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The paper is concerned with a numerical homogenization technique for determination of 

effective material properties of brick masonry in the elastic range. The homogenization 

problem is posed in the plane state of stress. The corresponding boundary value problem 

on a representative cell is discretized by the finite element method. The quadrilateral 

finite element with four nodes and eight degrees of freedom is applied and our own com-

puter program is developed. The homogenization technique allows one to determine for 

masonry, which is an inhomogeneous two-phase composite medium, an equivalent ho-

mogeneous orthotropic material characterized by five material constants. The homoge-

nized material constants can further be used in an analysis of large-scale masonry struc-

tures. The obtained results of numerical simulations are compared with predictions of the 

value of elastic modulus for masonry by other researches, and qualitative agreement can 

be observed. 
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1. INTRODUCTION 
 

Brick masonry is a proved composite material formed by a regular connection of 

bricks by means of mortar joints. Mechanical properties of masonry depend 

upon the mechanical properties of its components and upon the distribution 

pattern of this two component system. In the mathematical modelling of ma-

sonry, one can also introduce a third element – the interface between bricks and 

mortar. When treated as a structural material working in plane state conditions, 

masonry is by its nature an orthotropic material. The complex mechanical be-

haviour of masonry has led engineers in the past to relay heavily on laboratory 
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test and empirical formulae for the design of masonry structures [3, 5, 6, 9, 11, 

12]. Although this approach has resulted in safe designs, it gives very little in-

sight into the behaviour of the material under stress. Now, with the advent of 

powerful digital computers and sophisticated methods of analysis, a better un-

derstanding of the load-bearing response of masonry can be gained by means of 

numerical simulation [2, 10].  

In the mathematical modelling of masonry one can generally distinguish 

two classes of models [1, 2, 4, 7, 8]: heterogeneous models and homogeneous 

models. In heterogeneous models, for each component a suitable (usually iso-

tropic) constitutive law is used and masonry (a masonry structure) is analysed 

by discretisation of each phase with finite elements separately. In homogeneous 

models, use is made of the notion of an equivalent homogeneous continuum, the 

properties of which can be obtained in laboratory tests on masonry specimens or 

by a theoretical homogenisation procedure where the notion of a representative 

volume element is applied.  Within each class of models, there exist further 

splits into subclasses due to different types of constitutive laws and effects ac-

count for (elasticity, plasticity, damage, failure, unilateral constraints). Although 

being accurate and in many circumstances unavoidable, the heterogeneous mod-

els are not suitable for analysis of real masonry structures because they lead to 

large computational costs and storage requirements. On the contrary, although 

not capable to reproduce precisely local effects, homogeneous models are very 

useful in the analysis of behaviour of large-scale masonry structures. 

Our main aim in this paper is to determine the equivalent elastic parame-

ters for brick masonry in the elastic range of response. Our analysis is based on 

a numerical homogenization technique and will be performed on a 2D represen-

tative volume element (RVE, here denoted by REO).  We have solved some 

relevant boundary value problems for the REO by making use of the finite ele-

ment method and developing our own computer program. Finally, we have ob-

tained numerical values of the following parameters for an equivalent 

orthotropic material: xE , yE  - Young’s moduli, xν , yν – Poisson’s ratios, G  - 

Kirchhoff’s modulus. These parameters can be treated as effective elastic prop-

erties of masonry and can be utilized in modelling of large-scale masonry struc-

tures.  

 

 

2. REPRESENTATIVE CELLS 
 

Masonry can be considered as a periodic two-phase composite material. In this 

study, a typical cell of masonry is called a representative element (REO), cf. 

fig.1. For brick masonry under consideration we have selected four representa-

tive cells: REO_I and REO_II and their larger counterparts MUR_I and 
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MUR_II, shown in fig. 2 with given characteristic dimensions in cm. The behav-

iour of these masonry units will be modelled numerically by dividing the area 

occupied by each component material into finite elements separately and solving 

some boundary value problems.  

 

 

 

 

 

 
 

Fig. 1. Masonry as a periodic composite material 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Representative cells used 

 

Let σσσσ  and εεεε  denote the stress and the strain tensor, respectively. Having 

solved the displacement boundary value problem on a cell and having deter-

mined the corresponding stress σσσσ  and strain εεεε , we can calculate their average 

values, σσσσ  and εεεε , as follows           
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wherein || Ω stands for the area of cell. 

 The mutual relationship of σσσσ  and εεεε  depends on the constitution of each 

component material and is defined next.  
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3. CONSTITUTIVE EQUATIONS  
 

In the present study, bricks and mortar are modelled as isotropic linearly elastic 

materials. Furthermore, we consider the case that these masonry materials are in 

the plane state of stress and have the following constitutive relation between σσσσ  

and εεεε  written in matrix form,  
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in which E  and ν  are Young’s modulus and Poisson’s number applied for each 

material individually.  

 The constitutive equations for an orthotropic material under plane stress 

condition are characterised by five independent material parameters: 

GEE yxyx ,,,, νν  and may be written as follows 
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Based on equations (3) and a set of numerical solutions obtained for particular 

boundary conditions, we shall calculate effective properties of brick masonry in 

the sequell. The  numerical solutions are determined by the finite element 

method (FEM) [10].  

 

 

4. SOLUTION METHOD AND NUMERICAL EXAMPLES  
 

The purpose of this section is twofold. First, we briefly recall notations and 

basic relations of the finite element method we applied to the 2D elasticity prob-

lem under study. Then, we wish to present some of the obtained results of nu-

merical simulations.  

We have discretized the problem using the quadrilateral finite element 

with four nodes and 8 degrees of freedom (DOF) which are nodal displacements 
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},{ iii vu=q , =i 1,2,3,4, see fig. 3. Let },{ vu=u   eee
fqK =  denote the dis-

placement vector with horizontal ),( yxuu = and vertical ),( yxvv =  compo-

nents which are functions of coordinates Ω∈),( yx . Within a typical finite 

element e occupying the region Ω⊂Ωe
, the displacement field ),( yx

ee
uu =  

can be expressed as  

e)(),( qNu yx,yx
e =                                          (4) 

where },,,{ 4321 qqqqq =e  is the vector of nodal displacements of element e, 

while N  is the matrix of shape functions whose entries, for the considered fi-

nite element, are assumed functions of the form yxyx ηγβα ++++++++++++ . 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Finite element Q4 used in numerical analysis 

 

In terms of e
q  we can also express the stresses and strains in element e: 

eee
NqBqε ∂==                               (5) 

eee
DBqD == εσ            (6) 

where ∂∂∂∂   is the matrix differential operator generated by the geometrical rela-

tions 2/)//( ijjiij xuxu ∂∂+∂∂=ε , where standard index notation is used, and 

D  is the matrix of elasticities as defined in (2) or (3).  

The equations of static equilibrium for element e can be written as the ma-

trix equation  

eee
fqK =         (7) 

in which 
eK is the stiffness matrix of element e and 

ef is a vector of elemental 

nodal forces given by  
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Ω= ∫
Ωe

Te dt DBBK      (8) 

Ω= ∫
Ω

d
e

Te gNf       (9) 

with t denoting the thickness of masonry and ),( yx gg=g the vector of loading.  

Closed formulae for entries Kij of the elemental stiffness matrix 
eK are listed at 

the end of paper in Appendix. 

By aggregation of all elemental contributions K
e
 and f

e
 we finally arrive at 

the global equilibrium equations for a cell as a whole [10], 

   K q = f   (10) 

in which K is the global stiffness matrix and f is the global vector of nodal loads. 

Having accounted for the boundary conditions, we solve the system of linear 

equations (10) for the global vector of nodal displacements q.  

Now, let us pass to numerical simulations of the behaviour of masonry 

that will be carried out on selected representative cells. For the representative 

cells REO_I and REO_II we have used three meshes, cf. figs. 4-6: 

• S1: 210 elements, 242 nodes, 484 DOF, 

• S2: 760 elements, 819 nodes, 1638 DOF, 

• S3: 1456 elements, 1537 nodes, 3074 DOF,  

and one mesh for cells MUR_I and MUR_II:  

• M1:1056 elements, 1125 nodes,  2250 DOF. 
 

 

 

 

 

 

 
 

 

 
 

 

 

Fig. 4. REO_I, Mesh  S1:  210 elements, 242 nodes, 484 DOF 
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Fig. 5. REO_I, Mesh S2: 760 elements, 819 nodes, 1638 DOF 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6. REO_I, Mesh S3: 1456 elements, 1537 nodes, 3074 DOF 

 

As can be seen, bricks and mortar joints are discretized individually. The di-

mensions of the brick are 25 x 12 x 6.5 cm and the assumed thickness of (bed 

and head) mortar joints is 1.5 cm. The material parameters for brick and mortar 

were taken from literature [1], [4] and are summarized in Table 1. On the sur-

face of REO_I and REO_II we have selected two characteristic points w1 and 

w2, at which we will observe changes in displacements and stresses for various 

cases of loads and meshes. 

 
Table 1. Material parameters for brick and mortar 

Material fc Ex = Ey νx = νy G=E/2(1+ν) 

Brick ≈ 52 11000 0,20 4580 

Mortar  ≈ 4,0 2200 0,25 880 
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In table 1 we denote: fc – compressive strength [MPa], Ex, Ey – Young’s modulus 

[MPa], G – Kirchhoff’s modulus [MPa], νx, νy –Poisson’s ratios. 

We have considered three load cases of imposed boundary displacements, 

see fig. 7, with the following induced averaged strains: 

• load case 1 – horizontal compression: u ≠ 0, v = 0; ≠xε 0, =yε 0, =xyγ 0, 

• load case 2 – vertical compression: v ≠ 0, u = 0; ≠yε 0,
xε = 0, =xyγ 0, 

• load case 3 – horizontal shear: u ≠ 0, v = 0; xε = 0, =yε 0, ≠xyγ 0. 

It is worth noticing in passing that the enforced horizontal and vertical boundary 

displacements generate displacement fields that satisfy uniform strain boundary 

conditions. 

 

 

 

 

  

 

 
 

Fig.7. Load cases of imposed boundary displacements: (1) – horizontal compression,  

(2) – vertical compression, (3) – horizontal shear 

 

For all the indicated representative masonry cells REO and MUR and fi-

nite element meshes we have simulated the three load cases and the obtained 

distributions of stresses σx, σy, τxy and strains εx, εy, γxy were used to calculate 

averaged stresses and strains in the corresponding cells and then the effective 

material parameters. It should be noted that the numerical results obtained for 

REO_I,  REO_II and MUR_I, MUR_II for similar meshes are actually the same. 

Hence we illustrate graphically the obtained results only for cell REO_I and 

load case 2.  

Figs. 8 and 9 show influence of the coarseness of finite element mesh on 

values of displacements and stresses at point w1 and w2 which are located at 

interface mortar-brick corners, cf. fig. 4. As one could expect, the biggest rela-

tive changes are in shear stresses τxy .  

 

u=0,005 cm 

v=0 

v=0 

u=0,005 cm 

v 

u 

u=0,005 cm 

v=0 

v=0 

u=0,005 cm 
u=0 u=0 

v=0,005 cm 

v=0,005 cm 

(2) (1) (3) 



Numerical homogenization of elastic brick masonry 143 

 

1,408E-04 1,145E-04 8,461E-05

3,353E-03 3,420E-03 3,433E-03

-7,913E-05-1,081E-04-1,261E-04

-1,566E-03-1,579E-03-1,547E-03

-2,0E-03

-1,0E-03

0,0E+00

1,0E-03

2,0E-03

3,0E-03

4,0E-03

6,0 6,2 6,4 6,6 6,8 7,0 7,2 7,4 7,6 7,8 8,0 8,2

ln DOF

u
,v

[c
m

]

 
Fig. 8. Displacements of points  w1, w2 of REO_I for various meshes, load case 2  
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Fig. 9. Stresses at points  w1 and w2 of REO_I for various meshes, load case 2  
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Distributions of stresses along characteristic cross-sections for various meshes 

are shown in figs. 10 to 13. As can be observed, these solutions exhibit good 

convergence properties. All the graphs in figs. 8 to 14 correspond to the load 

case 2.  
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Fig. 10. Stress σy in REO_I along section 1-1 for various meshes, load case 2  
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Fig. 11. Stress σy in REO_I along section 2-2 for various meshes, load case 2 
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Fig. 12. Stress σy in REO_I along section 3-3 for various meshes, load case 2 
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Fig. 13. Stress σy in REO_I along section 4-4 for various meshes, load case 2     
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Averaged values of stresses σ and strains ε  for masonry cells REO and MUR, 

can be calculated component wise according formula (1) and are collected in 

tab. 2 for the three load cases.  
  

Table 2. Averaged stresses and strains for cells REO and MUR 

Load case 1               0γ,ε,τ
xyyxy =  

Cell Mesh xσ  [ MPa] yσ  [ MPa] xε  

S1 -2.7941 -0.4446 -3.7736E-04 

S2 -2.5772 -0.4156 -3.7736E-04 REO_I 

S3 -2.5134 -0.3949 -3.7736E-04 

S1 -2.7941 -0.4446 -3.7736E-04 

S2 -2.5772 -0.4156 -3.7736E-04 REO_II 

S3 -2.5134 -0.3949 -3.7736E-04 

MUR_I M1 -2.7716 -0.4344 -3.7736E-04 

MUR_II M1 -2.7714 -0.4340 -3.7736E-04 

Load case 2           0γ,ε,τ
xyxxy =  

Cell Mesh xσ  [ MPa] yσ  [ MPa] yε  

S1 -0.8140 -4.0127 -6.2500E-04 

S2 -0.8237 -4.0042 -6.2500E-04 REO_I 

S3 -0.8267 -4.0009 -6.2500E-04 

S1 -0.8140 -4.0127 -6.2500E-04 

S2 -0.8237 -4.0042 -6.2500E-04 REO_II 

S3 -0.8267 -4.0009 -6.2500E-04 

MUR_I M1 -0.8160 -4.0078 -6.2500E-04 

MUR_II M1 -0.8160 -4.0078 -6.2500E-04 

Load case 3      0ε,ε,σ,σ yxxx =  

Cell Mesh xyτ   [ MPa] xy
γ  

S1 2.4069 5.6166E-04 

S2 2.5456 5.8668E-04 REO_I 

S3 2.5338 5.8686E-04 

S1 2.4523 5.5334E-04 

S2 2.5993 5.8111E-04 REO_II 

S3 2.5930 5.8095E-04 

MUR_I M1 2.5102 5.9724E-04 

MUR_II M1 2.5428 5.9600E-04 

 

 



Numerical homogenization of elastic brick masonry 147 

 

We can determine the effective material parameters of masonry as an 

equivalent homogeneous orthotropic material by formulae [4]:  

 
)1()1()2()2(

/,/ xyxyxy σσνσσν ==  (11) 
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)3()3(

/ xyxyG γτ=  (14) 

 

in which the super index 
(i)

 indicates the number of corresponding load case.  

Table 3 contains the obtained values of effective material parameters according 

to eqns. (11) –(14) for values of stresses and strains given in tab. 2.  

 
Table 3. Effective parameters for masonry calculated for various cells 

Cell Mesh xE   

[ MPa] 

yE   

[ MPa] 
xν  yν  

G  

[ MPa] 

S1 7165 6213 0.1591 0.2028 4285 

S2 6603 6194 0.1613 0.2057 4339 

 

REO_I 

S3
 6444 6193 0.1571 0.2066 4318 

S1 7165 6213 0.1591 0.2028 4432 

S2 6603 6194 0.1613 0.2057 4473 

 

REO_II 

 S3
 6444 6193 0.1571 0.2066 4463 

MUR_I M1 7110.2 6207.9 0.1567 0.2036 4203.0 

MUR_II M1 7110.3 6208.1 0.1566 0.2036 4266.3 

 

The final results of tab. 3 show that the values of parameters dependent on 

the coarseness of finite element meshes applied but are independent of represen-
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tative cells used, the existing differences for small REO and bigger MUR cells 

seem to be an effect of relative coarseness of meshes applied to MUR cells. It is 

remarkable that the Young modulus xE  has appeared most sensitive (10 %), 

whilst yE  least sensitive (0.3 %) and both approaching different values.  

 

 

5. ELASTIC MODULUS BY OTHER RESERCHES 
 

There are proposed many formulae for determination of material parameters for 

masonry in the literature. These formulae usually do not account for anisotropic 

properties of masonry, but rather treat it as an isotropic material with, for exam-

ple, Kirchhoff’s modulus G is usually estimated as 40% E [10]. 

By Polish Standard: PN-B-03002 „Unreinforced masonry structures”, the 

elastic modulus E of masonry can be calculated as 

 kc fαE =    (15) 

where fk is compressive strength of masonry and αc is a coefficient. For brick 

masonry and for mortar with compressive strength fm ≤ 5 MPa, one can assume  

αc = 600. Compressive strength of masonry can be calculated as 

 
25,0

m

65,0

bk ffKf =       (16) 

where K is a coefficient dependent on element group [9], fb and  fm is respec-

tively compressive strength of brick and mortar. For the first element group and 

for compressive strength of brick fb > 40 MPa, one can take K = 0.55.  

 Hendry [5] gives a similar formula,  
 

 
'

cσ700E =     (17) 
 

where 
'

cσ  is compressive strength of masonry. 

 The next two formulae account for elastic moduli of brick Eb and mortar 

Em. Matysek [6] has proposed the following expression  
 

 bE
βξ25,1

1ξ25,1
E

+

+
=    (18) 

 

in which ξ is the ratio of brick’s height to thickness of mortar joint and β is the 

ratio of brick’s elastic modulus to that of mortar. Another formula was sug-

gested by Brooks [6] 
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mb E

14,0

E

86,0

E

1
+=    (19) 

 

According to Ciesielski [3], the elastic modulus can be obtained as 
 

 i

m

i

b

i

m

i

bi

śr EE20,0

EE20,1
E

+
=    (20) 

 

where Ei
b, E

i
m are medium elastic moduli of brick and mortar in section i. 

 Values of elastic modulus determined according to suggestions (15) – 

(20) and material data given in table 1 are collected in table 4. 

 
Table 4. Elastic modulus of masonry 

Author 
Elastic modulus E 

[MPa] 

PN-B-03002 6087 

 Ciesielski 6600 

Matysek 6776 

Hendry 7000 

Brooks 7051 

 

It may be noted that the values of elastic modulus obtained by proposals of other 

researches are similar to the results obtained in our numerical simulations. 

 

 

6. CONCLUSION 
 

In this paper we have presented a numerical homogenization technique for 

determination of effective elastic material parameters of brick masonry. The 

applied approach is based on the finite element method which is used for 

discretization of the corresponding boundary value problem posed on a 

representative cell of masonry for three particalar loading cases.   

The obtained numerical results confirm the orthotropic properties of brick 

masonry. The calculated Young moduli in horizontal direction is larger than the 

one in vertical direction. This is also observed in laboratory tests by other 

reserches. In fact, we have considered different representative masonry cells 

(REO_I, REO_II, MUR_I, MUR_II) and the obtained results are practically the 

same, as expected. Some noticable differeces are observed for different finness 

of finite element meshes.  
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Numerical simulation has proved to be a convenient powerful tool for 

homogenization of masonry material, and should be regarded as the effective 

complementary tool to laboratory tests. The values of material parameters 

determined herein by means of numerical homogenization can further be used as 

input to an elastic homogeneous model of large-scale masonry structures.  

 
 

REFERENCES 
 

1. Anthoine A., Derivation of the in-plane elastic characteristics of masonry 

through homogenization theory, Int. J. Solids Struct. 32, 2 (1995),  137-163.  

2. Bull J. W. (Ed.), Computational modeling of masonry, brickwork and block-

work structures, Saxe-Coburg Publications, Dun Eaglais 2001. 

3. Ciesielski R., „O dynamicznych modułach sprężystości murów z cegły”, 

XLV Konferencja Naukowa Wrocław – Krynica, 1999, 117-124. 

4. Guowei Ma, Hong Hao, Member, ASCE, Yong Lu: Homogenization of ma-

sonry using numerical simulations, Journal of Engineering Mechanics 127, 

2001, 421-431.  

5. Hendry A. W., Sinha B. P., Davies S. R., Design of masonry structures, 

E&FN SPON, London 1997. 

6. Kubica J., Drobiec Ł., Jasiński R., Badania siecznego modułu sprężystości 

murów z cegły, XLV Konferencja Naukowa, Wrocł.–Krynica 1999, 133-

140. 

7. Lopez J., Oller S., Onate E., Lubliner J.: Homogeneous constitutive model 

for masonry, Int. J. Numer. Meth. Engng. 46, 1999, 1651-1671. 

8. T. Łodygowski, M. Wierszycki, Zastosowanie homogenizacji numerycznej 

muru ceglanego do oceny nośności złożonych konstrukcji, VI Konferencja 

Naukowa Konstrukcje Zespolone, Zielona Góra 2002, 79-102. 

9. W. Starosolski, R. Kliszczewicz, J. Kubica, Badania żelbetowych modeli ram 

żelbetowych wypełnionych murami z drobnowymiarowych elementów, Prace 

Instytutu Techniki Budowlanej, 1-2, 1991, 96-105. 

10.  Zienkiewicz O.C: Metoda elementów skończonych, Arkady, Warszawa 

1972. 

11.  PN-B-03002:1999,  Konstrukcje murowe niezbrojone. 

12.  ENV 1996-1-1:1995, EUROKOD 6: Projektowanie konstrukcji murowych, 

część 1-1: Reguły ogólne. Reguły dla murów niezbrojonych, zbrojonych  

i sprężonych. 
 

Acknowledgements. Work supported by the Committee for Scientific Research 

(KBN) under Grant No. 5 T07A 042 24 in the years 2003-2006. This support is 

gratefully acknowledged. 



Numerical homogenization of elastic brick masonry 151 

 

 
NUMERYCZNA HOMOGENIZACJA SPRĘŻYSTYCH ŚCIAN CEGLANYCH  

 

S t r e s z c z e n i e 

 

Praca dotyczy numerycznego sposobu homogenizacji muru ceglanego w zakresie 

sprężystym. Problem homogenizacji postawiono w płaskim stanie naprężenia. Odpo-

wiednie zagadnienie brzegowe na reprezentatywnej komórce zdyskretyzowano metodą 
elementów skończonych wykorzystując czterowęzłowy element skończony o ośmiu stop-

niach swobody i opracowany własny program komputerowy. Zastosowana metoda ho-

mogenizacji pozwala wyznaczyć dla muru, który jest niejednorodnym dwuskładnikowym 

materiałem kompozytowym, wartości pieciu efektywnych parametrów materiałowych dla 

jednorodnego materiału ortotropowego. Wyznaczone parametry mogą następnie być 
użyte w analizach całych, dużych konstrukcji murowych. Otrzymane wyniki analiz nume-

rycznych porównano z propozycjami obliczania modułu sprężystości muru według in-

nych badaczy, uzyskując dobrą zgodność jakościową.  
 

 

APPENDIX 

 

We list here formulae for the entries Kij of the elemental stiffness matrix 
eK for 

the orthotropic four-node quadrilateral finite element with eight degrees of free-

dom. By a and b we denote here the dimensions of the element respectively 

along axis x and y, and g stands for its thickness.   
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