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The aim of the paper is to examine the wavelet-Galerkin method for the solution of filtering equations. We use a wavelet
biorthogonal basis with compact support for approximations of the solution. Then we compute the Zakai equation for our
filtering problem and consider the implicit Euler scheme in time and the Galerkin scheme in space for the solution of the
Zakai equation. We give theorems on convergence and its rate. The method is numerically much more efficient than the
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1. Introduction

The Zakai equation describes the evolution of unnormal-
ized conditional density which solves the problem of non-
linear filtering of diffusion processes. It is a linear stochas-
tic parabolic partial differential equation. The approxima-
tion of solutions to the Zakai equation is a very impor-
tant problem for practical applications. The Zakai equa-
tion in the form which we use is given, e.g., in the pa-
pers (Pardoux, 1991; Kurtz and Ocone, 1988; Yau and
Yau, 2000; 2008) and in the book (Liptser and Shiryaev,
1977). The conditions for the existence and uniqueness of
the solution to the Zakai equation are given in (Pardoux,
1991). We refer also to the paper (Rozovskiı̆, 1991) for
existence and uniqueness theorems of the Zakai equation.

There are a lot of methods of constructing approxi-
mations of the Zakai equation: splitting up method (Elliott
and Glowinski, 1989), decomposition into Wiener inte-
grals (Crisan et al., 1998), discrete time approximations
(Bennaton, 1985), some generalizations in Hilbert spaces
(Germani and Picconi, 1984). There are also some mod-
ifications of the Galerkin method and various bases are

used, e.g., the Gaussian series basis, in the paper (Ahmed
and Radaideh, 1997). The approximation of the Zakai
equation in a nonlinear filtering problem with delay was
considered in the paper (Twardowska et al., 2003).

The Euler and Milshtein schemes for time discretiza-
tion and the Galerkin scheme with the Hermite basis
were given in (Itô, 1996). Some characterizations of
the stochastic Euler and Milshtein schemes can be found
in the book (Kloeden and Platen, 1992), while time
and space approximations of parabolic partial differential
equations in (Thomée, 1997).

In this paper we give a modification of the classi-
cal Galerkin method using a biorthogonal wavelet ba-
sis with compact support. Wavelets are used to trans-
form the problem into an equivalent one which is well-
posed in the space l2. The construction of such a basis
can be found in the books (Bramble et al., 2003; Cohen,
2003; Daubechies, 1992; Wojtaszczyk, 1997) and in the
papers (Dahmen, 1997; Cohen et al., 1992; Wang, 2002).
The main advantage of wavelet methods is better effi-
ciency of numerical calculations (see Section 5). The
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Lévy-Ciesielski representation (Ciesielski, 1961; McK-
ean, 1969) of the Wiener process is used in the paper.

It is known that the wavelet basis improves the con-
dition number of a problem but the convergence rate is not
changed.

Indeed, the Galerkin discretization in finite element
spaces is ill conditioned in the sense that its condition
number grows like 1/h2s, where h is the mesh size and
s is the order of the corresponding Sobolev space, i.e., 2s
is the order of the operator (see (Cohen, 2003)). But the
stiffness matrix relative to the wavelet hierarchical basis is
even diagonal and a simple diagonal scaling would yield
uniformly bounded condition numbers independent of the
mesh size h (see (Bramble et al., 2003)).

In our paper we show how to use the wavelet basis in
the nonlinear filtering problem and we compute the con-
vergence rate. Therefore, we can conclude that the con-
dition number of our problem is better than in a classical
basis, but the convergence rate is not improved.

There are many papers in which the condition num-
ber is computed when a wavelet basis is used. The prob-
lem is well conditioned if the condition number is small
so it does not depend on the mesh size. This is done by
preconditioning in wavelet methods.

For example, in the paper (Beuchler et al., 2004), the
mass and stiffness matrices in a wavelet basis are built.
Then the matrices that can be used as preconditioners are
introduced. Estimates for the condition numbers of such
matrices are built in some degenerate elliptic problems
and parabolic problems from finance. Some examples of
preconditioning matrices are considered.

Further, in the paper (Hilbert et al., 2004), the authors
introduce the pricing problem in terms of parabolic partial
differential equations. They show how one can construct
optimal diagonal preconditioners based on wavelet norm
equivalences.

Finally, (Yserentant, 1990) shows that the spectral
condition numbers for a discretized second order elliptic
boundary problem should remain bounded independently
of the gridsize. There are two preconditioners that meet
these requirements especially well. Both preconditioners
utilize a multi-level structure. The condition number esti-
mates are computed.

In Section 2 we derive the Zakai equation for our fil-
tering problem, and in Section 3 we give the variational
formulation for it. We describe our wavelet basis in Sec-
tion 4. Section 5 is devoted to the wavelet formulation of
the problem and the discussion of the condition number.
Namely, we give an equivalent formulation in the wavelet
coordinates for our original variational problem arising
from the filtering equations and next from the Zakai equa-
tion. The transformed problem can be arranged to be well-
posed due to the norm equivalences introduced by the
wavelet basis and the compression of the operator matrix
in the variational formulation, see (Dahmen and Schnei-

der, 1999; von Petersdorff and Schwab, 1996; 2003). This
allows us to obtain convergent iterative schemes for the
infinite-dimensional problem over the space l2. Finally, in
Section 6 we discuss convergence and its rate.

2. Nonlinear filtering problem and
the Zakai equation

Let (Ω,F , (Ft)t≥0, P ) be a probability space with a usual
filtration Ft. Denote by

b : R
d → R

d, g : R
d → R

d×d, f : R
d → R

p

some bounded and Lipschitz functions. Let σ =
(σαβ)α,β=1,...,p be a nonsingular matrix of constants. We
consider the following system of Itô equations:

dX(t) = b(X(t), Y (t)) dt+ g(X(t)) dW (t),
X(0) = X0, t ≥ 0, (1)

dY (t) = f(X(t)) dt+ σ dV (t),
Y (0) = 0, t ≥ 0, (2)

where the state X(t) ∈ R
d is the unobserved process to

be estimated and Y (t) ∈ R
p is the observation process.

Moreover, (W,V ) are Ft-adapted, R
d × R

p-valued inde-
pendent Wiener processes with covariances I . Further-
more, X0 is an F0-measurable vector, independent of the
Wiener processes W and V .

Let us write

dY (t) =
dY (t)
σ

= σ−1f(X(t)) dt+ dV (t). (3)

Further, let Cb = Cb(Rd,R) be the space of continuous
bounded functions on R

d with values in R and C1
b =

C1
b (R

d,R), C2
b = C2

b (R
d,R) be the spaces of continu-

ous bounded functions with continuous first and second
derivatives, respectively.

LetL2(Rd) be the Hilbert space, with the inner prod-
uct

(u, v) =
∫

Rd

u(x)v(x) dx,

and let H1(Rd) denote the Sobolev space

{
u ∈ L2(Rd) :

∂u

∂xi
∈ L2(Rd), i = 1, . . . , d

}

with the norm

‖u‖H1(Rd) =
(
‖u‖2

L2(Rd) +
d∑
i=1

∥∥∥ ∂u
∂xi

∥∥∥2

L2(Rd)

)1/2

.

Set H = L2(Rd), V = H1(Rd) and V ∗ = H−1(Rd) as
the dual space of V . Moreover, H∗ is identified with H .
Thus

V ⊂ H = H∗ ⊂ V ∗.
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We denote the dual product of V × V ∗ by 〈·, ·〉.
Let φ be any C2

b function. Our problem is to esti-
mate φ(X(t)) when the history of Y up to time t is given.
Define

E{φ(X(t)) | FY
t } =

∫
Rd φ(x)u(t, x) dx∫

Rd u(t, x) dx
,

whereFY
t is the σ-field generated by Y (s) for s ≤ t, com-

plete with respect to the measure P and u(t) = u(t, x)
(the unnnormalized conditional probability).

Proposition 1. (McKean, 1969; Rozovskiĭ, 1991) . Under
the assumptions that the coefficients in the system (1), (3)
are bounded and measurable, the function u(t) is the solu-
tion to the following so-called Zakai equation associated
with (1), (3):

du(t) + L̃(Y )u(t) dt = B̃u(t) dY (t),

u(0) = u0 ∈ L2(Rd) (4)

for all t ∈ [0, T ], where on the space L2(Rd) the linear
operators L̃(Y ) and B̃ are defined as follows for x =
(x1, . . . , xd):

L̃(Y )φ(x) = −
d∑

i,l=1

ail(x)
∂2

∂xi∂xl
φ(x)

−
d∑
i=1

bi(x)
∂

∂xi
φ(x), (5)

B̃φ(x) = σ−1f(x)φ(x), (6)

with ail = (1
2gg

∗)i,l=1,...,d, where ∗ denotes the transpose
matrix. Therefore, we do not need any boundary condi-
tions.

For the existence and uniqueness of solutions of
Eqn. (4) and their regularity properties, we need the fol-
lowing lemma.

Lemma 1. (Ahmed and Radaideh, 1997; Elliott and
Glowinski, 1989; Pardoux, 1991) Suppose that

(i) bi ∈ Cb, i = 1, . . . , d, (gg∗)il ∈ C1
b , i, l = 1, . . . , d,

and there exists α > 0 such that

((gg∗)ξ, ξ) ≥ α‖ξ‖2 (7)

for all ξ ∈ R
d.

Then (L̃(Y ))∗ ∈ L(V, V ∗), and there exist some
constant ρ ≥ 0 such that the coercivity condition

α‖φ‖2
V + 〈(L̃(Y ))∗φ, φ〉 ≤ ρ‖φ‖2

H (8)

is satisfied for all φ ∈ V and uniformly in Y . Moreover,
there exist some positive constants β and γ such that

〈L̃(Y )φ, φ〉 +
1
2
‖B̃φ‖2

H + β‖φ‖2
H ≥ 1

2
γ‖φ‖2

V (9)

for all φ ∈ V and uniformly in Y .

Proposition 2. see (Ahmed and Radaideh, 1997; Pardoux,
1991) Suppose that the assumptions of Lemma 1 hold and

(ii) there exists a positive constant K such that

‖B̃u‖2
L2(Rd,Rp) ≤ K‖u‖2

H. (10)

Then there exists a unique solution u to the Zakai
equation (4) and u ∈ L∞(0, T ;H) ∩ L2(0, T ;H1), u ∈
C(0, T ;H), P -almost surely.

3. Variational formulation

The spatial domain for the solution of the Zakai equa-
tion (4) is the whole space R

d. Computationally, it is im-
possible to consider such an unbounded domain. Since
the initial density u0 is approximately supported on a
bounded subset of R

d, the solution to the Zakai equation
can also be considered possibly on another bounded (with
the Lipschitz regular boundary) sufficiently large subset,
e.g., U ⊂ R

d, where a significant part of the probability
mass is concentrated. Therefore, we shall restrict the com-
putations to the subset U (Ahmed and Radaideh, 1997; El-
liott and Glowinski, 1989).

To create the variational form of Eqn. (4), we take the
inner product of (4) by a function v ∈ H1

0 (U), U ⊂ R
d.

We also write

[u(t)](x) = u(t, x), 0 ≤ t ≤ 1, x ∈ U .

Thus we get

( ∂
∂t
u(t), v

)
+

≈
B [u, v, t] =

(
B̃u(t)

dY (t)
dt

, v
)

(11)

or

( ∂
∂t
u(t), v

)
+

≈
B [u, v, t] =

(
σ−1f(X(t))u(t)

dY (t)
dt

, v
)

with the appropriate initial condition, where

≈
B [u, v, t] = (L̃u(x), v(x)). (12)

We also put l̃ : V × V → R for

l̃(u, v) = 〈L̃u, v〉V ∗×V , u, v ∈ V. (13)

Moreover, we shall need on V an equivalent energy norm
defined by

‖u‖l̃ = (l̃(u, u))1/2 ∼ ‖u‖V . (14)

On ∂U we impose the zero boundary condition. Integrat-
ing by parts and taking into account the functions vanish-
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ing on ∂U , using (12) we get

≈
B [u, v, t] =

∫
U
L̃(Y )u(x)v(x) dx

=
∫
U

[
−

d∑
i,l=1

ail
∂2

∂xi∂xl
u(x)

−
d∑
i=1

bi
∂

∂xi
u(x)

]
v(x) dx

=
∫
U

[ d∑
i,l=1

ail
∂

∂xi
u(x)

∂

∂xl
v(x)

−
d∑
i=1

bi
∂

∂xi
u(x)v(x)

]
dx.

(15)

More precisely, from (11) we obtain

∫
U

∂u(t)
∂t

(x)v(x) dx +
≈
B [u, v, t]

=
∫
U
σ−1f(x)u(x)

dY (t)
dt

v(x) dx.

Now, let {es(x)} denote an orthogonal basis of
H1

0 (U). For fixed n we define

un(t, x) =
n∑
s=1

αns (t)es(x), (16)

so (u′n, es) = (∂un(t)/∂t, es) = (αns (t))′. Further, we
take v(x) = es(x) in (11) and get

(u′n, es)−
≈
B [un, es, t]−

(
B̃un(t)

dY (t)
dt

, es

)
= 0. (17)

Notice that

≈
B [un, es, t] =

≈
B

[ n∑
h=1

αnh(t)eh(x), es, t
]

=
n∑
h=1

αnh(t)
≈
B [eh, es, t]. (18)

So we obtain a system of ordinary differential equations

(αns (t))′ −
n∑
h=1

αns (t)
≈
B [eh, es, t]

−
(
B̃un(t)

dY (t)
dt

, es

)
= 0, s = 1, . . . , n (19)

for unknown functions αns (t), and with the initial condi-
tion

n∑
s=1

αns (0)es(x) = un(0, x). (20)

It is obvious that there exists a unique absolutely con-
tinuous solution αn(t) = (αn1 (t), . . . , αnn(t)) to the sys-
tem (19), (20). However, the performance of the iterative
scheme depends on the condition number of the system
(Bramble et al., 2003; Dahmen, 1997) which is the quo-
tient of the maximal and minimal eigenvalues of the sys-
tem matrix. In practice, one would not apply an iterative
scheme to the solution of the above system—it is too com-
plicated.

In the next section we propose a set of basis wavelet
functions to get the solution of the Zakai equation by the
wavelet-Galerkin method.

4. Wavelet basis

The definitions are taken from the books (Bramble et al.,
2003; Cohen, 2003; Daubechies, 1992; Wang, 2002) and
from the paper (Dahmen, 1997). Our goal is to create
a biorthogonal wavelet basis.

In the paper, we further assume that d = 1 and we
take as the scaling function the so-called “tent” function
(Dahmen, 1997):

ϕ(x) =

⎧⎪⎨
⎪⎩

1 + x, −1 ≤ x ≤ 0,
1 − x, 0 ≤ x ≤ 1,
0, otherwise.

(21)

The simplest choice of the so-called trial spaces Vj are the
spaces of the scaled tent functions

ϕj,k(x) = 2j/2ϕ(2jx− k), k = 0, 1, . . . , 2j. (22)

We choose ϕj,k(x) as basis functions for the trial spaces
Vj . They form a Riesz basis relative to the standard inner
product in H .

Further (Dahmen, 1997, pp. 62–63), since

ϕ(x) =
1
2
ϕ(2x+ 1) + ϕ(2x) +

1
2
ϕ(2x− 1), (23)

that is,

ϕj,k =
1

2
√

2
ϕj+1,2k−1 +

1√
2
ϕj+1,2k +

1
2
√

2
ϕj+1,2k+1,

(24)
Vj are nested and their union is dense in L2([0, 1]). Let
(Cohen, 2003, pp. 11–12)

ψ(x) = ϕ(2x− 1), ψj,k(x) = 2j/2ψ(2jx− k),

j = 1, 2, . . . , k = 0, 1, . . . , 2j − 1. (25)

In order to successively update from coarser grids,
we consider the hierarchical decomposition of Vj . Let

Pjf =
2j∑
k=0

2−j/2f(2−jk)ϕj,k. (26)
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Then Pjf is the projection of f onto Vj and the comple-
ments

Wj = (Pj+1 − Pj)Vj+1 (27)

are spanned by the tent functions on new grid points on
the next higher scale

Ψj = {ψj,k = ϕj+1,2k+1 : k = 0, 1, . . . , 2j − 1}.
(28)

The resulting multilevel basis has become known as the
wavelet basis.

Further, let

cjk = (f, ϕj,k), djk = (f, ψj,k) (29)

for any function f from a normed space be the scaling
function coefficients and the wavelet coefficients, respec-
tively.

The wavelet basis ψj,k gives the advantage that the
elements of Vj , for each j, have two equivalent represen-
tations, namely, in the scaling as well as wavelet coeffi-
cients (29).

Now let us denote the dilation by j operator and
the translation by k operator by Dj and T k, respectively.
Thus

(Djf)(x) = 2j/2f(2jx), (T kf)(x) = f(x− k),
(30)

for any function f and j ∈ Z, k ∈ R. They are the uni-
tary operators so we can write the adjoint operators corre-
sponding to them on the other side of the inner product.

It is obvious thatψj,k = DjT kψ. Moreover, we have
(Wojtaszczyk, 1997, §2.1; Dai and Larson, 1998, §3)

(ψj,k, ψj′,k′) = (DjT kψ,Dj′T k
′
ψ)

= ((Dj′−jT − 2j
′−jk + k′)ψ, ψ),

(31)

so

(ψj,k(x), ψj′ ,k′(x))

= (2(j′−j)/2ψ(2j
′−jx− 2j

′−jk + k′), ψ(x))
(32)

for j, j′ = 1, 2, . . . , j ≤ j′ and k = 0, 1, . . . , 2j − 1,

k′ = 0, 1, . . . , 2j
′ − 1.

From (31) and (32) we have, for example,

(ψ1,1(x), ψ2,2(x))

= (DTψ(x), D2T 2ψ(x)) = (21/2ψ(2x), ψ(x)).

Remark 1. If we construct the wavelets using the tent
function (21) and we build the matrix, denoted here by
M, we get what follows:

(i) For the same level of D, that is, for j = j′, the three
wavelets overlap (we can see this from the property
(23)), so M is three-diagonal.

(ii) For j′ = j − 1, five wavelets overlap so M is five-
diagonal.

(iii) For general j and j′, we have 2j−j
′
+ 1 diagonals.

Moreover, see (Bramble et al., 2003, p. 38), we have

d
dx
ψj,k(x) =

d
dx
ϕj+1,2k+1(x) = 2j+

3
2ψHj,k(x), (33)

denoting by ψHj,k the Haar wavelets for the sake of distinc-
tion here.

Let us notice that the Haar wavelets have ϕ(x) =
χ[0,1] (the indicator function) as the scaling function (see
(Bramble et al., 2003, pp. 32–33)) and they satisfy the
condition (Bramble et al., 2003, p. 59)

(ψHj,k, ψ
H
j′,k′) = δj,j′δk,k′ . (34)

Therefore, from (34) we get the following (Bramble
et al., 2003, p. 63)

( d
dx
ψj,k,

d
dx
ψj′,k′

)

= 2j+j
′+3(ψHj,k, ψ

H
j′,k′) = 2j+j

′+3δj,j′δk,k′ . (35)

It is known that the Haar functions form a complete
orthonormal basis in L2[0, 1].

Further (see (Dahmen, 1997, p. 80)), every ϕj,k has
the following expansion for Δj = {0, . . . , 2j} :

ϕj,k =
∑

l∈Δj+1

mj
l,kϕj+1,l,

where mj
k = {mj

l,k}l∈Δj+1 ∈ l2(Δj+1) is the mask or
filter sequence. We can write it in the matrix notation as

ΦTj = ΦTj+1Mj,0

and call it the refinement relation, where Mj,0 is the re-
finement matrix. For the tent function it is the (2j+1 −
1) × (2j − 1) matrix Mj,0 below. Now we look for col-
lections (Dahmen, 1997, p. 82)

Ψj = {ψj,k : k = 0, 1, . . . , 2j − 1} ⊂Wj

for every j = 1, 2, . . . which spans Wj , and Ψ being a
union of such collections. This implies that there exists a
matrix Mj,1 such that

ΨT
j = ΦTj+1Mj,1.

For the tent function it is the (2j+1 − 1)× 2j matrix Mj,1
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below. The announced matrices are

Mj,0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
√

2
0 0 0 . . .

1√
2

0 0 0 . . .
1

2
√

2
1

2
√

2
0 0 . . .

0 1√
2

0 . . .

0 1
2
√

2
1

2
√

2
0 . . .

0 0 . . .
. . . . . . . . . . . . . . . . . .

1
2
√

2
0

1
2
√

2
1

2
√

2

0 . . . 0 1√
2

0 . . . 0 1
2
√

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Mj,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 0 0
0 1 0
...

...
...

...
0 1 0
0 0 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now we shall recall the Lévy-Ciesielski represen-
tation of the Wiener process (Ciesielski, 1961; McK-
ean, 1969) and apply it to the description of the Wiener
process V (t) in (3).

Let us define the Haar functions for k ≥ 1, odd j <
2k and t ∈ [0, 1] :

h0(t) = 1, hjk(t) =

⎧⎪⎨
⎪⎩

√
2j−1, t ∈ [

k−1
2j ,

k
2j

)
,

−
√

2j−1, t ∈ [
k
2j ,

k+1
2j ),

0, elsewhere.
(36)

Definition 1. The Schauder functions {H0, Hjk} are in-
tegrals of the Haar functions hjk, that is,

Hjk(t) =
∫ t

0

hjk(s) ds.

Thus they are of the form

H0(t) = t,

Hjk(t) =

⎧⎪⎨
⎪⎩

√
2j−1

[
t− k−1

2j

]
, t ∈ [

k−1
2j ,

k
2j

)
,√

2j−1
[
k+1
2j − t

]
, t ∈ [

k
2j ,

k+1
2j

)
,

0, elsewhere.

(37)

The Schauder functions are little hats or tents of height√
2j+1.

Theorem 1. (Ciesielski, 1961; McKean, 1969). Let us
define W̃n(t) as

W̃n(t) = X0(ω)H0(t) +
n∑
j=1

2j−1∑
k=1

XjkHjk(t), (38)

where {X0, Xjk}, j = 1, 2, . . . , n, k = 1, 2, . . . , 2j − 1 is
a sequence of independent normal random variables with
mean zero and variance one, defined on the probability
space (Ω,F , P ), t ∈ [0, 1], n = 1, 2, . . . . Then W̃n(t)
converges almost surely to some W̃ (t) which is a standard
Brownian motion, uniformly in t in the space C([0, 1]).

5. Wavelet-Galerkin space discretization of
the Zakai equation

We shall now approximate the exact solution to Eqn. (4)
with respect to the space variable by the wavelet-Galerkin
method using the biorthogonal wavelet basis.

In the general case, let H be a Hilbert space and
A(·, ·) : H × H → R a continuous bilinear form. Con-
sider the following variational problem: Given F ∈ H∗,
find U ∈ H such that

A(V, U) = 〈V, F 〉, V ∈ H. (39)

Define the operator L : H → H∗ by

〈V,LU〉 = A(V, U), V ∈ H, (40)

so that Eqns. (39) and (40) are equivalent to

LU = F. (41)

Then the problem (39) is well-posed if the so-called
mapping property is satisfied, that is, if there exist some
positive constants c1, C1 > 0 such that

c1‖V ‖H ≤ ‖LV ‖H∗ ≤ C1‖V ‖H for V ∈ H. (42)

In general, H will be a product space, i.e., H = H1,0 ×
· · · ×Hm,0, where the component spaces Hi,0 ⊆ Hi will
be closed subspaces of some Hilbert spacesHi (e.g., some
Sobolev spaces). Let the bilinear form A(·, ·) be given by
A(V, U) = (ai′l′(vi′ , ul′))i′,l′=1,...,m, so that the operator
L is matrix-valued and L = (Li′l′)i′,l′=1,...,m.

Define D = diag(wj,k), wj,k = 2j for the scale j
and the spatial location k. Denote by Ds′ a diagonal ma-
trix with wj,k = 2s

′j . Then D−s′Ψ = {2−s′jψj,k}, with
Ψ given in Section 4. Now we shall describe how to solve
the problem with the wavelet basis. Namely, we have the
norm equivalence (Bramble et al., 2003, p. 41) that we

shall write generally for γ̃,
≈
γ > 0 and s ∈ (−≈

γ , γ̃) :

cs′‖v‖l2 ≤ ‖vD−s′Ψ‖Hs′ ≤ Cs′‖v‖l2 for v ∈ l2,
(43)

where cs′ , Cs′ are some positive bounded constants while
Hs′ stands for a suitable subspace of a Sobolev space and
H−s′ for its dual space.

We will assume that for each Hi′,0 one has suitable
bases Ψi′ and scaling matrices Di′ such that (43) is sat-
isfied. The scaled wavelet representation of the operators
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Li′l′ is then given by

Ai′l′ = D−1
i′ ai′l′(Ψi′ ,Ψl′)D−1

l′ for i′, l′ = 1, . . . ,m,
(44)

D = diag(D1, . . . ,Dm). Next, the scaled standard rep-
resentation of L and the dual wavelet representation of the
right-hand side data are given by

L = (Ai′l′)mi′,l′=1 = D−1(Ψ,LΨ)D−1, (45)

F = D−1(Ψ, F ). (46)

Important properties of the solution to our problem
are given in the following two theorems.

Theorem 2. (Bramble et al., 2003, pp. 66–67). Let
Û = UTD−1Ψ be the scaled wavelet representation of
the solution to (39). Then

LÛ = F ⇐⇒ LU = F. (47)

The above result can be related to preconditioning.
Namely, we have the next theorem.

Theorem 3. (Bramble et al., 2003, pp. 67). The map-
ping property (42) and the norm equivalence (43) imply
a uniformly bounded condition number with respect to the
mesh size during discretization:

cond(L) = O(1) as �Λ → ∞, (48)

where Λ is a finite subset of J = Jϕ ∪ Jψ . Here J is
an infinite index set, where �Jϕ < ∞, representing the
scaling functions. The index in Jψ represents the wavelet
spanning complements between refinement levels.

Any function u(t, ·) ∈ U can be represented in the
wavelet basis {ψj,k(x)}, j = 0, 1, . . . , k = 0, 1, . . . , 2j −
1, as follows:

u(t, x) =
∞∑
j=0

2j−1∑
k=0

αjk(t)ψj,k(x),

αjk(t) ∈ R, αjk(0) = γjk. (49)

We define a projection Pn : V → Vn by truncating the
wavelet expansion

un(t, x) = Pnu(t, x) =
n∑
j=0

2j−1∑
k=0

αjk(t)ψj,k(x) (50)

for un(t, ·) ∈ Vn, where Vn is the finite-dimensional sub-
space of V that is spanned by the finite collection {ψj,k},
j = 0, 1, . . . , n, and k = 0, 1, . . . , 2j − 1.

In our case the norm equivalence is of the form (von
Petersdorff and Schwab, 2003, p. 168)

cs′‖v‖2
Hs′(U)

≤
∞∑
j=0

2j−1∑
k=0

|αjk|222js′ ≤ Cs′‖v‖2
Hs′(U)

(51)

for v ∈ l2, 0 ≤ s′ ≤ 1.
Now we consider Eqn. (11) putting v(x) = ψl̃,s̃(x),

l̃ = 0, 1, . . . , s̃ = 0, 1, . . . , 2l̃ − 1, and we use (38) for the
Wiener process V (t). We obtain

( ∂
∂t
u(t), ψl̃,s̃

)
+

≈
B [u, ψl̃,s̃, t]

−
(
σ−1f(x)u(t)

dY (t)
dt

, ψl̃,s̃

)
= 0. (52)

We substitute un(t) for u(t) and, using the fact that

(
∂

∂t

n∑
j=0

2j−1∑
k=0

αjk(t)ψj,k(x), ψl̃,s̃(x)
)

=
n∑
j=0

2j−1∑
k=0

α′
jk(t)(ψj,k(x), ψl̃,s̃(x)), (53)

from (17) we get

n∑
j=0

2j−1∑
k=0

α′
jk(t)(ψj,k(x), ψl̃,s̃(x))

+
≈
B

[ n∑
j=0

2j−1∑
k=0

αjk(t)ψj,k(x), ψl̃,s̃(x), t
]

−
n∑
j=0

2j−1∑
k=0

αjk(t)
(
σ−1f(x)ψj,k(x)

dY (t)
dt

, ψl̃,s̃(x)
)

= 0. (54)

Further, we shall need the derivative of ψj,k(x):

∂

∂xi
ψj,k(x) = 23j/2ψ′

xi
(2jx− k), i = 1, . . . , d. (55)

From (12) and (50) and integration by parts we get

≈
B [un, ψl̃,s̃, t]

=
≈
B

[ n∑
j=0

2j−1∑
k=0

αjk(t)ψj,k(x), ψl̃,s̃(x), t
]

=
n∑
j=0

2j−1∑
k=0

αjk(t)
∫
U
L̃(Y )ψj,k(x)ψl̃,s̃(x) dx

=
n∑
j=0

2j−1∑
k=0

αjk(t)
∫
U

[ d∑
i,l=1

ail(x)
∂

∂xi
ψj,k(x)

∂

∂xl
ψl̃,s̃(x)

+
d∑
i=1

bi(x)
∂

∂xi
ψj,k(x)ψl̃,s̃(x)

]
dx.

(56)
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Due to the properties (33) and (35) we obtain

n∑
j=0

2j−1∑
k=0

α′
jk(t)(ψj,k(x), ψl̃,s̃(x))

+
n∑
j=1

2j−1∑
k=0

αjk(t)

×
∫
U

[ d∑
i,l=1

ail(x)23j/2ψ′
xi

(2jx− k)23l̃/2ψ′
xl

(2l̃x− s̃)

+
d∑
i=1

bi(x)23j/2ψ′
xi

(2jx− k)
]

dx

−
n∑
j=0

2j−1∑
k=0

αjk(t)
(
σ−1f(x)2j/2ψ(2jx− k)

dY (t)
dt

,

2l̃/2ψ(2l̃x− s̃)
)

= 0
(57)

with the initial condition

n∑
j=1

2j−1∑
k=0

αjk(0)(ψj,k(x), ψl̃,s̃(x)) = (u0, ψl̃,s̃(x)) (58)

for all l̃ = 0, 1, . . . , n, s̃ = 0, 1, . . . , 2j − 1. The last term
has, by (3), the following form:

n∑
j=0

2j−1∑
k=0

αjk(t)
(
σ−1f(x)2j/2ψ(2jx− k)

× dY (t)
dt

, 2l̃/2ψ(2l̃x− s̃)
)

=
n∑
j=0

2j−1∑
k=0

αjk(t)
(
σ−1f(x)2j/2ψ(2jx− k)

×
[
σ−1f(x) +

dV (t)
dt

]
, 2l̃/2ψ(2l̃x− s̃)

)

=
n∑
j=0

2j−1∑
k=0

αjk(t)
(
(σ−1f(x))22j/2ψ(2jx− k),

2l̃/2ψ(2l̃x− s̃)
)

+
n∑
j=0

2j−1∑
k=0

αjk(t)
(
σ−1f(x)2j/2ψ(2jx− k)

× dV (t)
dt

, 2l̃/2ψ(2l̃x− s̃)
)
.

(59)

Let Sj,k = suppψj,k. The diameter of Sj,k is
bounded by C2−k and

δk,s̃ = cmax{2−n+C(2n−k−s̃), 2−k, 2−s̃}
with some parameters c, C > 0. For the meaning of the
compressed parameters c and C we refer to (von Peters-
dorff and Schwab, 2003).

We define the compressed matrix
≈
L (Y ) and the cor-

responding bilinear form by replacing certain small matrix
elements in L̃(Y ) with zero:

≈
L (jk)(l̃s̃)(Y ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L̃(jk)(l̃s̃)(Y )
if dist(Sj,k;Sl̃,s̃) ≤ δk,s̃

or Sj,k ∩ ∂U �= ∅,
0 otherwise.

(60)

Finally, we get, in the matrix form, the following sys-
tem, simpler than (19)–(20), to compute the unknown vec-
tor α(t):

Mα′(t) + α(t)D−1
i

≈
L (Y )D−1

l

− α(t)D−1
i B̃D−1

l = 0, (61)

for t > 0, where M is the mass matrix described in Re-

mark 1,
≈
L is the so-called stiffness matrix, B̃ is the matrix

given in the last term of (57), and α(t) is the vector of
unknowns. We notice that the stiffness and mass matrices
are symmetric and positive-definite.

During time discretization of the increments of the
Wiener process V (t), appearing in dY (t) in the last term
of (57), we get the following expression using (3), (37)
and (38) for tκ = κλ and λ = T/m, κ = 0, 1, . . . ,m,
T > 0, n = 1, 2, . . . :

V n(tκ) − V n(tκ−1)

= X0(ω)H0(t) +
n∑
j=1

2j−1∑
k=1

XjkHjk(tκ)

−X0(ω)H0(t) −
n∑
j=1

2j−1∑
k=1

XjkHjk(tκ−1)

=
n∑
j=1

2j−1∑
k=1

Xjk[Hjk(tκ) −Hjk(tκ−1)]

=
n∑
j=1

2j−1∑
k=1

XjkGjk,

(62)

where

Gjk =
√

2j−1
[
tκ − 2−j(k − 1)− tκ−1 + 2−j(k − 1)

]
=

√
2j−1[tκ − tκ−1] =

√
2j−1λ

if tκ, tκ−1 ∈ [2−j(k − 1), 2−jk),

Gjk =
√

2j−1
[
2−j(k + 1)− tκ − 2−j(k + 1) + tκ−1

]
= −

√
2j−1[tκ − tκ−1] = −

√
2j−1λ

if tκ, tκ−1 ∈ [2−jk, 2−j(k + 1)),
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Gjk =
√

2j−1
[
2−j(k + 1)− tκ − 2−j(k − 1) + tκ−1

]
=

√
2j−1

[
21−j − tκ + tκ−1

]
,=

√
2j−1

[
21−j − λ]

if tκ−1 ∈ [2−j(k − 1), 2−jk), tκ ∈ [2−jk, 2−j(k + 1)).
Observe that λ = tκ− tκ−1. Notice that in the above

we can assume that λ is so small that tκ−1 and tκ are
situated in the same dyadic subinterval [2−j(k−1), 2−jk)
or [2−jk, 2−j(k+1)) in (37) and (62). Thus we only have
the first and the second situation, that is,

|V n(tκ) − V (tκ−1)| = 2(j−1)/2(tκ − tκ−1)

= 2(j−1)/2λ = c̃(n)λ
(63)

and
E[V n(tκ) − V n(tκ−1)]2 = c(n)λ2, (64)

for c(n) = (c̃(n))2.

6. Convergence theorem

The outline of this section is as follows: First, we
shall consider the convergence of the schemes defined in
(65)–(69) for the implicit Euler approximation with re-
spect to time and for the wavelet-Galerkin approximation
with respect to space. Second, we shall also compute a
constant of the rate of convergence.

Namely, in Proposition 3 we give the convergence
result. Then we formulate Theorem 4 on the rate of
the convergence of our two schemes. To prove The-
orem 4 we shall need two auxiliary Lemmas 2–3, for
the rate of the convergence for the Euler as well as the
wavelet-Galerkin approximations, respectively. Third, we
use the wavelet basis introduced in Section 4 and we ap-
ply the well known generalized minimal residual method
with m0 iterates to solve the linear systems that appear
in our wavelet schemes. We denote this method by
GMRES(m0). To estimate this scheme (see Lemma 4),
we shall proceed similarly to the technique of (von Peters-
dorff and Schwab, 1996, Lemma 6.1).

Finally, we denote by ûκ,mn the inexact equation so-
lution by GMRES iterations. We conclude that at each
time step one can show, similarly as in (von Petersdorff
and Schwab, 2003, pp. 178–179), that the solution ûκ,mn
satisfies the same error bound as the solution

≈
u κ,mn with

the wavelet compressed operator and with all linear sys-
tems solved exactly.

At the beginning, let us mention that for the usual
Hermite polynomial basis we have a similar time dis-
cretization in (Itô, 1996). We shall apply this result to
the Wiener process representation given in (38).

We introduce the probability space S = (Ω × [0, T ],
F × B, dP × dt). Throughout this section we set

uκ = u(tκ) ∈ V, tκ = κλ for λ =
T

m
,

where κ = 0, 1, . . . ,m.

We consider the wavelet-Galerkin approximation
scheme for Eqn. (4):

dun(t) + L̃n(Y (t))un(t) dt = B̃n(t)un(t) dY (t),
un(0) = un,0, (65)

where L̃n(Y (t)) and B̃n(t) are the projections of the op-
erators given by (5) and (6), respectively. Moreover, un,0
is the orthogonal projection of u0 onto Vn of H .

For m ∈ N take the sequence {uκ,m} generated by
the following Euler scheme for Eqn. (4):

uκ,m − uκ−1,m

λ
+ [L̃(Yκ−1) + βI]uκ,m

= βuκ−1,m + B̃(tκ−1)uκ−1,mY
κ,m − Y κ−1,m

λ
,

uκ,m(0) = u0 ∈ L2(U)

(66)

or

uκ,m − uκ−1,m + λ[L̃(Yκ−1) + βI]uκ,m

= λβuκ−1,m + B̃(tκ−1)uκ−1,m(Y κ,m − Y κ−1,m),

uκ,m(0) = u0 ∈ L2(U),
(67)

where Yκ = Y (κλ) = Y (tκ). This method is defined
by replacing the time derivative by a backward difference
quotient.

Now, for n,m ∈ N take the sequence {uκ,mn } ap-
proximating the solution to (4) by the wavelet-Galerkin as
well as the Euler schemes:

uκ,mn − uκ−1,m
n + λ[L̃n(Yκ−1) + βI]uκ,mn

= λβuκ−1,m

+ B̃n(Yκ−1)uκ−1,m
n (Y κ,m − Y κ−1,m).

(68)

Let

umn (t) = uκ,mn on [κλ, (κ+ 1)λ). (69)

Let us moreover write

uκ,mn (t) − uκ(t) = (uκ,mn (t) − uκ,m(t))
+ (uκ,m(t) − uκ(t)) = I + II,

(70)

where uκ,m(t) is the solution to Eqn. (67).
We have the following convergence result.

Proposition 3. Suppose that the operators L̃n(Y ) and B̃n
satisfy the following approximation conditions:

(i) ‖L̃n(Y )φ‖V ∗ ≤ η‖φ‖V and ‖B̃nφ‖H ≤ η‖φ‖V ,
η > 0, uniformly in n and Y ∈ R

p

(ii) 〈L̃n(Y )φ, φ〉+ 1
2‖B̃nφ‖2

H + β‖φ‖2
H ≥ 1

2γ‖φ‖2
V for

all φ ∈ V, Y ∈ R
d
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(iii) ‖L̃n(Y )φ − L̃(Y )φ‖V ∗ + ‖B̃nφ − B̃φ‖H → 0 for
all φ ∈ V, Y ∈ R

d, as n→ ∞,

and ‖un,0 − u0‖H → 0 as n→ ∞.
Then the sequence {umn } of solutions to (68), given

in (70) and satisfying (i)–(iii), converges strongly in
L2(S, V ) and weak-star inL∞(0, T ;L2(Ω, H, dP̃ ) to the
unique solution u(t) to Eqn. (4) as m,n→ ∞.

Proof. We notice that the operators L̃n(Y ) and B̃n satisfy
the above assumptions (i)–(iii). Indeed, it is obvious that
condition (i) is satisfied. The condition (ii) follows from
(9) since the left-hand side of (ii) is the restriction of (9)
onto Vn.

The condition (iii) is satisfied because ‖PnV φ −
φ‖V → 0 as n → ∞, where PnV is the orthogonal pro-
jection of V onto Vn.

Thus Theorem 2.1 of (Itô, 1996) can be applied to the
Galerkin approximations. �

Now we shall assume the consistency condition for
l̃(·, ·) given in (13), that is,

(iv) There exists a constant η < 1 independent of n such
that

|l̃(un, vn) −
≈
l (un, vn)| ≤ η‖un‖α‖vn‖α

for every un, vn ∈ Vn. (71)

The condition (71) shows that on Vn × Vn the form

l̃(·, ·) is equivalent to
≈
l (·, ·) in the following sense: for

η < 1 in (71) we have for some constants 0 < β̃ < α̃ <
∞ independent of n:

‖
≈
l (un, vn)‖ ≤ η‖un‖α‖vn‖α

for every un, vn ∈ Vn. (72)

Moreover, we assume that

(v) We have

∫ T

0

E‖L̃(Y )u(t)‖2
V dt ≤M, E‖B̃u(t)‖2

V ≤M

for any M > 0, independently of t ∈ [0, T ].

Remark 2. Notice (Kloeden and Platen, 1992) that the
order scheme for stochastic differential equations is some-
times less than for the corresponding deterministic differ-
ential equations. This is because the increments ΔWn of
the Wiener process are of root mean square order 1

2 and
not 1. One can prove (Kloeden and Platen, 1992) that for
the classical definition of the Wiener process we have

E[W (t+ λ) −W (t)]2n = 1 · 3 · · · · · (2n− 1)λn. (73)

For example, the Euler scheme for stochastic differential
equations has strong order equal to 1/2, in contrast to the
order 1 of the Euler scheme for deterministic ordinary dif-
ferential equations. We stress that in the case of the repre-
sentation (38) of the Wiener process, we get the property
(64), different from (73).

The rate of the convergence of our two schemes is
computed in the following theorem.

Theorem 4. Assume that the operators L̃n(Y ) and B̃n
satisfy the assumptions (i)–(iii) of Proposition 3 together
with the assumption (v). Then the rate of convergence of
the numerical scheme (68) is of order λ1/2 in the sense of
the inequality

E‖uκ,mn − uκ‖2
H +

γ

2
E

κ∑
ι=1

λcκ−ι‖uκ,mn − uκ‖2
V

+
γ

4

∫ t

0

e2β(t−s)E‖uκ,mn (s) − uκ(s)‖2
V ds

≤ C̃E‖u0‖2
H + C(n) + M̃λ

e2Tβ − 1
2β

, (74)

where uκ,mn (t) and uκ(t) = u(tκ) are the solutions to
Eqns. (68) and (4), respectively. Moreover, M̃ = M̃(κ) >
0, c = (1 + λβ)2, and C(n) is given by (96) in Lemma 3
below.

First we shall prove two lemmas. We start from the
estimation of II in (70).

Lemma 2. Assume that the operators L̃n(Y ) and B̃n sat-
isfy the assumptions (i)–(iii) of Proposition 3 and, more-
over, the assumption (v). Then

E‖uκ,m − uκ‖2
H +

γ

2
E

κ∑
ι=1

λcκ−ι‖uκ,mn − uκ‖2
V

≤ M̃λ
e2Tβ − 1

2β
, (75)

where uκ,m(t) and uκ(t) = u(tκ) are the solutions to
Eqns. (67) and (4), respectively, M̃ = M̃(n) is given in
the formula (94) below, and c = (1 + λβ)2.

Proof. To get an estimate of II in (70), we proceed
similarly as in (Itô, 1996) in the following manner. For
κ ≥ 0 we define the approximation error

εκ = ε(1)κ − ε(2)κ , (76)

with

ε
(1)
k =

∫ tκ

tκ−1

L̃(u(t) − u(tκ)) dt

− λβ(u(tκ) − u(tκ−1)), (77)

ε(2)κ =
∫ tκ

tκ−1

B̃(u(t) − u(tκ)) dY (t), (78)
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where u(t) is the unique solution to (4) and tκ = κλ, so
λ = tκ − tκ−1. Further, we write for simplicity L̃ =
L̃(Y (tκ−1)).

Now we write (4) equivalently as

u(tκ) − u(tκ−1) +
∫ tκ

tκ−1

L̃(Y (t))u(t) dt

−
∫ tκ

tκ−1

B̃(t)u(t) dY (t) = 0. (79)

Define the error function δ(uκ) = uκ,m − u(tκ). It
satisfies the equation

δ(uκ) − δ(uκ−1) + λ[L̃+ βI]δ(uκ)

= λβδ(uκ−1) + B̃δ(uκ−1)ΔYκ − εκ, (80)

where ΔYκ = Y (tκ) − Y (tκ−1) is an R
p-valued random

variable with mean zero and covariance λ. Indeed, from
(77)–(79) and (67) we get

δ(uκ) − δ(uκ−1) + λ[L̃+ βI]δ(uκ)

= λβuκ−1 + B̃uκ−1ΔYκ +
∫ tκ

tκ−1

L̃(Y (t))u(t) dt

−
∫ tκ

tκ−1

B̃(t)u(t) dY (t) − λL̃u(tκ) − λβu(tκ)

and also

λβδ(uκ−1) + B̃δ(uκ−1)ΔYκ − εκ = λβuκ−1

− λβu(tκ−1) + B̃uκ−1ΔYκ − B̃u(tκ−1)ΔYκ

+
∫ tκ

tκ−1

[L̃(Y (t))u(t) − L̃(Y (t))u(tκ)] dt

− λβu(tκ) + λβu(tκ−1)

−
∫ tκ

tκ−1

[B̃(t)u(t) − B̃(t)u(tκ−1)] dY (t)

= λβuκ−1 + B̃uκ−1ΔYκ +
∫ tκ

tκ−1

L̃(Y (t))u(t) dt

−
tκ∫

tκ−1

B̃(t)u(t) dY (t) − λL̃u(tκ) − λβu(tκ).

Multiplying (80) by δ(uκ) we obtain

(δ(uκ) − δ(uκ−1), δ(uκ)) + (λ[L̃+ βI]δ(uk), δ(uk))

− (λβδ(uκ−1), δ(uκ)) − (B̃δ(uκ−1)ΔYκ, δ(uκ))
− (εκ, δ(uκ)) = 0. (81)

Define a linear operator L̃β = L̃ + βI . Then by (8)
we get Jλ = [I + λ L̃β]−1 ∈ L(V ∗, V ).

For a V-valued random variable x, the equation

x̂− x+ λL̃β x̂ = λβx + B̃xΔY (82)

has a unique solution x̂ = Jλ([1 +λβ]x+ B̃xΔYκ)). We
multiply (82) by x̂ and get
(
x̂− (1 + λβ)x, x̂

)
+ λ〈L̃β x̂, x̂〉 =

(
B̃xΔYκ, x̂

)
. (83)

From this, using the definition of the norm ‖ · ‖H , we
obtain

1
2
(‖x̂‖2

H − (1 + λβ)2‖x‖2
H + ‖x̂− (1 + λβ)x‖2

H

)

+ λ〈L̃β x̂, x̂〉 = (B̃xΔYκ, x̂). (84)

Now we set z = (1 + λβ)x + B̃xΔYκ. Then from
(82) we have x̂ = Jλz and

‖Jλz − z‖2
H = ‖x̂− (1 + λβ)x − B̃xΔYκ‖2

H

= ‖x̂− (1 + λβ)x‖2
H

− 2
(
B̃xΔYκ, x̂− (1 + λβ)x

)
+ ‖B̃xΔYκ‖2

H .

(85)

But E(B̃xΔYκ, x) = 0 because x and ΔYκ are indepen-
dent random variables. Thus from (84) and (85) we get

1
2
(
E‖x̂‖2

H − (1 + λβ)2E‖x‖2
H

)

+ λE
(
〈L̃β x̂, x̂〉 − 1

2
‖B̃x‖2

H

)
≤ 0. (86)

Coming back to (81), we have, writing x̂ = δ(uκ),
x = δ(uκ−1) and c = (1 + λβ)2,

E‖δ(uκ)‖2
H−cE‖δ(uκ−1)‖2

H+2λE〈L̃βδ(uκ), δ(uκ)〉
≤ E‖B̃δ(uκ−1)ΔYκ − ε(2)κ ‖2

H , (87)

because E(δ(uk−1), ε
(2)
k ) = 0.

From the assumption (ii) applied to the operators L̃
and B̃ it follows that there exists an ε > 0 such that

2〈L̃βφ, φ〉 − ‖B̃φ‖2
H + β‖φ‖2

H ≥ 3
4
‖φ‖2

V +
1
4
β‖φ‖2

V ,

so

2〈L̃βφ, φ〉 − (1 + ε)‖B̃φ‖2
H ≥ 3

4
β‖φ‖2

V (88)

for all φ ∈ V . Moreover, from the Young inequality ab ≤
ε
2a

2 + 1
2εb

2 we have

E‖B̃δ(uκ−1)ΔYκ − ε(2)κ ‖2

= E[(B̃δ(uκ−1)ΔYκ − ε(2)κ , B̃δ(uκ−1)ΔYκ − ε(2)κ )]

≤ (1 + ε)E‖B̃δ(uκ−1)‖2
H +

(
1 +

1
ε

)
E‖ε(2)κ ‖2

H .
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But, once more from the Young inequality, we see that

2(δ(uκ), ε(1)κ ) ≤ λγ

4
‖δ(uκ)‖2

V +
4
λγ

‖ε(1)κ ‖2
V ,

and from this we obtain

E(‖δ(uκ)‖2
H + λ‖B̃(δuκ)‖2

H) +
λγ

2
E‖δ(uκ)‖2

V

≤ cE(‖δ(uκ−1)‖2
H + λ‖B̃δ(uκ−1)‖2

H)

+
4λ
γ

∥∥∥ε
(1)
κ

λ

∥∥∥2

V
+

(
1 +

1
ε

)
E‖ε(2)κ ‖2

H . (89)

Now we multiply (89) by c−k and take the sum over
k. We obtain

c−kE(‖δ(uκ)‖2
H) +

γ

2
E

κ∑
ι=1

λc−ι‖δ(uι)‖2
V

≤ E

κ∑
ι=1

λc−ι
[

4
γ

∥∥∥ε
(1)
ι

λ

∥∥∥2

V ∗
+

1 + 1
ε

λ
E‖ε(2)ι ‖2

H

]
(90)

for 1 ≤ κ ≤ m. Note that we can write (4) as

u(t) − u(s) +
∫ t

s

L̃(Y (τ))u(τ) dτ

−
∫ t

s

B̃(τ)u(τ) dY (τ) = 0, u(0) = u0 (91)

for s ≤ t. Moreover,

u(tκ) − u(s) +
∫ tκ

s

L̃(Y (τ))u(τ) dτ

−
∫ tκ

s

B̃(τ)u(τ) dY (τ) = 0. (92)

Subtracting the above equalities and taking the ex-
pectation we deduce from the assumption (v) that

E‖u(tκ) − u(t)‖2
V

≤ 2|t− tκ|
∫ tκ

t

E‖L̃(Y (τ))u(τ)‖2
V dτ

+ 2
∫ tκ

t

E‖B̃u(τ)‖2
V dτ

≤ 2M(|t− tκ| + 1).

(93)

From (77) and (78) it follows that there exists a con-
stant M̃ such that we can estimate

4
γ
E
∥∥∥ε

(1)
κ

λ

∥∥∥2

V ∗
+

1 + 1
ε

λ
E‖ε(2)κ ‖2

H

≤ 4
γ
M ′′′ +

(
1 +

1
ε

)
(M ′λ+M ′′c(n))

= M̃(n)λ = M̃λ

(94)

for 1 ≤ κ ≤ m. Indeed, from the assumption (i) and (64)
we have

4
γ
E
∥∥∥ε

(1)
κ

λ

∥∥∥2

V ∗
≤ 4
γ

1
λ2

(λ2M ′ + λ2M ′′) =
4
γ
M ′′′,

1 + 1
ε

λ
E‖ε(2)κ ‖2

H

=
1 + 1

ε

λ
E

∥∥∥∥
∫ tκ−1+λ

tκ−1

B̃(u(t) − u(tκ)) dY (t)
∥∥∥∥

2

H

=
1 + 1

ε

λ
E

∥∥∥∥
∫ tκ−1+λ

tκ−1

B̃(u(t) − u(tκ))σ−1f(x) dt
∥∥∥∥

2

H

+
1 + 1

ε

λ
E

∥∥∥∥
∫ tκ−1+λ

tκ−1

B̃(u(t) − u(tκ)) dV (t)
∥∥∥∥

2

H

≤ 1 + 1
ε

λ
M ′λ2 +

1 + 1
ε

λ
M ′′c(n)λ ≤M ′′′(n)λ.

Observe that c = (1+λβ)2 > 1. We also use the fact that
1 + u < eu for u > 0, that is, (1 + u)2κ < e2κu. Now
from the formula for the sum of κ terms in the geometric
series with quotient 1/c < 1 we get

κ∑
ι=1

λcκ−ι =
[(1 + λβ)2]κ − 1

2β

<
e2κ

T
mβ − 1
2β

≤ e2Tβ − 1
2β

for 1 ≤ κ ≤ m. From (90) we have

E‖δ(uκ)‖2 +
γ

2
E

κ∑
ι=1

λcκ−ι‖δ(uι)‖2
V

≤ E

κ∑
ι=1

λcκ−ι
[

4
γ

∥∥∥ε
(1)
ι

λ

∥∥∥2

V
+

1 + 1
ε

λ
‖ε(2)ι ‖2

H

]

≤ M̂λ

κ∑
ι=1

λcκ−ι ≤ M̂λ
e2Tβ − 1

2β
,

which completes the proof. �
To estimate the term I , we notice that, instead of I =

uκ,mn −uκn, it is sufficient to estimate the Galerkin scheme
only, that is, I ′ = un(t) − u(t). Therefore, we have what
follows.

Lemma 3. Assume that the operators L̃n(Y ) and B̃n sat-
isfy the assumptions (i)–(iii) of Proposition 3 together with
the assumption (v). Then

E‖un(t) − u(t)‖2
H

+
γ

4

∫ t

0

e2β(t−s)E‖un(s) − u(s)‖2
V ds

≤ C̃E‖u0‖2
H + C(n), (95)
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where un(t) and u(t) are the solutions to Eqns. (65) and
(4), respectively, and C(n) is given by the formula (96)
below.

Proof. Let

un(t) = un,0 −
∫ t

0

L̃n(Y (s))un(s) dτ

+
∫ t

0

B̃(s)un(s) dY (s), un(0) = un,0.

From Itô’s lemma (Krylov and Rozovskiĭ, 1981, Theo-
rem 3.23; Liptser and Shiryaev, 1977) applied to the func-
tion ϕ(un(t)) = e2βtE‖un(t) − u(t)‖2

H it follows that

E‖un(t) − u(t)‖2
H

+
∫ t

0

e2β(t−s)E
(
2
〈
L̃n,β(Y (s))(un(s) − u(s))

+ L̃n,β(Y (s))u(s) − L̃β(Y (s))u(s), un(s) − u(s)
〉

− ‖B̃n(s)(un(s) − u(s))

+ B̃n(s)u(s) − B̃(s)u(s)‖2
H

)
ds

= e2βtE‖un,0 − u0‖2
H .

From the assumption (i) for the operator L̃n,β(Y )
and from the Young inequality xy ≤ ε

2x
2 + 1

2εy
2, ε > 0,

for ε = γ/2 we obtain

〈L̃n,β(Y (s))un(s) − L̃(Y (s))u(s), un(s) − u(s)〉
≤ γ

4
‖un(s) − u(s)‖2

V

+
1
γ
‖L̃n,β(Y (s))un(s) − L̃β(Y (s))u(s)‖2

V .

Similarly, from the assumption (i) for the operator B̃n and
from the same inequality of Young for ε = γ/2 we obtain

(
B̃n(s)(un(s) − u(s)), B̃n(s)u(s) − B̃(s)u(s)

)
≤ γ

4
‖un(s) − u(s)‖2

V

+
1
γ

(
η2‖B̃n(s)un(s) − B̃(s)u(s)‖2

H

)
.

From the assumptions (ii) and (iii) we get

E‖un(t) − u(t)‖2
H

+
γ

4

∫ t

0

e2β(t−s)E‖un(s) − u(s)‖2
V ds

≤ e2βtE‖un,0 − u0‖2
H +

∫ t

0

e2β(t−s)

× E

(
2
γ

∥∥L̃n,β(Y (s))u(s) − L̃β(Y (s))u(s)
∥∥2

V ∗

+
(η2

γ
+ 1

)∥∥B̃n(s)u(s) − B̃(s)u(s)
∥∥2

H

)
ds.

Therefore, denoting the last integral in the above inequal-
ity by C(n), that is,

C(n) =
∫ t

0

e2β(t−s)

× E

(
2
γ

∥∥L̃n,β(Y (s))u(s) − L̃β(Y (s))u(s)
∥∥2

V ∗

+
(η2

γ
+ 1

)∥∥B̃n(s)u(s) − B̃(s)u(s)
∥∥2

H

)
ds, (96)

we arrive at

E‖un(t) − u(t)‖2
H

+
γ

4

∫ t

0

e2β(t−s)E‖un(s) − u(s)‖2
V ds

≤ C̃‖u0‖2
H + C(n),

where C̃ = e2βT , which completes the proof. �

Proof of Theorem 4. Together with inequalities (75) and
(95) this completes the proof of the theorem. �

Now, we apply the wavelet basis. First we compute

the mass matrix M and the stiffness matrix
≈
L , both in our

wavelet basis. With the compressed matrix
≈
L , we asso-

ciate the solution
≈
u κ,m
n . We consider the difference

≈
w κ,m
n =

≈
u κ+1,m
n − ≈

u κ,mn ∈ Vn

satisfying the equation (derived from (68))

λ−1(
≈
w κ,m
n , vn) + ([

≈
L n(Yκ−1) + βI]

≈
u κ,mn , vn)

= β(
≈
u κ,mn ũκ−1,m, vn)

+ λ−1
(
B̃n

≈
u κ−1,m
n (Y κ,m − Y κ−1,m), vn

)

for every vn ∈ Vn. From this, adding and subtracting the

term
≈
L n(Yκ−1)

≈
u κ−1,m
n , we get

λ−1(
≈
w κ,m
n , vn) +

≈
B n[

≈
w κ,m
n , vn, t] + β(

≈
w κ,m
n , vn)

= −
≈
B n[

≈
u κ−1,m
n , vn, t]

+ λ−1
(
B̃n

≈
u κ−1,m
n (Y κ,m − Y κ−1,m), vn

)
.

(97)

Denote by

K = λ−1M + [
≈
B + βI] (98)

the left-hand side of (97). Then update
≈
u κ+1,m
n =

≈
w κ,m
n +

≈
u κ,mn .
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Let
≈
w κ,m denote the coefficient vectors of

≈
w κ,m
n

with respect to the wavelet basis. Therefore, we get a lin-
ear system

K ≈
w κ,m
n = Bκ,m

with the known right-hand side of (98) denoted by Bκ,m.
Further, we shall use the well-known generalized

minimal residual method with m0 iterates to solve the lin-
ear systems. We denote this method by GMRES(m0).
We shall proceed similarly to (von Petersdorff and
Schwab, 1996, Lemma 6.1).

Lemma 4. Consider the linear system Kx = B with the
matrix K given by (98) and with known right-hand side.
Let the assumptions (i)–(iii) of Proposition 3 be satisfied.
Denote by xj , for j ∈ N, the iterates obtained by the
GMRES(m0) method with initial guess x0. Then

E‖x− xj‖2
H + E‖x− xj‖2

V ≤ C̃qj‖x− x0‖, (99)

where C̃ and q < 1 are independent of λ, β, L.

Proof. Let c̃1, . . . , c̃7 be some positive constants inde-
pendent of m and λ. Let D be the diagonal matrix, that
is, D = D(j,l)(j,l) = diag{2lρ/2}. Because of the norm
equivalence (51) we have, for all x, y ∈ R

d,

c̃1‖x‖2
l2 ≤ xTMx, (100)

xTMy ≤ c̃2‖x‖2
l2‖y‖2

l2 . (101)

Further, using the consistency condition (71) and the as-
sumption on continuity (72), we get

c̃3‖Dx‖2
l2 ≤ xT

≈
Lx, (102)

xT
≈
Ly ≤ c̃4‖Dx‖2

l2‖Dy‖2
l2. (103)

Thus the matrix K satisfies, because of (102) and
(100), the inequality

c̃5x
T (λ−1I + βI +D2)x

= c̃5x
Tλ−1x+ c̃5x

Tβx+ c̃5x
TD2x

≤ c̃5x
T (λ−1M + βI +

≈
L )x = xTKx,

(104)

and using the Cauchy-Schwartz inequality we deduce
from (101), (103) that

xTKy = xT (λ−1M + [
≈
L + βI])y

≤ λ−1c̃2‖x‖2
l2‖y‖2

l2 + c̃4‖Dx‖2
l2‖Dy‖2

l2

+ β‖x‖2
l2‖y‖2

l2

≤ c̃6
(
(λ−1 + β)‖x‖l2‖y‖l2 + ‖Dx‖l2‖Dy‖l2

)
= c̃6

[‖x‖l2(λ−1I + βI +D2)‖y‖l2
]

≤ c̃6(xT (λ−1I + βI +D2)x)1/2

× (yT (λ−1I + βI +D2)y)1/2,
(105)

where c̃5 = min(c̃1, c̃3), c̃5 = min(c̃2, c̃4). Moreover,
scaling with the diagonal matrix D̂ = (λ−1I + βI +
D2)1/2 and with K̂ = (D̂)−1K(D̂)−1, x̂ = D̂x, ŷ = D̂y
we obtain

c̃5‖x‖2
l2 ≤ xTKx, (106)

xTKy ≤ c̃6‖x‖2
l2‖y‖2

l2 (107)

for all x, y ∈ R
d. From this we get

c̃5 ≤ λmin

( (K + K̂T )
2

)
(108)

and
‖K̂‖ ≤ c̃6.

Now, by (Eisenstat et al., 1983, Theorem 4.3) the
GMRES iterates and their residuals rj+ν = B − K̂xj+ν
satisfy for ν = 1, . . . ,m0 the inequality

‖rj+ν‖ ≤
(
1 − c̃5

c̃6

)ν/2
‖rj‖. (109)

Further,

c̃5‖xj − x‖2
l2 ≤ (xj − x)T K̂(xj − x)
≤ c̃6‖xj − x‖‖rj‖

(110)

so
‖x− xj‖ ≤ C̃qj‖x− x0‖

for q < 1, which completes the proof. �

Finally, we define the Euler scheme with the
GMRES(m0) approximation as follows. Set m0 = 1
for the restart number and a value N for the number of
GMRES iterations. Let ûκ,mn denote the inexact solution,
where the linear system for each time step is solved with
N steps in the GMRES(m0) method, using zero as initial
guess. At each time step, under the consistency condition
(71), one can show, similarly as in (von Petersdorff and
Schwab, 2003, pp. 178–179), that the solution ûκ,mn sat-

isfies the same error bound as the solution
≈
u κ,mn with the

wavelet compressed operator and all linear systems solved
exactly.
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