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The notion of a common canonical form for a sequence of square matrices is introduced. Necessary and sufficient conditions
for the existence of a similarity transformation reducing the sequence of matrices to the common canonical form are
established. It is shown that (i) using a suitable state vector linear transformation it is possible to decompose a linear
2D system into two linear 2D subsystems such that the dynamics of the second subsystem are independent of those of the
first one, (ii) the reduced 2D system is positive if and only if the linear transformation matrix is monomial. Necessary and
sufficient conditions are established for the existence of a gain matrix such that the matrices of the closed-loop system can
be reduced to the common canonical form.
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1. Introduction

The notion of controlled and conditioned invariant sub-
spaces was introduced by Basile and Marro (1969) and it
has initiated the geometric approach to linear control sys-
tem analysis and synthesis (Basile and Marro, 1982; Ma-
labre et al., 1997; Wonham, 1979; Kaczorek, 1992). Va-
rious canonical forms for linear 1D systems have been in-
troduced and applied to solve the pole assignment pro-
blem, the observer design problem, the disturbance de-
coupling problem, etc. (Ansaklis and Michel, 1997; Ka-
ilath, 1980; Żak, 2003; Kaczorek, 1992).

The most popular models of two-dimensional (2D)
linear systems are those introduced by Roesser (1975),
Fornsini and Marchesini (1978) and Kurek (1985). The
geometric approach to 2D linear systems was introdu-
ced by Conte and Perdon (1988), Conte et al. (1991),
Kaczorek (1992), Karmanciolu and Lewis (1990; 1992).
The problem of internally and externally stabilizing con-
trolled and output-nulling subspaces for 2D Fornasini-
Marchesini models using state-feedbacks was investigated
in (Ntogramatzis, 2010).

In this paper the notion of the common canonical
form for a sequence of square matrices will be introduced,
necessary and sufficient conditions for the existence of a
similarity transformation reducing the matrices to canoni-

cal form will be established. The common canonical form
will be applied to standard and positive 2D linear systems
described by the general model.

The paper is organized as follows. In Section 2, the
notion of the common canonical form for a sequence of
square matrices is introduced, and necessary and sufficient
conditions for the existence of a similarity transformation
reducing the matrices to the canonical form are establi-
shed. The theory developed in Section 2 is applied to li-
near 2D systems in Section 3. It is shown that, using a
suitable state vector linear transformation, it is possible to
decompose a linear 2D system into two 2D linear subsys-
tems such that the dynamics of the second subsystem are
independent of those of the first one. It is also shown that
the reduced 2D system is positive if and only if the line-
ar transformation matrix is monomial. In Section 4, linear
2D systems with state-feedbacks are analyzed. Necessary
and sufficient conditions are established for the existence
of a gain matrix such that the matrices of the closed-loop
system can be reduced to the common canonical form.
Concluding remarks are given in Section 5.

In this paper the following notation will be used. The
n-dimensional real linear space will be denoted by R

n.
The set of real n × m matrices will be denoted by R

n×m

and R
n = R

n×1. The set of real n × m matrices with
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nonnegative entries will be denoted by R
n×m
+ and the set

of nonnegative integers will be denoted by Z+. The n×n
identity matrix will be denoted by In.

2. Similarity transformation of matrices to
one common canonical form

Consider a sequence of q real matrices of the same dimen-
sions:

Ai ∈ R
n×n, i = 1, 2, . . . , q. (1)

Definition 1. A linear subspace J ∈ R
n is said to be

(A1, A2, . . . , Aq)-invariant if

Aix ∈ J for every x ∈ J and i = 1, 2, . . . , q. (2)

It is well known (Wonham, 1979) that every full co-
lumn rank matrix J ∈ R

r×n can be a basis matrix for the
linear subspace J ∈ R

n if J = Im J , where Im J denotes
the image of J.

Definition 2. The matrices (1) have a common canonical
form if they can be expressed as

Āi =
[

Āi1 Āi2

0 Āi4

]
, (3)

where

Āi1 ∈ R
r×r, Āi2 ∈ R

r×(n−r),

Āi4 ∈ R
(n−r)×(n−r), i = 1, 2, . . . , q.

We shall show that the matrices (1) can be reduced to
the common canonical form (3) by the similarity transfor-
mation

Āi = TAiT
−1, T ∈ R

n×n, det(T ) �= 0. (4)

Let J ∈ R
n×r have full column rank, i.e.,

rankJ = r, r = 1, 2, . . . (r < n). (5)

Theorem 1. A set of q real matrices (1) can be reduced
to the common canonical form (3) by the similarity trans-
formation (4) if and only if there exists a full column rank
matrix J ∈ R

n×r such that

rank
[

J AiJ
]

= r for i = 1, 2, . . . , q. (6)

Proof. By the assumption (5) there exists a nonsingular
matrix T ∈ R

n×n such that

TJ =
[

Ir

0

]
. (7)

Let

Āi = TAiT
−1 =

[
Āi1 Āi2

Āi3 Āi4

]
, (8)

where

Āi1 ∈ R
r×r, Āi2 ∈ R

r×(n−r),

Āi4 ∈ R
(n−r)×(n−r), i = 1, 2, . . . , q.

We shall show that Āi3 = 0 for i = 1, 2, . . . , q if and only
if (6) holds.

Using (8), (4) and (7), we obtain

[
Āi1

Āi3

]
=

[
Āi1 Āi2

Āi3 Āi4

] [
Ir

0

]

= TAiT
−1TJ = TAiJ = TJB

=
[

Ir

0

]
B =

[
B
0

] (9)

if and only if (6) holds, since AiJ = JB, i = 1, 2, . . . , q
for some B ∈ R

r×r. �

From the proof we have the following procedure for
computation of the matrix T and the matrices in the cano-
nical form (3):

Procedure

Step 1. Find a full column rank matrix J ∈
R

n×rsatisfying the condition (6) for i = 1, 2, . . . , q.

Step 2. Using elementary column operations (Kaczorek,
2007), find a nonsingular matrix T ∈ R

n×n satisfying
(7).

Step 3. Using (8), find the canonical form of the matri-
ces (1).

Example 1. Find a matrix T and a common canonical
form for the matrices

A1 =

⎡
⎣ 1 1 0

0 2 0
0 3 1

⎤
⎦ , A2 =

⎡
⎣ 0 1 3

0 4 0
2 2 0

⎤
⎦ . (10)

Using the above procedure, we obtain the following:

Step 1. In this case we choose

J =

⎡
⎣ 1 0

0 0
0 1

⎤
⎦ , (11)

and the condition (6) is satisfied since

rank
[

J A1J
]

= rank

⎡
⎣ 1 0 1 0

0 0 0 0
0 1 0 1

⎤
⎦

= rank

⎡
⎣ 1 0

0 0
0 1

⎤
⎦ = 2
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and

rank
[

J A2J
]

= rank

⎡
⎣ 1 0 0 3

0 0 0 0
0 1 2 0

⎤
⎦

= rank

⎡
⎣ 1 0

0 0
0 1

⎤
⎦ = 2.

Step 2. It is easy to verify that the condition (7) is satisfied
for the matrix

T =

⎡
⎣ 1 0 0

0 0 1
0 1 0

⎤
⎦ . (12)

Premultiplication of J by T is equivalent to the interchan-
ge of its second and third rows.

Step 3. Using (8) and (12), we obtain

Ā1 = TA1T
−1

=

⎡
⎣ 1 0 0

0 0 1
0 1 0

⎤
⎦

⎡
⎣ 1 1 0

0 2 0
0 3 1

⎤
⎦

⎡
⎣ 1 0 0

0 0 1
0 1 0

⎤
⎦

=

⎡
⎣ 1 0 1

0 1 3
0 0 2

⎤
⎦ ,

Ā11 =
[

1 0
0 1

]
, Ā12 =

[
1
3

]
, Ā14 = [2] ,

Ā2 = TA2T
−1

=

⎡
⎣ 1 0 0

0 0 1
0 1 0

⎤
⎦

⎡
⎣ 0 1 3

0 4 0
2 2 0

⎤
⎦

⎡
⎣ 1 0 0

0 0 1
0 1 0

⎤
⎦

=

⎡
⎣ 0 3 1

2 0 2
0 0 4

⎤
⎦ ,

Ā21 =
[

0 3
2 0

]
, Ā22 =

[
1
2

]
, Ā24 = [4] .

3. Linear 2D systems

3.1. Standard 2D systems. Consider the general mo-
del of 2D linear systems,

xi+1,j+1 = A0xij + A1xi+1,j + A2xi,j+1, (13)

where i, j ∈ Z+ = {0, 1, . . .}, xi,j ∈ R
n is the state

vector and Ak ∈ R
n×n, k = 0, 1, 2 . . . .

The boundary conditions for (13) have the form

xi,0 ∈ R
n, i ∈ Z+ and x0,j ∈ R

n, j ∈ Z+. (14)

Let x̄ij ∈ R
n be a new state vector related to xij by

the equality

x̄ij =

[
x̄

(1)
ij

x̄
(2)
ij

]
= Txij , (15)

where T ∈ R
n×n is a nonsingular matrix satisfying the

relations (7) and (8).
Substitution of (15) into (13) yields[
x̄

(1)
i+1,j+1

x̄
(2)
i+1,j+1

]
=

[
Ā01 Ā02

0 Ā04

] [
x̄

(1)
ij

x̄
(2)
ij

]

+
[

Ā11 Ā12

0 Ā14

] [
x̄

(1)
i+1,j

x̄
(2)
i+1,j

]

+
[

Ā21 Ā22

0 Ā24

] [
x̄

(1)
i,j+1

x̄
(2)
i,j+1

]
.

(16)

Let J ∈ R
n×r be a basis matrix for an r-dimensional

(A1, A2, . . . , Aq)-invariant subspace:

J = Im J. (17)

Theorem 2. If the boundary conditions (14) satisfy

xi0 ∈ J , i ∈ Z+ and x0j ∈ J , j ∈ Z+, (18)

then
x̄

(2)
ij = 0 for all i, j ∈ Z+ (19a)

and
x̄

(1)
ij ∈ J for all i, j ∈ Z+. (19b)

Proof. From (7) it follows that, if boundary conditions
satisfy the condition (18), then

x̄
(2)
i0 = 0 for i ∈ Z+, (20a)

x̄
(2)
0j = 0 for j ∈ Z+. (20b)

From (16) we have

x̄
(2)
i+1,j+1 = Ā04x̄

(2)
ij + Ā14x̄

(2)
i+1,j

+ Ā24x̄
(2)
i,j+1, i, j ∈ Z+,

(21)

and, taking into account (20b), we obtain (17a).
From (16) we also have

x̄
(1)
i+1,j+1 = Ā01x̄

(1)
ij + Ā02x̄

(2)
ij

+ Ā11x̄
(1)
i+1,j + Ā12x̄

(2)
i+1,j

+ Ā21x̄
(1)
i,j+1 + Ā22x̄

(2)
i,j+1, i, j ∈ Z+.

(22)

After substitution of (17a) into (22) we obtain

x̄
(1)
i+1,j+1 = Ā01x̄

(1)
ij +Ā11x̄

(1)
i+1,j+Ā21x̄

(1)
i,j+1, i, j ∈ Z+,

and this implies (17b). �
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3.2. Positive 2D system.

Definition 3. (Kaczorek, 2001) The 2D linear system (13)
is called positive if xi,j ∈ R

n
+ for i, j ∈ Z+ for all boun-

dary conditions,

xi,0 ∈ R
n
+, i ∈ Z+, x0,j ∈ R

n
+, j ∈ Z+. (23)

Theorem 3. (Kaczorek, 2001) The 2D linear system (13)
is positive if and only if

Ak ∈ R
n×n
+ , k = 0, 1, 2. (24)

A matrix A ∈ R
n×n is called monomial if in each of its

rows and in each of its columns only one entry is positive
and the remaining entries are zero.

Theorem 4. Let the linear 2D system (13) be positive.
The reduced 2D system (16) is positive if and only if the
transformation matrix T ∈ R

n×n
+ is monomial.

Proof. It is well known (Kaczorek, 2001) that the inverse
matrix A−1 ∈ R

n×n
+ if and only if A is a monomial matrix.

From (15) we have x̄i0 = Txi0 ∈ R
n
+, i ∈ Z+ and x̄0j =

Tx0j ∈ R
n
+, j ∈ Z+ for any boundary conditions (23) if

and only if the matrix T is a monomial one.
Similarly, from (8) we have Āi ∈ R

n×n
+ for i =

0, 1, 2 if and only if T is a monomial matrix. �

Example 2. Consider the 2D system (13) with the matri-
ces (10) and

A0 =

⎡
⎣ 2 0 3

0 1 0
0 2 0

⎤
⎦ . (25)

The 2D system (13) with (10) and (25) is positive since by
Theorem 3 its matrices have nonnegative entries.

For the matrix (11) and (25) we obtain

rank
[

J A0J
]

= rank

⎡
⎣ 1 0 2 3

0 0 0 0
0 1 0 0

⎤
⎦

= rank

⎡
⎣ 1 0

0 0
0 1

⎤
⎦ = 2,

and the transformation matrix T is monomial and has the
form (12).

Using (8) and (25) we obtain

Ā0 = TA0T
−1

=

⎡
⎣ 1 0 0

0 0 1
0 1 0

⎤
⎦

⎡
⎣ 2 0 3

0 1 0
0 2 0

⎤
⎦

⎡
⎣ 1 0 0

0 0 1
0 1 0

⎤
⎦

=

⎡
⎣ 2 3 0

0 0 2
0 0 1

⎤
⎦ ,

Ā01 =
[

2 3
0 0

]
, Ā02 =

[
0
2

]
, Ā04 = [1] .

The reduced 2D system has the form

[
x̄

(1)
i+1,j+1

x̄
(2)
i+1,j+1

]
=

⎡
⎣ 2 3 0

0 0 2
0 0 1

⎤
⎦

[
x̄

(1)
ij

x̄
(2)
ij

]

+

⎡
⎣ 1 0 1

0 1 3
0 0 2

⎤
⎦

[
x̄

(1)
i+1,j

x̄
(2)
i+1,j

]

+

⎡
⎣ 0 3 1

2 0 2
0 0 4

⎤
⎦

[
x̄

(1)
i,j+1

x̄
(2)
i,j+1

]
,

and it is a positive 2D system.
These deliberations can be extended to linear 2D

systems with delays as well as 1D discrete-time and
continuous-time linear systems with delays.

4. Linear 2D systems with state-feedbacks

Consider the linear 2D system

xi+1,j+1 = A0xij + A1xi+1,j + A2xi,j+1 + Buij ,

i, j ∈ Z+, (26)

subject to the boundary conditions (14), where xi,j ∈
R

n, ui,j ∈ R
m are respectively the state and input vec-

tors, Ak ∈ R
n×n, k = 0, 1, 2, B ∈ R

n×m.
Let us assume that for a given matrix J ∈ R

n×r the
condition

rank
[

J AiJ
]

= rankJ = r (27)

is not satisfied for i = 0 but it is satisfied for i = 1, 2.
We are looking for a gain matrix K ∈ R

n×n of the
state feedback

uij = Kxij (28)

such that the closed-loop system

xi+1,j+1 = (A0+B0K)xij +A1xi+1,j +A2xi,j+1 (29)

satisfies the condition

rank
[

J (A0 + BK)J
]

= r. (30)

Theorem 5. Let the matrix Â0 satisfy the condition

rank
[

J Â0J
]

= rankJ, Â0 = A0 + BK. (31)

There exists a gain matrix K such that (30) is met if
and only if

rankB = rank
[

B Â0 − A0

]
. (32)
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Proof. If the condition (31) is satisfied, then by the
Kronecker-Capelly theorem, the equation

BK = Â0 − A0, (33)

has a solution K if and only if (32) holds. �

Example 3. Consider the 2D system (26) with the matri-
ces (10) and

A0 =

⎡
⎣ 1 0 2

2 1 1
1 3 2

⎤
⎦ , B =

⎡
⎣ 0 0

1 0
0 2

⎤
⎦ . (34)

In this case, for the matrix (11) the condition (6) is
satisfied for i = 1, 2, but it is not satisfied for i = 0 since

rank
[

J A0J
]

= rank

⎡
⎣ 1 0 1 2

0 0 2 1
0 1 1 3

⎤
⎦ = 3.

(35)

Let

Â0 =

⎡
⎣ 1 0 2

0 1 0
0 3 0

⎤
⎦ . (36)

In this case the condition (32) is satisfied since

rankB = rank

⎡
⎣ 0 0

1 0
0 2

⎤
⎦ = rank

[
B Â0 − A0

]

= rank

⎡
⎣ 0 0 0 0 0

1 0 −2 0 −1
0 2 −1 0 −2

⎤
⎦ = 2

(37)

and the solution K of the equation

⎡
⎣ 0 0

1 0
0 2

⎤
⎦K = −

⎡
⎣ 0 0 0

2 0 1
1 0 2

⎤
⎦ (38)

is

K = −
[

2 0 1
0.5 0 1

]
.

The matrix (36) satisfies the condition (31) since

rank
[

J Â0J
]

= rank

⎡
⎣ 1 0 1 2

0 0 0 0
0 1 0 0

⎤
⎦ = 2.

Using (8) and (36), we obtain

Ã0 = T Â0T
−1

=

⎡
⎣ 1 0 0

0 0 1
0 1 0

⎤
⎦

⎡
⎣ 1 0 2

0 1 0
0 3 0

⎤
⎦

⎡
⎣ 1 0 0

0 0 1
0 1 0

⎤
⎦

=

⎡
⎣ 1 2 0

0 0 3
0 0 1

⎤
⎦ ,

Ã01 =
[

1 2
0 0

]
, Ã02 =

[
0
3

]
, Ã04 = [1] .

(39)

Hence, the reduced closed-loop system has the form

[
x̄

(1)
i+1,j+1

x̄
(2)
i+1,j+1

]
=

⎡
⎣ 1 2 0

0 0 3
0 0 1

⎤
⎦

[
x̄

(1)
ij

x̄
(2)
ij

]

+

⎡
⎣ 1 0 1

0 1 3
0 0 2

⎤
⎦

[
x̄

(1)
i+1,j

x̄
(2)
i+1,j

]

+

⎡
⎣ 0 3 1

2 0 2
0 0 4

⎤
⎦

[
x̄

(1)
i,j+1

x̄
(2)
i,j+1

]
.

(40)

In a similar way, these deliberations can be easily
extended to linear 2D systems described by the general
model

xi+1,j+1 = A0xij + A1xi+1,j + A2xi,j+1

+ B0uij + B1ui+1,j

+ B2ui,j+1, i, j ∈ Z+

(41)

with state-feedback, where xij ∈ R
n and uij ∈ R

m are
respectively the state and input vectors and Ak ∈ R

n×n

for k = 0, 1, 2.

5. Concluding remarks

The notion of the common canonical form (3) for the se-
quence of q real square matrices (1) was introduced. Ne-
cessary and sufficient conditions for the existence of the
similarity transformation (4) reducing the matrices to the
canonical form (3) were established (Theorem 1). A pro-
cedure for computation of the matrix T of the similarity
transformation and of the common canonical form of the
matrices (1) was proposed. Using the procedure and a li-
near state vector transformation, it was shown that a linear
2D system can be decomposed into two linear 2D subsys-
tems. The dynamics of the second subsystem are indepen-
dent of those of the first one. If the boundary conditions
satisfy the assumption (18), then the state vector of the se-
cond subsystem is zero (Theorem 2). It was shown that
the reduced 2D system (16) is positive if and only if the
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transformation matrix T is monomial (Theorem 4). Ne-
cessary and sufficient conditions were established for the
existence of a gain matrix K such that the matrices of the
closed-loop 2D linear system can be reduced to the com-
mon canonical form. The common canonical form can al-
so be applied to the stability analysis and stabilization of
linear 1D and 2D systems. The discussion can be extended
to linear 1D and 2D systems with delays.

Acknowledgment

The paper has been supported by the Ministry of Scien-
ce and Higher Education in Poland under the work
no. S/WE/1/06.

References
Ansaklis, P.J. and Michel, N. (1997). Linear Systems, McGrow-

Hill, New York, NY.

Basile, G. and Marro, G. (1969). Controlled and conditioned in-
variant subspaces in linear system theory, Journal of Opti-
mization Theory and Applications 3(5): 306–315.

Basile, G. and Marro, G. (1982). Self-bounded controlled inva-
riant subspaces: A straightforward approach to constrained
controllability, Journal of Optimization Theory and Appli-
cations 38(1): 71–81.

Conte, G. and Perdon, A. (1988). A geometric approach to the
theory of 2-D systems, IEEE Transactions on Automatics
Control AC-33(10): 946–950.

Conte, G., Perdon, A. and Kaczorek, T. (1991). Geometric me-
thods in the theory of singular 2D linear systems, Kyberne-
tika 27(3): 262–270.

Fornasini, E. and Marchesini, G. (1978). Doubly-indexed dyna-
mical systems: State-space models and structural properties,
Mathematical System Theory 12: 59–72.

Kaczorek, T. (1992). Linear Control Systems, Vol. 2, Wiley, New
York, NY.

Kaczorek, T. (2001). Positive 1D and 2D Systems, Springer-
Verlag, London.

Kaczorek, T. (2007). Polynomial and Rational Matrices. Ap-
plications in Dynamical Systems Theory, Springer-Verlag,
London.

Kailath, T. (1980). Linear Systems, Prentice Hall, Englewood
Cliffs, NJ.

Karmanciolu, A. and Lewis, F.L. (1990). A geometric approach
to 2-D implicit systems, Proceedings of the 29th Conference
on Decision and Control, Honolulu, HI, USA.

Karmanciolu, A. and Lewis, F.L. (1992). Geometric theory for
the singular Roesser model, IEEE Transactions on Automa-
tics Control AC-37(6): 801–806.

Kurek, J. (1985). The general state-space model for a two-
dimensional linear digital systems, IEEE Transactions on
Automatics Control AC-30(6): 600–602.

Malabre, M., Martínez-García, J. and Del-Muro-Cuéllar, B.
(1997). On the fixed poles for disturbance rejection, Auto-
matica 33(6): 1209-1211.

Ntogramatzis, L. (2010). A geometric theory for 2-D systems,
Multidimensional Systems and Signal Processing, (submit-
ted).

Roesser, R.P. (1975). A discrete state-space model for linear
image processing, IEEE Transactions on Automatic Control
AC-20(1): 1–10.

Wonham, W.M. (1979). Linear Multivariable Control: A Geo-
metric Approach, Springer, New York, NY.
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