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AN EXTENSION OF THE CAYLEY–HAMILTON THEOREM
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The classical Cayley-Hamilton theorem is extended to nonlinear time-varying systems with square and rectangular system
matrices. It is shown that in both cases system matrices satisfy many equations with coefficients being the coefficients of
characteristic polynomials of suitable square matrices. The proposed theorems are illustrated with numerical examples.
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1. Introduction

The classical Cayley-Hamilton theorem (Gantmacher,
1974; Kaczorek, 1988; Lancaster, 1969) says that every
square matrix satisfies its own characteristic equation. Let
A ∈ Cn×n (the set of n × n complex matrices) and
p(s) = det[Ins − A] =

∑n
i=0 aisi, (an = 1) be the char-

acteristic polynomial of A. Then p(A) =
∑n

i=0 aiAi =
0n (the n × n zero matrix). The Cayley Hamilton the-
orem was extended to rectangular matrices (Kaczorek,
1988; 1995c), block matrices (Kaczorek, 1995b; Victo-
ria, 1982), pairs of commuting matrices (Chang and Chan,
1992; Lewis, 1982; 1986; Kaczorek, 1988), pairs of block
matrices (Kaczorek, 1988; 1998) as well as standard and
singular two-dimensional linear (2-D) systems (Kaczo-
rek, 1992; 1995a; Smart and Barnett, 1989; Theodoru,
1989). The Cayley-Hamilton theorem and its generaliza-
tions were used in control systems, electrical circuits, sys-
tems with delays, singular systems, 2-D linear systems,
etc., cf. (Busłowicz, 1981; 1982; Kaczorek, 1992; 1994;
Lewis, 1982; Mcrtizios and Christodolous, 1986).

In (Kaczorek, 2005a), the Cayley-Hamilton theo-
rem was extended to n-dimensional (n-D) real polyno-
mial matrices. An extension of the Cayley-Hamilton the-
orem for discrete-time and continuous-time linear sys-
tems with delay was given in (Busłowicz and Kaczorek,
2004; Kaczorek, 2005b).

In this paper, the Cayley-Hamilton theorem will be
extended to the case of nonlinear time-varying systems
with square and rectangular system matrices. To the best
of the author’s knowledge, the extension of the Cayley-
Hamilton theorem for nonlinear time-varying systems has
not been considered yet.

2. Square System Matrices

Consider the nonlinear time-varying system

ẋ(t) = A(x, t)x(t) + B(x, t)u(t), (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the
input vector and A = A(x, t) ∈ Rn×n, B = B(x, t) ∈
R

n×m. The well-known notion of the characteristic poly-
nomial (equation) for linear systems can be extended for
nonlinear systems of the form (1) as follows.

Definition 1. The polynomial

p(s) = det
[
Ins − A(x, t)

]
= sn + an−1s

n−1 + · · · + a1s + a0 (2)

with the coefficients ak = ak(x, t), k = 0, 1, . . . , n − 1
depending on x and t is called the characteristic polyno-
mial of the system (1). The equation p(s) = 0 is called
the characteristic equation of the system (1).

Theorem 1. The system matrix A(x, t) satisfies the equa-
tion

n∑
i=0

aiAi+k(x, t) = 0n, k = 0, 1, . . . (an = 1). (3)

Proof. It is easy to check that[
Is − A(x, t)

][
Ins−1 + A(x, t)s−2

+ A2(x, t)s−3 + . . .
]

= In. (4)
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Hence[
Is − A(x, t)

]−1

= Ins−1 + A(x, t)s−2

+ A2(x, t)s−3 + . . . . (5)

The substitution of (2) and (5) into the well-known equal-
ity (Gantmacher, 1974; Kaczorek, 1988):

Adj
[
Ins − A(x, t)

]

=
[
Ins − A(x, t)

]−1

det
[
Ins − A(x, t)

]
yields

Adj
[
Ins − A(x, t)

]

=
[
Ins−1 + A(x, t)s−2 + A2(x, t)s−3 + . . .

]
× (

sn + an−1s
n−1 + · · · + a1s + a0

)
. (6)

Note that the adjoint matrix Adj [Ins − A(x, t)] is a
polynomial matrix in s (a matrix with a nonnegative
power of s).

Comparing the coefficient matrices at the same
power s−(k+1) of (6), we obtain (3).

Remark 1. For k = 0, from (3) we have the extension of
the classical Cayley-Hamilton theorem for the nonlinear
system (1):

p(A) = An(x, t) + an−1An−1(x, t)

+ · · · + a1A(x, t) + a0In = 0n. (7)

Example 1. Consider the nonlinear system (1) with

A = A(x, t) =

[
x1e

−t −2x2
2

x1e
−t x2

2e
t

]
, (8)

where x = [x1 x2]
T .

The characteristic polynomial of (8) has the form

det[Ins − A] = det

[
s − x1e

−t 2x2
2

−x1e
−t s − x2

2e
t

]

= s2 − (
x1e

−t + x2
2e

t
)
s

+ x1x
2
2

(
1 + 2et

)
. (9)

In this case,

a1(x, t) = − (
x1e

−t + x2
2e

t
)
, a0(x, t) =

(
1 + 2e−t

)
,

and using (3) we obtain, for k = 0,[
x1e

−t −2x2
2

x1e
−t x2

2e
t

]2

− (
x1e

−t + x2
2e

t
) [

x1e
−t −2x2

2

x1e
−t x2

2e
t

]

+ x1x
2
2

(
1 + 2e−t

) [
1 0
0 1

]
=

[
0 0
0 0

]
,

and, for k = 1,[
x1e

−t −2x2
2

x1e
−t x2

2e
t

]3

− (
x1e

−t + x2
2e

t
) [

x1e
−t −2x2

2

x1e
−t x2

2e
t

]2

+ x1x
2
2

(
1 + 2e−t

) [
x1e

−t −2x2
2

x1e
−t x2

2e
t

]
=

[
0 0
0 0

]
.

Therefore, the matrix (8) satisfies Eqn. (3) for k =
0, 1, . . . . �

3. Rectangular System Matrices

Let us consider a rectangular matrix A(x, t) with the
number of its columns m greater than its number of rows
n, i.e. m > n,

A(x, t) =
[
A1(x, t) A2(x, t)

]
∈ Rn×m,

A1(x, t) ∈ Rn×n, A2(x, t) ∈ Rn×(m−n).
(10)

Let

p1(s) = det
[
Ins − A1(x, t)

]
= sn + an−1s

n−1 + · · · + a1s + a0, (11)

where the coefficients ak = ak(x, t), k = 0, 1, . . . , n−1
depend on x and t.

Theorem 2. Let the characteristic polynomial of
A1(x, t) have the form (11). Then the matrix (10) sat-
isfies the equation

n∑
i=0

ai

[
Am+i−n

1 (x, t), Am+i−n−1
1 (x, t)A2(x, t)

]
= 0nm, (an = 1), (12)

where 0nm is the n × n zero matrix.

Proof. By induction it is easy to show that[
A1(x, t) A2(x, t)

0 0

]k

=

[
Ak

1(x, t) Ak−1
1 (x, t)A2(x, t)

0 0

]
(13)
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for k = 0, 1, . . . . Using (11), we obtain

det

[
Ins − A1(x, t) A2(x, t)

0 Ins

]

= sm−n det
[
Ins−A1(x, t)

]
=

n∑
i=0

ais
m+i−n. (14)

From the classical Cayley-Hamilton theorem for the ma-
trix [

A1(x, t) A2(x, t)
0 0

]

we have

n∑
i=0

ai

[
A1(x, t) A2(x, t)

0 0

]m+i−n

= 0m (an = 1).

(15)
The substitution of (13) into (15) yields

n∑
i=0

ai

[
Am+i−n

1 (x, t) Am+i−n−1
1 (x, t)A2(x, t)

0 0

]

= 0m, (an = 1) (16)

Taking into account only the first n rows of (16), we ob-
tain (12).

Remark 2. The matrix A1(x, t) can be constructed from
any n columns of the matrix A(x, t) (Kaczorek, 1988).

Theorem 3. Let the characteristic polynomial of
A1(x, t) have the form (11). Then

n∑
i=0

ai

[
Ai

1(x, t) Ai
1(x, t)A2(x, t)

]
= 0nm, (an = 1).

(17)

Proof. From the classical Cayley-Hamilton theorem for
the matrix A1(x, t) we have

n∑
i=0

aiAi
1(x, t) = 0n, (an = 1). (18)

The postmultiplication of (18) by the matrix
[In A2(x, t)] yields (17).

Example 2. Consider the rectangular matrix

A(x, t) = [A1 (x, t) A2 (x, t)]

=

[
e−t sin x1 e−2t cosx2 x2 sinx1

−et cosx2 sin x1 x1e
−t

]
, (19)

where x = [x1 x2]
T .

The characteristic polynomial of the matrix
A1(x, t) has the form

p1(s) = det [Ins − A1(x, t)]

= det

[
s − e−t sin x1 −e−2t cosx2

et cosx2 s − sin x1

]

= s2 + a1s + a0, (20)

where

a1 = a1(x, t) = − (
1 + e−t

)
sin x1,

a0 = a0(x, t) = e−t
(
sin2 x1 + cos2 x2

)
.

Using (12), we obtain the result given by (21). Equa-
tion (17) in this case has the form (22). Therefore, the
matrix (19) satisfies (12) and (17). �

If n > m, then the matrix A(x, t) can be written in
the form

A(x, t) =

[
A1(x, t)
A2(x, t)

]
∈ Rn×m,

A1(x, t) ∈ Rm×m, A2(x, t) ∈ R(n−m)×m.

(23)

In much the same way as Theorem 1, the following
dual theorem can be proved.

Theorem 4. Let A(x, t) have the form (23) and

p̄1(s) = det
[
Ins − A1(x, t)

]
= sm + ām−1s

m−1 + · · · + ā1s + ā0, (24)

where the coefficients āi = āi(x, t), i = 0, 1, . . . , m − 1
are functions of x and t. Then

m∑
i=0

āi

[
An+i−m

1 (x, t)
A2(x, t)An+i−m+1

1 (x, t)

]
= 0nm (am = 1).

(25)

From the classical Cayley-Hamilton theorem for
A1(x, t) and (24), we have

m∑
i=0

āiAi
1(x, t) = 0 (ām = 1). (26)

The premultiplication of (26) by the matrix[
Im

A2(x, t)

]
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[
A3

1(x, t), A2
1(x, t)A2(x, t)

]
+ a1(x, t)

[
A2

1(x, t), A1(x, t)A2(x, t)
]

+ a0(x, t)
[
A1(x, t), A2(x, t)

]

=

[
e−3t sin3 x1 − 2e−2t sin x1 cos2 x2 − e−t sin x1 cos2 x2

cos3 x2 − e−t sin2 x1 cosx2 − e−2t sin2 x1 cosx2 − et sin2 x1 cosx2

e−4t sin2 x1 cosx2 − e−3t
(
cos3 x2 − sin2 x1 cosx2

)
+ e−2t sin2 x1 cosx2

− (
e−2t + e−3t

)
sin x1 cos2 x2 − e−t sin x1 cos2 x2 + sin3 x1

e−4tx1 sin x1 cosx2 + e−3tx1 sinx1 cosx2 + e−2tx2 sin3 x1 − e−tx2 sin x1 cos2 x2

e−tx1 sin2 x1 − e−2tx1 cos2 x2 − etx2 sin2 x1 cosx2 − x2 sin2 x1 cosx2

]

− (1 + e−t) sin x1

[
e−2t sin2 x1 − e−t cos2 x2 e−3t sinx1 cosx2 + e−2t sin x1 cosx2

− sin x1 cosx2 − e−t sin x1 cosx2 sin2 x1 − e−t cos2 x2

e−3tx1 cosx2 + e−tx2 sin2 x1

e−tx1 sin x1 − e−tx2 sin x1 cosx2

]

+e−t
(
sin2 x1 + cos2 x2

) [
e−t sin x1 e−2t cosx2 x2 sinx1

−et cosx2 sinx1 x1e
−t

]
=

[
0 0 0
0 0 0

]

(21)

[
A2

1(x, t), A2
1(x, t)A2(x, t)

]
+ a1(x, t)

[
A1(x, t), A1(x, t)A2(x, t)

]
+ a0(x, t)

[
In, A2(x, t)

]

=

[
e−2t sin2 x1 − e−t cos2 x2 e−3t sin x1 cosx2 + e−2t sin x1 cosx2

− sinx1 cosx2 − et sin x1 cosx2 e−t cos2 x2 + sin2 x1

e−4tx1 sin x1 cosx2 + e−3t sin x1 cosx2 + e−2tx2 sin3 x1 − e−tx2 sin x1 cos2 x2

e−tx1 sin2 x1 − e−2tx1 cos2 x2 − e−tx2 sin2 x1 cosx2 − x2 sin2 x1 cosx2

]

− (1 + e−t) sinx1

[
e−t sin x1 e−2t cosx2 e−tx2 sin2 x1 + e−3tx1 cosx2

−et cosx2 sin x1 e−tx1 sinx1 − etx2 sin x1 cosx2

]

+e−t
(
sin2 x1 + cos2 x2

) [
1 0 x2 sin x1

0 1 x1e
−t

]
=

[
0 0 0
0 0 0

]
.

(22)

yields

m∑
i=0

āi

[
Ai

1(x, t)
A2(x, t)Ai

1(x, t)

]
= 0mn

(ām = 1). (27)

Therefore we have proved the following theorem.

Theorem 5. Let the characteristic polynomial of
A1(x, t) have the form (24). Then the matrix (23) sat-
isfies Eqn. (27).

Remark 3. Equation (12) can be obtained by the postmul-
tiplication of (18) by the matrix[

Am−n
1 (x, t) Am−n−1

1 (x, t)A2(x, t)
]

and Eqn. (25) by the premultiplication of (26) by the ma-
trix [

An−m
1 (x, t)

A2(x, t)An−m−1
1 (x, t)

]
.
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4. Concluding Remarks

The Cayley-Hamilton theorem has been extended for non-
linear time-varying systems with square (Theorem 1) and
rectangular (Theorems 2–5) system matrices. It was
shown that in both cases the system matrices satisfy many
equations. For rectangular system matrices, starting from
characteristic polynomials of square matrices, it is possi-
ble to obtain many different equations that are satisfied by
these system matrices. Note that the equations are satis-
fied for all parameters of nonlinear systems.

The presented generalizations can be extended to
block matrices and two-dimensional nonlinear time-
varying systems.
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