn

b̂
(k)
mn

]

= k−1
k

[
β̂

(k−1)

mn

b̂
(k−1)
mn

]

+ 1
k

[
ψmn(xk) · yk

ψmn(xk)

]

︸ ︷︷ ︸
for k>κm

,

(2b)

where {κm} is an increasing number sequence.
At the beginning, the estimate consists of only sca-

ling function coefficients α̂(k)
Mn, â(k)

Mn. In the course of
identification, when the number of processed measure-
ments k exceeds the consecutive threshold values κm as-
sociated with the scale m, the new wavelet empirical co-

efficients, β̂
(k)

mn, b̂
(k)
mn, are successively added to the esti-

mate. Initially, all the empirical coefficients are zero (in-

active), i.e., α̂(0)
Mn = â

(0)
Mn = β̂

(0)

mn = b̂
(0)
mn = 0, for all

m = M,M + 1, . . ..
Note that a faster growth of elements of {κm} im-

plies a slower pace of the wavelet coefficients incorpora-
tion (since the coefficients are added after a larger number
of the processed measurements k) and one can expect po-
or approximation properties of the estimate. Conversely, a
slowly growing sequence admits earlier coefficients inclu-
sion and results in a larger estimate variance. A properly
balanced (and asymptotically optimal) rate of the growth
of the thresholding sequence {κm} is formally established
in Section 3.1.

Remark 2. From the asymptotic properties viewpoint
(Appendix), the initial value of M can be an arbitrary na-
tural number and in applications one can set it using the
off-line scale selection rule,M = 1

2ν+1 log2 k (Hasiewicz
et al., 2005). If, for instance, the estimation routine starts
with the first measurement pair (i.e., for k = 1), the rule
yields M = 0.

Remark 3. The wavelet coefficients, β̂
(k)

mn, b̂
(k)
mn,when ap-

pearing in the course of identification, cannot be initiali-
zed with past measurements (as they are missing in the
on-line régime) and are simply set to zero. This makes
them biased estimates (see the formula (12) in Appendix)
but simultaneously contributes to computational simplici-
ty of the algorithm (in particular, the same current value k
is used at the same time in all active empirical coefficients
calculations). Zero-initialization can also be motivated by
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the observation that wavelet coefficients decay with the
growing scale m as fast as O(2−m/2) for any nonlineari-
ties (and even faster for smoother ones, e.g., for differen-
tiable nonlinearities the vanishing rate raises to the order
O(2−3m/2) (Hasiewicz et al., 2005; Mallat, 1998, Chap-
ter 9).

The other subroutine evaluates the nonlinearity esti-
mate (Greblicki, 1989; Hasiewicz et al., 2005):

μ̂(k) (x) =
ĝ(k) (x)
f̂ (k) (x)

, (3)

where the numerator, ĝ(k) (x) , and the denominator,
f̂ (k) (x) , are respectively wavelet on-line estimates of
g (x) and f (x) comprising only an already active scaling
function and wavelet empirical coefficients:

[
ĝ(k) (x)
f̂ (k) (x)

]

=
∑

n

ϕMn (x) ·
[
α̂

(k)
Mn

â
(k)
Mn

]

︸ ︷︷ ︸
2M x−s<n<2M x

+
∑

m≥M

∑

n

ψmn (x) ·
[
β̂

(k)

mn

b̂
(k)
mn

]

︸ ︷︷ ︸
2mx−s<n<2mx

.

(4)

The algorithm subroutines are computationally in-
dependent and can be intertwined. Hence, μ̂(k) (x) can
be directly and easily evaluated from (3)–(4) at an arbi-
trary point x at any moment of identification (i.e., after
any number k of measurements processed by (2)). This
distinct property distinguishes our algorithm from kernel
on-line algorithms, where μ̂(k) (x) can effectively be es-
timated only in fixed a priori known points (Greblicki,
1989; 2002; Rutkowski, 1980).

Remark 4. Although this property comes at the cost of
keeping the empirical coefficients in memory, that cost se-
ems to be moderate: in a practical situation, where the me-
asurements are from a finite interval, the number of active
coefficients is merely of order O( 2ν+1

√
k) (Hasiewicz and

Śliwiński, 2002, Eqn. (63)), that is, even for differentia-
ble nonlinearity (viz., for ν = 1) this number is of order
O( 3

√
k), which is significantly smaller than the number of

all measurements k (that would have been stored by kernel
algorithms to offer the same functionality).

If one is interested in the estimation of nonlinearity
only at preselected points, then, for each of such points,
the stochastic approximation algorithm can be employed.
The algorithm, in the wavelet version, is of the following
form (Greblicki, 2002; Greblicki and Pawlak, 2008, Chap-
ter 5):

μ̄(k) (x) = μ̄(k−1) (x)

+ γkϑK (x, xk) ·
[
yk − μ̄(k−1) (x)

]
, (5)

where γkϑK (x, u) is a random gain, and ϑK (x, u) is the
kernel of the wavelet orthogonal series (Walter and Shen,
2001, Chapter III):

ϑK (x, u) =
∑

2Kx−s<n<2Kx

ϕKn (x)ϕKn (u) .

In view of the results presented by Greblicki (2002)
as well as Greblicki and Pawlak (2008, Chapter 4), one
can, however, expect μ̄(k) (x) to have a convergence rate
slightly worse than ours.

Furthermore, observing that the recursive formula for
α̂

(k)
Mn in (2) can be written in the equivalent form (cf. (5))

α̂
(k)
Mn = α̂

(k−1)
Mn + 1

k

[
ϕMn(xk) · yk − α̂

(k−1)
Mn

]
,

one can still consider the estimation of the expansion co-
efficients with the help of the stochastic approximation
scheme (Chen, 2004):

α̂
(k)
Mn = α̂

(k−1)
Mn + γk

[
ϕMn(xk) · yk − α̂

(k−1)
Mn

]
.

In our algorithm we have used the simple case, γk = 1/k,
mainly due to the direct correspondence to its off-line pro-
totype and because of some practical reasons as well: the
main advantage of the application of the stochastic appro-
ximation algorithm in, e.g., the works of Greblicki (2002)
or Greblicki and Pawlak (2008, Chapter 4), is that the re-
sulting algorithm has no quotient form, and—a fortiori—
there are no random variables in its denominator (see ( 5)).
The application of the stochastic approximation formula
to expansion coefficients estimation would rather not eli-
minate the quotient form of our algorithm.

3.1. Algorithm properties. Before the presentation of
the limit properties, we describe and briefly discuss some
of the algorithm features resulting from the application of
the wavelet basis:

• Compact support and local data processing: In the
first subroutine of the algorithm, the wavelet empi-

rical coefficients, β̂
(k)

mn, b̂
(k)
mn, m = M,M + 1, . . . ,

are effectively zero and remain inactive (i.e., are
not taken into account during actual computations)
until the following two conditions are simultaneously
satisfied: (i) the number of overall measurements,
kbecomes greater than the threshold value κm, corre-
sponding to their scale m and (ii) at least one of the
incoming inputs, xk, k > κm, falls in the supports
of the associated wavelet functions ψmn (x), see (2).
Similarly, the evaluation of the nonlinearity estimate,
μ̂(k) (x), for a given x, in the algorithm’s second sub-
routine involves only the non-zero coefficients who-
se supports of respective scaling functions, ϕMn (x),
and wavelets, ψmn (x), include x, see the summation
limits in (4) and the work Mallat (1998, p. 174).
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• Multiresolution (zooming) property: The scaling em-
pirical coefficients, α̂(k)

Mn, â
(k)
Mn, convey information

about a crude, initial approximation of the identi-
fied nonlinearity, while their wavelet counterparts,

β̂
(k)

mn, b̂
(k)
mn, successively created and updated with

each new measurement pair, (xk, yk), bring to the
estimate the details located at finer-and-finer resolu-
tions (scales) m = M,M + 1, . . . , see (2) and (4)
and the work of Mallat (1998, Chapter VI).

We emphasize that only a single pair of wavelet func-
tions, ϕ (x) and ψ (x) , is used in computations. This pro-
perty results in uniformed formulas (2) of empirical co-
efficients for all M , m and n, and significantly simplifies
algorithm implementation, see Remark 3.

The following theorems add to the comments above
the formal characterization of the algorithm. The first one
describes the algorithm convergence conditions.

Theorem 1. Let Assumptions 1–4 hold. For any c > 1,
the threshold sequence

{κm = 2cm,m = M,M + 1, . . .} (6)

makes the algorithm (2)–(4) converge in probability to the
nonlinearity μ (x) with the increasing number of proces-
sed measurements k. The convergence holds in all points
where g (x) and f (x) > 0 are continuous.

The next theorem shows how to select the threshold
sequence {κm} depending an the smoothness of the nonli-
nearity μ (x), the input probability density function f (x),
and the employed wavelet series

Theorem 2. Let Assumptions 1–4 hold. The threshold se-
quence selected as

{
κm = 2(2ν+1)m,m = M,M + 1, . . .

}
, (7)

i.e., for c = 2ν + 1, it yields the following rate of conver-
gence:

μ̂(k) (x) = μ (x) + O(k−ν/(2ν+1)) (8)

in probability, where ν = min {νμ, νf , p}, while νμ, νf

are the Hölder smoothness exponents of μ (x) and f (x) ,
respectively (Mallat, 1998, Chapter IX), and p is the num-
ber of vanishing moments of the mother wavelet ψ (x)
used in the algorithm.

Proof. See Appendix. �

Remark 5. In Theorem 1 we require local boundedness of
the nonlinearityμ (x). The same convergence condition as
in (6) can also be obtained when it is known that the non-
linearity (along with the input density functions) is square
integrable. On the other hand, if the νμ-th and νf -th deri-
vatives of μ (x) and f (x) are not locally bounded (as in

Theorem 2) but square integrable, then we can expect the
convergence rate of order O(k−(ν+1/2)/2ν), that is, some-
what slower (cf. the results established for similar kernel
on-line algorithms by Greblicki and Pawlak (2008, Chap-
ter 4, Table 6.1)).

Additional properties of the algorithm can further be
concluded from the theorems:

• Local smoothness and convergence rate. The conver-
gence speeds up with growing νg = min{νμ, νf},
i.e., with growing regularity of the product g (x) (as
�νg − 1� is the number of continuous derivatives of
g (x), see the work of Mallat (1998, Chapter 9)). That
is, the smoother the nonlinearity μ (x) and the input
density f (x) in the neighborhood of x, the faster the
convergence there can be.

• Vanishing moments and the asymptotically optimal
rate of convergence. For given μ (x) and f (x), the
convergence rate can be controlled by wavelets with
an adequate number of vanishing moments. For in-
stance, if νg = 3, then for Haar wavelets (with only
p = 1 vanishing moments), ν = 1, and the rate does
not exceed O(k−1/3), cf. (8). For Daubechies wave-
lets with p = 3, it reads ν = 3, and the rate incre-
ases to O(k−3/7) but does not further accelerate for
p > 3, cf. Fig. 2(b). In general, if p ≥ νg , then the
asymptotic convergence rate is optimal, i.e., the fa-
stest possible amongst all nonparametric algorithms
(Stone, 1980).

• Robustness of the rate. Neither the structure of the
dynamic subsystem nor the amplitude, distribution,
or correlation of the external disturbances influence
the convergence rate.

3.2. Experimental illustration. In order to illustrate
the properties of the proposed algorithm, two representa-
tive nonlinearities, the quantizer m (x) = �8x− 4� /4 +
1/8 and the polynomial m (x) = 10(2x3 − 3x + x),
were estimated by four algorithms based on Daubechies
wavelet families with p = 1, 2, 3 and 4 vanishing mo-
ments. The input xk was of the uniform distribution over
the unit interval and the dynamic system had the infini-
te impulse response, λi = 2−i, i = 0, 1, . . . (note that
μ (x) = m (x) with this setting, see the work of Gre-
blicki and Pawlak (1986)). The noise had the uniform di-
stribution with the amplitude set such that NSR {m/z}
Δ= maxk |zk| /maxx |m (x)| = 0.1.

The diagrams show the absolute error, |μ (x) −
μ̂(k) (x) |, cf. (8), averaged over 500 points xi = i/500,
i = 1, . . . , 500, in 100 independent runs of the experi-
ment. The diagram in Fig. 2(a) reveals that, for the qu-
antizer nonlinearity, increasing the number of vanishing
moments can decrease the performance of the algorithm
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Fig. 2. Influence of the number of vanishing moments on the
convergence rate for the quantizer (a) and polynomial
nonlinearities (b).

(which is particularly visible in the example since wave-
lets with p = 1 are Haar wavelets and they recover well
quantizer-like nonlinearities). In contrast, (see Fig. 2(b)),
for the smooth polynomial nonlinearity (for which νg >
p, any p), the growth of the number of wavelet vanishing
p moments improves the convergence rate (cf. the com-
ments following Theorem 1 in the previous section).

4. Final remarks

The algorithm introduced in the paper enables convenient
wavelet nonparametric on-line estimation of nonlineari-
ties in Hammerstein systems. The proposed estimate co-
nverges pointwise to the nonlinearity with growing num-
ber of processed measurements. The rate of convergen-
ce depends on the regularity of the identified nonlinearity
μ (x) and of the input density function f (x), and on the
wavelets applied. The rate is asymptotically optimal for
properly selected wavelet functions.

Therefore, the algorithm replicates the asymptotic
behavior of the aforementioned on-line nonparametric al-
gorithms (and hence possesses the same limit properties
as their off-line prototypes, cf. the results of Greblic-
ki and Pawlak (2008), Hasiewicz et al. (2005)), offering
additionally—practically important—advantages (collec-
ted in Table 1), cf. the works of Greblicki (1989; 2008)
and Śliwiński et al. (2007).

Observe the following (cf. the detailed discussion in
Section 3.1):

(1) Recall that because of the lack of the past measure-
ments, non-preselected estimation points have to be

Table 1. Comparison of selected properties of on-line algori-
thms.

Algorithm kernel polynomial wavelet

Effective estimation
in arbitrary x and k

±(1) + +

Local
processing

±(2) − +

Fixed set of
basis functions

±(3) − +

either computed from the very beginning or, e.g., in-
terpolated using the existing points as the interpola-
tion knots.

(2) The kernel functions without the compact support,
(e.g., Gaussian kernel) require non-local processing
of the measurements, that is, all the estimation points
are updated with the arrival of the new measurement
pair.

(3) Kernels of the orthogonal series, like, e.g., the
Dirichlet kernel of the trigonometric expansion
(Rutkowski, 1980; Györfi et al., 2002; Greblicki and
Pawlak, 2008, Appendix B.2):

Dm (x, u) =
sin
(
m+ 1

2

)
(x− u)

2π sin 1
2 (x− u)

,

depend on the parameter m (which increases during
the identification process).

Remark 6. One of the consequences of the quotient form
of the algorithm considered (and the subsequent presen-
ce of the estimates of the input signal probability densi-
ty function f (x) in its denominator, and of the product
μ (x) f (x) in the numerator cf. (4)) is that the algorithm
convergence and the convergence rate are both dependent
on the smoothness of the density function. This feature
of quotient-form algorithms is well recognized in the lite-
rature (Greblicki and Pawlak, 1985; 2008, Appendix C),
cf. Appendix for the formal analysis). Nevertheless, the-
re is a class of distribution-free quotient algorithms (inc-
luding, in particular, those based on the rectangular ker-
nel or on the Haar series kernel), whose asymptotic be-
havior is not affected by the smoothness of the density
function Györfi et al. (2002, Chapter 4.1), Greblicki and
Pawlak (2008, Chapter 3), Rutkowski (2004). Furthermo-
re, algorithms based on order statistics possess density-
independent asymptotic properties; (Śliwiński and Hasie-
wicz, 2009; Śliwiński et al., 2009; Greblicki and Paw-
lak, 2008, Chapter 7), however, they need all the measu-
rements to be stored during identification.

The algorithm can be easily adopted for the
estimation of nonlinearities in time-varying systems,
(Rutkowski, 1982; Vörös, 2005) and applied to systems
from the class of the block-oriented nonlinear dynamic
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systems, like parallel or serial-parallel, or Uryson sys-
tems (Hasiewicz and Śliwiński, 2002; Billings and Fakho-
uri, 1978; Greblicki and Pawlak, 1994).

�(�)
�� ��
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{ }��
1

...
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{ }��
	

��
	-1

Fig. 3. Hammerstein system with a distributed dynamic subsys-
tem as a model of the transmission line with the input
nonlinearity

Example 2. Consider the Hammerstein model of a
nonlinear transmission line (i.e., the one with an input
nonlinearity—see Fig. 3). Assuming that all the noises,
zr

k, r = 0, . . . , ρ, are zero-mean second order statio-
nary processes, and that all dynamic subsystems {λr

i } ,
r = 1, . . . , ρ are stable, then the system in Fig. 3 satis-
fies Assumptions 1–4 and, from the algorithmic point of
view, is equivalent to the canonical Hammerstein system
structure in Fig. 1. �
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Śliwiński, P. and Hasiewicz, Z. (2008). Computational algori-
thms for wavelet identification of nonlinearities in Ham-
merstein systems with random inputs, IEEE Transactions
on Signal Processing 56(2): 846–851.
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Śliwiński, P., Hasiewicz, Z. and Wachel, P. (2007). On-line po-
lynomial series estimates of Hammerstein system nonline-
arities, Proceedings of the 13th IEEE IFAC International
Conference on Methods and Models in Automation and Ro-
botics MMAR 2007, Szczecin, Poland.
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Appendix

Proofs of Theorems

The proof is split in two sections which correspond to the
subroutines of the proposed identification algorithm. In
the first part, the properties of the empirical coefficients
are established. In the second, they are used to prove the
convergence properties of the estimate μ̂(k) (x). In the fol-
lowing preparatory step, we will show that the fact that the
nonlinearity μ (x) is, by virtue of Assumption 1, locally
bounded and hence bounded in any finite interval, allows
examining the pointwise properties of the algorithm with
the help of the compactly supported wavelet orthogonal
expansion apparatus (cf. Section 3).

Let ΔM (x), referred further to as the influence in-
terval (Mallat, 1998, Chapter 6), contain the supports of
all wavelet series expansion functions intersecting with a
given estimation point x (the rest of wavelet expansion
functions, being zero in x, do not carry any information
about the nonlinearity in this point), cf. (4):

ΔM (x) def=
⋃

n

suppϕMn (x)

︸ ︷︷ ︸
2M x−s<n<2M x

+
⋃

m≥M

⋃

n

suppψmn (x)

︸ ︷︷ ︸
2mx−s<n<2mx

=
[
x− 2−Ms, x+ 2−Ms

]
.

Note that ΔM (x) is finite. Let now

gΔ (x) def= g (x) IΔM (x) = μ (x) f (x) IΔM (x)

denote the original function g (x) (cf. Section 3) truncated
to the interval ΔM (x) surrounding x. Clearly, gΔ (x), be-
ing bounded for any x (cf. Assumptions 1 and 3), is square
integrable and can be expanded into wavelet orthogonal
series. Since, however, gΔ (x) = g (x) in the influence in-
terval ΔM (x), we will—for notational simplicity—skip
the subscript Δ in the following derivations (keeping in
mind that, formally, g (x) is not square integrable).

Bias error. Considering the empirical coefficients, α̂(k)
Mn

and β̂
(k)

mn, of the estimate numerator, ĝ(k) (x) (the analy-

sis of the denominator, f̂ (k) (x), and its coefficients, â(k)
Mn

and b̂(k)
mn, is similar and thus omitted), it is convenient to

convert them to the closed forms, cf. (2):

α̂
(k)
Mn =

1
k

∑

0<i≤k

ϕMn (xi) · yi, (9)

β̂
(k)

mn =
1
k

∑

κm<i≤k

ψmn (xi) · yi.

Under Assumptions 1–4, for the empirical scaling coeffi-

cients, α̂(k)
Mn, we have, cf. (1),

Eα̂
(k)
Mn = E

⎡

⎣ 1
k

∑

0<i≤k

ϕMn (xi) · yi

⎤

⎦

= E [ϕMn (x1) · y1] = αmn, (10)

i.e., α̂(k)
Mn’s are unbiased estimates of the scaling coeffi-

cients αmn (cf. (1) and see also the results of Hasiewicz
et al. (2005). In turn, after noting that

Eβ̂
(k)

mn = E

⎡

⎣1
k

∑

0<i≤k

ψmn (xi) · yi

⎤

⎦

︸ ︷︷ ︸
βmn

(11)

− E

⎡

⎣1
k

∑

0<i≤κm

ψmn (xi) · yi

⎤

⎦

︸ ︷︷ ︸
κm

k
βmn

,

we find wavelet empirical coefficients, β̂
(k)

mn, being biased
estimates of the wavelet coefficients βmn. The bias error
is clearly caused by the fact that, in an on-line régime, the
past measurements {(xi, yi)}, 0 < i ≤ κm, which are
necessary for the proper initialization of the new wavelet

coefficients β̂
(k)

mn, are not available. Clearly, the bias error
equals (cf. the second term in (11))

bias β̂
(k)

mn = −κm

k
βmn. (12)

Variance. For the coefficients α̂(k)
Mn, the variance error or-

der depends only on the measurement number k and equ-
als (cf. (9) and see the work of Hasiewicz et al. (2005, pp.
438–441) for the proof of this property)

var α̂(k)
Mn = var

⎧
⎨

⎩

1
k

∑

0<i≤k

ϕMn (xi) · yi

⎫
⎬

⎭
= O

(
1
k

)

.

Passing to the coefficients β̂
(k)

mn, we observe that

var β̂
(k)

mn

= var

⎧
⎨

⎩

k − κm

k
·
⎡

⎣ 1
k − κm

∑

κm<i≤k

ψmn (xi) · yi

⎤

⎦

⎫
⎬

⎭

(13)

and hence (cf. (9))

var β̂
(k)

mn = O
(
k − κm

k
· 1
k

)

= O
(

1
k

)

, (14)
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since for a given scale m the threshold κm < k is fixed
and does not depend on k (cf. (2) and (9)).

Mean square error. In order to examine the mean-square
error of the estimate ĝ(k) (x), we begin with its standard
decomposition to the bias and the variance components

E
[
g (x) − ĝ(k) (x)

]2
= bias2 ĝ(k) (x) + var ĝ(k) (x) .

(15)
Let K be the first scale for which the current measure-
ment number k does not exceed the corresponding thre-
shold κK , i.e., let it be the smallest scale at which the wa-

velet coefficients β̂
(k)

Kn are all zero and are not yet incor-
porated into the estimate ĝ(k) (x). Also, denote by gK (x)
a wavelet approximation of the product g (x) at the scale
K . The bias error in (15) can now be expressed as (cf. (4)
and (10))

bias ĝ(k) (x) = g (x) − Eĝ(k) (x)

= [g (x) − gK (x)] + [gK (x) − Eĝ(k) (x)]

=
∑

m≥K

∑

n

ψmn (x) · βmn

︸ ︷︷ ︸
b̃ias ĝ(k)(x)

+
∑

M≤m<K

∑

n

ψmn (x) · bias β̂
(k)

mn

︸ ︷︷ ︸
bias ĝ(k)(x)

,

where b̃ias ĝ(k) (x) is the error of approximation of g (x)
by gK (x), and bias ĝ(k) (x) is the error formed by the ac-
cumulation of the bias errors of empirical the wavelet co-
efficients (translation factors, n, run as in wavelet part of
(4)).

Recalling that ψmn (x) = O(2m/2) and that
for g (x) with the Hölder smoothness index νg (=
min{νf , νm} > 0), and for wavelets with p vanishing
moments, it holds that βmn = O(2−(2ν+1)m/2), where
ν = min {νg, p}, we obtain that the former error is of
order (Hasiewicz et al., 2005; Mallat, 1998, Chapter 9)

b̃ias ĝ(k) (x) = O
⎛

⎝
∑

m≥K

2−
2ν+1

2 m · 2 m
2

⎞

⎠ = O (2−νK
)
.

(16)
For the latter we get that (see (2), (12) and cf. (10))

bias ĝ(k) (x) = −
∑

M≤m<K

∑

n

κm

k
·ψmn (x)·βmn. (17)

Finally, the variance is of order, cf. the results of Hasie-
wicz et al. (2005)

var ĝ(k) (x) = O
(

2K

k

)

. (18)

To find the bound for the bias error in (17), we ne-
ed to establish the formula for the thresholding sequen-
ce {κm}. Note, that the bounds (16) and (18) imply that
the scale K needs to grow with the increasing number
of measurement, k, and the pace of this growth should
be c−1 log2 k, for c > 1, cf., e.g., the works of Pawlak
and Hasiewicz (1998) as well as Hasiewicz et al. (2005).
The sequence {κm} which corresponds to such K’s is
κm = 2cm, cf. (6). Inserting it to (17) yields

bias ĝ(k) (x)

= O
⎛

⎝
∑

M≤m<K

2cm

k
· 2
m

2 · 2− 2ν+1
2 m

⎞

⎠

= O
(

2(c−ν)K

k

)

(19)

for c 	= ν and O (K/k) otherwise. Plugging altoge-
ther (16), (18) and (19) into (15) and applying K =
c−1 · log2 k, we obtain

E[g (x) − ĝ(k) (x)]2

= O
(
2−

2ν
c ·log2 k

)

︸ ︷︷ ︸

b̃ias
2
ĝ(k)(x)

+ O
(
k−2 · 2 2( c−ν)

c ·log2 k
)

︸ ︷︷ ︸
bias

2
ĝ(k)(x)

+ O
(
k−1 · 2 1

c ·log2 k
)

︸ ︷︷ ︸
var ĝ(k)(x)

= O
(
k−

2ν
c + k−

2ν
c + k

1−c
c

)

= O
(
k−

2ν
c + k

1−c
c

)
,

(20)

i.e., that, in particular, the first two terms, the approxi-

mation error, b̃ias
2
ĝ(k) (x) , and the additional bias error,

bias
2
ĝ(k) (x), are of the same order. Hence the convergen-

ce condition in (6), although derived solely from approxi-
mation and variance errors, remains valid after taking in-
to account the bias error. Using Lemma C.7 of Greblicki
and Pawlak (2008, Appendix C.2) ends the proof of The-
orem 1.

To prove the second theorem, it suffices now to ob-
serve that the direct optimization of (20), i.e., seeking for
such c for which both bias and variance errors will vanish
with equal orders as k grows, yields c = 2ν + 1 (see (7))
and

E[g (x) − ĝ(k) (x)]2 = O(k−2ν/(2ν+1)). (21)

Note that, for c < 2ν + 1, the variance error dominates
the bias one, and vice versa for c > 2ν + 1. When c = ν,
we have bias

2
ĝ(k) (x) = O((K/k)2) and this error—as

of smaller order than O(2K/k) for all positiveK and k—
is absorbed in (19) by the unit variance. Finally, as was
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mentioned at the beginning of the Appendix, in a similar
way one can show that for the same c = 2ν + 1 we have

E[f (x) − f̂ (k) (x)]2 = O(k−2ν/(2ν+1)). (22)

Applying Lemma C.8 of Greblicki and Pawlak (2008, Ap-
pendix C.2) to the bounds in (21) and (22) yields (8) and
ends the proof.

Received: 30 July 2009
Revised: 3 March 2010
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