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A PARAMETER-ADAPTIVE CONTROL TECHNICUE

G. Stein G. Saridis
Purdue University Purdue University
Lafayette, Indiana, USA Lafayette, Indiana, USA
56

For some years now the dual control formulation and the dynamic

2,3

programming formulation for the so called "optimal adaptive control
problem"” have been available to solve control problems involving certain
unknown quantities such as parameters of the sys.2m's mathematical model,
parameters of the statistical descriptions for various disturbances
affecting the system, or entire functional relationships involved in the
mathematical representation of the control problem. Various efforts have
been made to utilize these formulations and to modify them for numerous

¢ ; 1 O
special circumstances™ 3.

Only limited success, however, has been
achieved in dealing with the significant analytical complexities and
computational burdens associated with both formulations.

This paper considers a special case of the optimal adaptive control
problem for which it is possible to exploit a simple approximation tech-
nique to obtain an analytic solution of the functional equations associated
with the dynamic programming formulation. The adaptive control problem
itself is formulated in Section II of the paper, followed by a discussion
of the approximation technique in Section III and the resulting adaptive
control system in Section IV. The solution is then illustrated with a

simple example in Section V.

II. A Formulation of the Adaptive Control Problem

Let the system be described by the following linear, discrete-time,
stochastic model,
x(kr1l) = A(oyk) x(k) + B(apk) u(k) + T(ek) (k) (1)
ko ale =Gl Ned

with the measurement equation

y(k) = c(%k) x(k) + D(xk) N(k), k=1,2...,N (2)
The vector x(k) is an n-vector of state variables defined at time instant
by u(k) is an unconstrained m-vector of control inputs, and y(k) is an
r-vector of meesured outputs. The r.-vectors £(k) and the r,-vectors

fré
(k) form two independent sequences of independent identically distributed



Gaussian random \_rectors $
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= 0,1, ¢00,N-1
£ {n(x) (0}

(k) ~ N(O,I_ ) S
77, T2

E=1,2 00,8
Similarly, the system's initial state x(0) is assumed to be a Gaussian
distributed random vector:

T
x(0) ~ N (3(0),2(0))  P(0) = E {[x(0)-u(0)1[x(0)-u(0)17} (1)
The quantities A(%, k), B(k), I'. ), C(®%k) and D(x, k) are matrices with
appropriate dimensions whose elements are arbitrary but known functions of
the time index k and of the g-vector @. The vector @ consists of unknown

system parameters. It is assumed to belong to the finite set Qy and to .
be constant on the control interval k = 0,1,...,N.

The adaptive control problem for this system consists of finding a
sequence of control inputs {u(k), k=012, ...,N-l} as functions of the

available measurements,
k k
u(k) = fk(y ) oy {Y(l):Y(2)9°-'JY(k)}’ k = 0,1,...,8-1 (5)

such that the following average cost function is minimized:

N
7o2{ TR+ Tl ]} -

i=1

The symmetric matrices Q(®, k) and R(%, k) are again known functions' of the
parameters @ and of the time index k. :

The following additional assumpt. are made:
(1) D(%k) D(xk) >0 )
(11)  a(®k) = Q7 (k) >0 » for all @ € Q and k=1,2,...,N

(111) R(%k) = B (%k) > 6

(iv) =an a-priori discrete probability distribution function q(0)
for the vector & is available, where q(0) is an s-vector
with components

0< q_l(o) = Prob [a = °’1] <1, i=1,2,..
8
satisfying E qi(o) - e
i=1



Since a feedback control of the form (5) is desired, the method of
dynamic programming will be used to minimize criterion (6).
Define the "optimal return function”:

V(yk, N-k) A cost of an N-k stage adaptive control process using
the optimal control sequence {u (k),u (k+1)y...,
u (N-l)} AR AsrSort Saterssbise (4) and
(7 iv) and upon the measurement sequence

£ = {y),5(2), - p vy}

Applying the "Principle of Optima.ld:ty"z, the optimal return function obeys
the following recursive functional equation:

V(75, N-k) = ﬁ%ﬁ)E {Hx(krl)ll !lu(k)llR + v( -k-l)ly (8)

with V(y",0) = 0 (with probability one).

In this equation, E [ ]yk denotes the mathematical expec:'tation condi-
tioned on the sequence y Kand on the a-priori data (4) and (7 iv). The
dependence of Q and R upon parameters Q and time index k has been
suppressed. As a matter of convenience, this practice is continued in
all subsequent derivations.
Equation (8) may be solved backwards, starting with & one-stage process.
V("% 1) = min & (@) +. -1 |} (9)
u(N-1)
The conditional expectation of equation (9) can be expressed as

{2

s
zhob la=oa Yy E {(’")l" . "y’ml} (10)

i=1
5

Y g 1) B{(-+)a = o, ¥}
i=1

where q_l(N-l), i=1,2,...58, is the a-posteriori probebility distribution

of paremeter vector @ based upon measurements yN 1, so (9) beccmes

V5 1) = min Z%(N-l) E{ Hx(m)!l?Q + a1 fa = o, 9"}
u(N-1),- 1 |
‘ N
_ (F l) q—l(N-l) E{ [HX(N)”Q o= 24 ]+
a(R- 1)"2 ' Tl YN-I}
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In terms of the vectors u(ai,k) AE {x(k)|a = ai,yk}, define the ns-vector
a7 T
X'(6) = @ (e,k), wi(ay k), -eepn’ (@, k). (12)

Then it is readily verified™” that V(yN-l,l) is quadratic in the vector
x(N-1),

V(yN-l,l) = | i(N-l) ”g(q(N-l), 1) + Nq@-1),1) (13)

* -~
and the optimal control u (N-1) is linear in X(N-1),
* a
u (N-1) = -G(q(N-1),1) X(N-1) (14)

where matrices S and G and scalar T are nonlinear functions of the
a-posteriori distribution qi(N-l), i=1,2,..4,8, which are defined in the
Appendix, equations (Al), (A2), and (A3).

It is now evident that the vectors X(k) and q(k) constitute a set of
"sufficient coordinates"15 for the adaptive control problem formulated in '
equations (1) - (7). The optimal return function can be expressed as

V(y5,§-k) = V(X(k), a(k), N-k)

and the functional equation (") becomes

VR0, (), ¥k) = min ) q @) B x| +h)E +  (15)
i=1 :

V(R (k+1), q(ler1), N-k-1) | = ai,'i(k)}
with V(X(N), q(N),0) = 0 (with probability one).

The existence of sufficient coordinates reduces the dependence of V(***)
upon a growing number of variables (yk) to the dependence upon a constant
and finite number of variables (X(k),aq(k)).

Equation (15) can now be used to continue the dynamic programming
solution, starting with the quadratic return function V(X(N-1),q(N-1),1)
of (13). As.defined by equation.(A2), however, _the matrix S(q(N-1),1)
is a nonlinear function of the a-posteriori distribution qi(N—l),
i=1,2,...,8. This fact prevents the successful completion of the solution
in closed form. The function V(i(N-Z),q(N-Z),z) and all subsequent optimal
return functions are no longer expressible in terms of quadratics or in
terms of other simiiarly convenient functional forms.

The solution of (15) must therefore be obteined by numerical tech-

niques™ or by approximation methods. Because the computing time and



memory requirements of numerical solutions are prohibitive for all but the
simplest problems, the following discussion will deal with an approximation
method which is based upon a very intuitive and appealing linearization
technique.

III. Linearization of the Weighting Matrix of the
Optimal Return Function i

It has been pointed out that the optimal return function for a single
stage of the adaptive control problem formulated above is guadratic in
Z(N-1) with a weighting matrix S(q(N-1),1) which is a nonlinear function
of the a-posteriori distribution q(N-1). That is,

s(q(N-1),1) = fl(ql(n-l)’ qg(N'l): seey qs-l(N'l) )s (16)

where fl( +es) is the matrix-valued function of (s-1) independent variables
defined by equations (Al) and (A2). The fact that fl(---) only has (s-1)
arguments is a consequence of the relation
s
Z q_i(k) = | Xm0, T e led i (17)
i=1
Let the matrix ¥(g,1) be the matrix-valued "tangent plane" to the matrix

S(g,1) at the point q(0). This new matrix ¥ can be computed by considering
S itself to be a matrix "surface" on an (s-1) dimensional Euclidean space.

£(a)59pr 00050y ;) - 8= 0 (18)
Then the "tangent plane" at the point q(0) is defined by
s-1
Bfl
Yy %= [a;-q,(0)] - [¥ - s8(a(0),1)] = 0, (29)
i=1 a(0)

Using (17), this expression can be rewritten as

e1) = gy U;(1) + g U, (1) +++ q U (1) (20)

where Ui(i), i=l,...,5, are (ns x ns) matrices defined by

s-1 af
v, (1) = sa(0),1) - ) El q,(0) (21)
i=1 q(0)
) o (1) 11,2 1
U = o + U (1 = eseyS=1 .
i aqi s ) Lo »

a(0)




The optimal return function of the one-stage adaptive control process
(13) will now be approximated by replacing the weighting matrix S(q(N-I1),1)
by the linearized matrix S(g(N-1),1) defined in equations (20) and (21).
Using this approximation, the return function of a two-stage adaptive
control process can be cbtained analyticelly from the e@tion

s
H(R(§-2), q(N-2),2) = ?m ;ql(n-z) E {Hx(N—l)llQ + Tan-2l? +

u(KN-2 -1
-0 (go1, 1) + Ta@-1),1) o=y, R(w-2)} (22)
The resulting return function is again quadratic
VE(§-2), a(¥-2),2) = R(8-2)150 g 5 ) + Ta(¥-2),2)  (23)
and the corresponding control is 1.‘l.nea.z-l2 ;
T(§-2) = -6(a(§-2),2) £(¥-2). : " (2b)

The matrices S(q(N-2),2) and G(q(N-2),2) are nonlinear functions of the
a-posteriori distribution q(N-2) which have exactly the same functional
forms as the corresponding matrices of the one-stage return function.

The symbols V and % in equations (22) - (24) ere used to emphasize
the fact that these gquantities are nb longer the optimal return function
and the optimal control respectively but rather that they depend upon the
approximation of S(q(N-1),1) by the linearized matrix S(q(N-1),1). Since
this approximation is directly involved in the minimization indicated by
equation (22), the return function ¥ of (23) and the control ¥ of (24)
have a meaningful interpretation only if an inequality of the type

&5 (q, 1) < BH(q, 1) (25)
for all X and all qe{q|o<q_i <1,.1=1,...,5; Y g - 1}
i=1

can be established. 'ff(i(N-Z), q(N-2),2) is then the minimm cost of a two-
stage adaptive control process for which the "cost of the final stage is
samewhat higher than the optimal cost." ?f*(N-z) is, of course, the
corresponding minimizing control. The inequality (25) is indeed satisfied
as a consequence of the following property.

Upper Bound Property of the ¥ Avproximation: For any fixed but
arbitrary vector i, the function !bzl'%(q’l), considered as a function of the
s-vector g, defines a supporting l:\yperplane7 of the closed convex set (2
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a={=olocz < I?xlls(q’l) a€ nq} (26)
at the point r”X"S(q(O) 1) Q(O)J

where Q = {q|o €4 %1y d=1y2; en0s83 ? Yaq - }
1=l
Proof: The proof of this property consists of two parts:

(i) A proof of convexity for the set Q, which reduces to a procf
of convexity for the function Hx“s( 1) on the damain Q,

The details can be found in reference 12.

(ii) A proof of the fact that “x\ (g, 1) defines a supporting hyperplene
of 0 at [”X’s( (0), 1y q(0) | This follows directly fram the
definition of '% as the matrix-valued "tangent plane” to S at
g=q(0), and from the convexity of Q.

Inequality (25) is now a direct consequence of the fact that the set Q
and particularly its boundary nx“s( 1) lies in one closed, half-space
produced by the supporting hyperplane ?!x[}g( 1%

The inequality (25) is a property of the § approximation which lends
a meaningful interpretation to the two-stage return function V(i(n-z), g(m-2),2).
Equally important, however, is the fact that this function itself is again
quadratic, with a nonlinear weighting matrix S(g,2) which has exactly the
same functional form as the matrix S(g,1). It is therefore possible to
approximate the new weighting matrix by the same linearized form

s
Ae2) = ) g (@), (1)
i=1
where the matrices Ui(z), i=l, ..., s, are defined by analogy to equatiom (21).
This approximation again satisfies an upper bound property
A 2 A 2 -~
IIXHS(%Z) < "X“s‘(q,z) for all X and all q € O (28)
and further, it permits the computation of an approximate three-stage
return function
a A 2 H
F(X (n- : = |K(n-3)! + T(q(N-
(X(n-3), o(N-3),3) = |K( 35 q(n-3), 3) (g( 3),3) (29)
with the minimizing control
¥ -
u (§-3) = -G(q(N-3),3) X(N-3) . (30)
Since this three-stage return function is agein quadratic with the same
nonlinear weighting matrix, it is evident that the T approximation may
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be applied once more to yield an approximate four-stage return function.
and that repeated applications of the same procedure can be used to obtain
a solution for the entire N-stage adaptive control process. The computa-
tions required for such a solution are summarized by the following
recursive equations:

Solve backwards for k=N,N-1,...,1

- T
Q () = [1-Ke, () [ [, (0) + v, (8-10) ] [2-Ke, () | (31)
5 1=1,2) 00058
Fak) = ) q R(ey,k) (32)
i=1
S
Ask) = Y g @K (33)
i=1
o ¥-+1) = [B¥ e 105 + Rlak) [ 5 qaw) K (34)
s(e,¥-+1) = X Yo k) [X - Balan-e1) ] (25)
o,
% () =2 [ () - o0 ] X - (36)
a(o

& [ () - o ()] Bo (a(0), B-+1) -

¢ (a(0),¥-k+1) 5" [Q (k) - o (1) | X +

+

¢ (a(0),m-11) {5 [ (x) - o ()] B+

+

R(2,k) - R, K)} 6(a(0), N-kv1)

1=1,2,...,8-1

N af
U (N-k+1) = 5(a(0), N-k+1) -Z q,(0) -—g-é?l (37)
o S . q(0)
: af
U, (F-k+1) = U_(N-ke1) + ~Dcktl s i B i il (38)

|y
with initial conditions Ui(o) Cole M T
Again, detailed derivations of these recursion equations are available
in reference 12. The needed definitions of known matrices A = A(k-1),
B = 3(x-1), X = K(k), and ¢, (k), Wi(k) are found in the Appendix, equations
(ak), (a5), (a6), and (A10), (All), respectively.
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Repeated applications of the § epproximation thus yields a closed
form approximate solution .of the adaptive control problem formmlated by
equations (1) - (7). This solution can be readily interpreted in the
form of a closed-loop adaptive control system.

IV. The Resulting Adaptive Control System

As shown in the derivations above, the adaptive controller must
%
generate control signals u (k) defined by

(k) = -a(a(k),N-k) X(k) k=0,1,...,N-1 .

The controls are thus function of the "sufficient coordinates" i(k), a(k)
and of the matrices G(gq,k). Expressions for the feedback matrices can,
of course, be obtained entirely off-line by solving equations (31) - (37)
recursively. The sufficient coordinates, on the other hand, must be
computed on-line by the adaptive controller itself. The computation of

n

X(k) may ‘be interpreted as "state estimation”, which can be performed
by the simultaneous operation of s Kalman-Bucy filter59 (equations (A13) -
(A16)), and the computation of q(kx) may be interpreted as "parameter
identifisca.tion", which can be performed by the application of Bayes
theorem
p(y(k+1) o=, X (k))q, (k)
g (k1) = — 1=1,2500098 (39)
Y ply(er1) o=, X(k))a, (k)
L J J
J=1

where p(y(k+l)|a=ai,}2(k)) is the probability gensity function of the
(k+1)-th measurement conditioned on osc, and X(k). With these inter-
pretations, the resulting closed-loop adaptive control system will have
the form shown in Figure 1. It is important to observe that the apparent
separation of the state estimation and parar:ter identification functions

L
k1 , but

of this controller is not a consequence of an a-priori assumption
rather, that it is a consequence of the approximation method used to solve
the recursive dynamic progremming equations. A further consequence of
this method is the fact that the feedback matrices G(g,k) are intimately

related to both the state estimation and parameter identification schemes.

V. An Example
The parameter adeptive control technicue presented above is now

illustrated with the following simple example:
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Let the system be described by the discretized versionv of a continuous-
time stochastic second order system with a known natural frequency - X
radian/second snd with an unknown damping ratio 5, which may assume one
of two possible values 8, and 5, with probability ql(O) and qz(o)

respectively. The system equat?.ons will have the following form
1 A 0 (o] :
x(k+1) = x(k) + u(k) + 1 | &(x) (40)
-4 1-zsiA A uiAZ
y(e+1) = (1, 0) x(er1) + y; T(k+1) (¥1)
i=1,2 k=0,1, 00, 49

where A is the sampling period of the discretization and where o and Yy
i=1,2, are the standard deviations of the disturbance input and the

measurement noise respectively. Choosing the cost function

50

s=e{ ) [Zw+Lw+Lan]}, (s2)
i=1 ;

and the values

q(o)a[j, x(0) ~ 8 [ [_6:] : [z :]]

A= 0.1, cl=l, cz=2, yl=y2-.316,

the comtrol gains G(q,k), k=1,...,50, defined by recursive equations

(31) - (38) were computed for several sets of values of 8, and 8,.

Using these gains and a "true" system corresponding to the index i=1,

the 50-stage adaptive control process was simulated on a CDC 6500 digital
camputer. The average cost of 100 simulation runs was then used to com-
pare the performance of the adaptive control technique presented here
with the performance of two other controllers, (1) the optimal stochastic
controlier camputed for a plant with known parameter values corresponding
to i=1, and (2) the optimal stochastic controller computed for a plant
with known parameter vaelues corresponding to i=2. Note that neither of
these comtrollers is optimal for the adaptive control problem formulated
in Sectiom I{. The true cptimsl solution for this problem is, of course,
not available. The 'two controllers do, however, provide a meaningful
standard of canpa.riso?x.- They are the controllers which will be obtained
if am a-priori decision is made about the value of the parameter vector
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@ = (5, y). Controller (1) for i=1 corresponds to the correct decision
and controller (2) for i=2 corresponds to the incorrect decision.

A typical comparison between the adaptive control system and the two
controllers above is given in Table I. Additional comparisons can be
found in Figures 2 and 3. Figure 2 compares the per-stage costs of the
three processes represented in the first row of Table I, while F:Lgure 3
compares their phase plane trajectories. Again, both figures were obtained
by averaging 100 separate simulation runs. To conserve space, the behavior
of the a-posteriori probabilities q(k), k=0,1,...,50, associated with the
adaptive control process is not shown. It is sufficient to state that
these probabilities exhibit well-behaved convergence properties from the
a-priori values qT(O) = (.5,.5) toward qT(co) = (1, 0).

5 Cost using optimal Cost of adeptive Cost using optimal
51’ 2 controller for i=1 control process controller for i=2
0.1, 0.9 5TL 587 ' 958
0.25, 0.75 by 455 536
0.40, 0.60 357 358 367

Table I. Comparison of Controllers

The comparisons of Table I and Figures 2 and 3 all indicate that the
proposed parameter-adaptive control scheme represents a promising approach
to the solution of appropriately formulated control problems.

VI. Conclusions

This paper has presented an approximation technique for the closed
form solution of the functional equation of dynamic programming associated
with a particular class of linear, parameter-adaptive control problems.
The method leads to a simple and intuitively appealing adaptive controller
whose performance, at least in the example presented, appears quite
promising. Many questions, however, remain unresolved. For example, the
control processes considered here are limited to finite duration. This
restriction eliminates the need to consider the convergence question of
the approximate solution of the dynemic programming equation3. It is
clear, however, that if convergence is indeed obtained, then the storage
requirement associated with the gains G(q, k), k=1,2,...,N, can be signifi-
cantly reduced by storing only G(q, c© ) for an infinite time adaptive con-
trol process. Another interesting question concerns the fact that the
linearization procedure makes g(g,k) an implicit function of the a-priori
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distribution q(d). It would, therefore, seem appropriate td ‘recompute the
feedback gains occasionally as the control process evolves and as a-
postériori probabilities become available about which to re-linearize.
These and related questions are subjects of further research.
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APPENDTY.

Matrices for the one-stage adaptive control process are

where

(g 1) = B @(e W 5+ Ko™ - em X (22)
s(g1) = K"’ AW X - Bolel) ] (22
S
Q1) = ) g1, (1)
i=1
- - L1 = 3
A = A(F-1) = aiag { ' I-K(a,N) c(a,N) | (e, 5-1); (Ak)
B = B(N-1) = column 4 rI-zf'( ,N) c(aJn) B(a,, ¥-1 } (45}
]
E = E(N) = coluwmn «K‘o x,, (1€)
s
R(e¥) = ) o R(e,X) ., (a7)
i=1
£
- o« A =
Ae,N) = ) q & (W) (a8)
i=1
- s e 1 :
o (W) = 1K ¢ ® [ w @ 1K c () s LS (a9)
c;(my = (0 - c(a,N) <=+ ©), i=l,...,s (A10)
Z itk partition
B iy ‘/c"h
W (W) = | 5 "@(e,N) " i|ith diagonal
(') 6pu'tition, o ) DR (A1)
7, (N) = Trace (Q(a;,N) P(a;,N)) +
& m -
Trace rwi(n) K(cMc™+ DDV )ET JEE PR (a12)

and where the matrices K, P, and M are obtained from the solution of s
o]
Kelman-Bucy filter equations”:

wlay,a1) = (150) [4 ula,x) + B u()]+ Ky(x)

8(2,;0) = u(0) (413)
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= P(ai,ki-l) c(op?)t . (a14)

lP(ai,ki-l) =M - MCT [cuér+ DDT] M (a15)

M= AP(a,k) AT + T, P(a;,0) = P(0) (a26)
T k=0,1,...,§-1

In equations (Al2) - (Al6) the suppressed @ and time dependence is given

by
K

K(airk*‘l) » C C(ai,k"l): D= D(ai:k"l):

M

M(Cli,k'l-l) » A A(ai’k): B = B(ai,k) y I'= F(ai,k) .
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DESIGNING MODEL-ADAPTIVE CONTROL SYSTEMS
USING THE METHOD OF LIAPUNOV :‘AND THE
INVERSE DESCRIBING FUNCTION METHOD

H. Feikema and H.B. Verbruggen

.

Technological University, Department of Electrical Engineering,
Control Engineering Laboratory, Delft, The Netherlands.

1. Introduction.

Im the last few years attention has been paid to nonlinear adaptive

control systems. This development is caused by the fact that nonlinear

elements can be applied in a relatively simple way for adaptation. Besides,

the application of the theories for nonlinear systems has been conside-

rably facilitated. In this paper we restrict ourselves to model-adaptive

control systems.

In designing these systems the following points have to be considered:

- the choise of the model

- the convergence of the adaptive operation and the stability of the
cumplete adaptive system

- the structure of the designed system and the implementation of the adap-
tive controller with respect to possible variations in the parameters of ~

the adeptive controller, undesirable effects of noise, disturbance inputs,

saturation of the control signals, etc.

Concerning the structure of the adaptive control system the follow1ng is

mentioned:

1. There are two possible configurations for including the model in the

adaptive structure:

- serial-model adaptive systems, sometimes called input-adaptive; the model
and the system to be controlled are in series.

- parallel-model adaptive systems; the model and the system to be controlled
are subjected to the same input signal.

2. There are two possibilities to implement the adaptive control in the

overall adaptive systems:

- the adaptive controller as a part of the original (conventional) control
loop.

- the adaptive controller as part of an adaptive control loop.

3. Depending on the way the effect of adaptation is inserted two possible

configurations are distinguished:

- signal-adaptive systems. Adaptive control is supplied to the original
system as an extra input or disturbance signal.

- parameter-adaptive systems. Parameters of the system are adjusted by
adaptive control.

In this paper we assume the model to be known and we consider the configu-

rations summed up in table I, with the main accent on configuration A.

Parameter-adaptive systems desigried by the second method of Liapunov, as

treated in ' and © are not considered here. The design of the adaptive

contrcller is based on, the second method of Liapunov and on a new inverse

describing function method (IDF)

First we consider the design of the adaptive controller based on the second

method of Liapunov. Next the adaptive controller is designed using the IDF

method. Finally the results of the two design methods are compared.

Modifications in the implementation of the adaptive controller designed by

either of the methods are possible, considering aspects and results in the

design by the other method. We found much correspondeénce between the solu-
tions generated by both methods.

.

2. Design of the adaptive system via the second method of Liapunov.

A model-adaptive control system can be descr~bed by a state vector x being
a measure of the difference between the "model-response" and the "system—
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response", see table I. Herein is assumed that both the model and the system

are described by an ntR order differential equation.
The case that the order of the differential equation of the model is lower
than that of the system is treated in the "second case" of this section. In
spite of variations in the parameters of the system S the requirement x=0
for all t has to be satisfied. i
Moreover it is necessary to have a fast convergence to the equilibrium point
= 0 when x # 0. A necessary condition is the requirement that x = 0 is
asymptotlcally stable in the large. This can be investigated by the second
method of Llapunov by selecting a positive definite Liapunov function V(x),
and requiring that some well-known properties are fulfilled for J(x) and
V(x t), the first derivative of V(x) with respect to time.V(x) can . 2lso be
1nterpreted as a measure of the performance of the adaptive system, while
the quotient of V(x,t) and V(x) is a measure of +he convergence time of the
adaptive operation é
It will be shown that the conditions required for the stability and adaptive
operations of the complete adaptive system, yield at the same time a control
algorithm for the adaptive controller AC.
In designing the adaptive system two cases have to be distinguished.
1. The orders of the differential equations describing the model M and the
original system S are the same (mzp)
2. The mpdel is described by an m order differential equatlon end the system
by an n order differential equation, with n>m.

First case (m=n). Consider the conflguratlons A to D in table I.

Assume that the state e%uatlons in Fn and are in the standard form and that

the transfer function c*(sI-A)~ b has no zeros.

The time varying matrices A(t) and A'(t) end the time varying vector b(t) can

be split up into a constant matrix and vector respectively, and a time verying

matrix and vector respectively.

Some knowledge, however, is needed about the limits of the time varying para-

meters.

This is necessary to obtain a state descrlptlon consisting of a constant and a

time varying linear part.

The most reasonable separations are the following:

a) A(t) = A +AA (t) and A'(t)=A +AA'(t), where the constant matrix is chosen
to be equal to the model matrix A.

b) A(t)=A1+AA (t) and A'(t)=A}+AA!(t), where A, and A} are constant matrices
whose elements are the average values of A(t) and A '(t) respectively.

c) b(t) = b +Ab(t) where the constant vector >, is chosen to be equal to the
model vggtor b .

The following state equations can be derived for configuration A:

e = \
d=A x-{aA! (t)y +b(t)r+b(t)u} = A x-f ., (y ,7,u) (1)
E?Aogr{AAo(t)Xs+E(t)(u+e)—2°r} = A°§:£12(xs,e,u,r) (2)
Z=Alx-(8A} (t)y +(A3-A )y, +6b(t)r+b(t)ul=Alx-f o (y .y ,7,u) (iz
Aol (AR 7+ (A-A o Yyt (8) (whe) b r =k a3y (T, oo ¥ o) _ein
The vector f,. includes all time varying terms and all terms not directly
related to thé state vector x. Eliminating from f.. yields tye state
equations (5) to (8) where £1j now includes time varying terms in x.
3;A05¢g15 (27,57 5u) (5)
_5_(=A0_3E-f_16 (}_’Im,e’usr) (€)

(1)

FeAlx=f, . (X,y,,750)
(8)

i‘A x-f,g (x,xm,e u,r)

Analogously it is possible to yield a number of state eqations for configurs-

tions B to D.
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Second case (n>m). In order to get a description of the adaptive system with

an n order state vector x, the differential equatlon describing the model

has to be differentiated (n-m) times. The model is now described by the follo-
wlng equatio

xm— =A oxm+’b 1 ?n—m)

where A! is a (nxm) matrix and b! a (nx1) vector of the form

0 0 Sols 0
A = 0 o bt 0 e .00 (n-m) rows
- A

(n-m) columns

Eé 5 (n-1) rows

With the same assumptions as in the first case (m=n) the adaptive control system
can be described now by the vector x=y'-
There are still more degrees of freedom in thls case for the elements in the

last row of Aé can be substituted by other elements as the following equations
are also known

y;m*k)+an_1y(m-1+k)+...+a°ym(k) = bor(k);o<35p-m-1 (9)

Thus it is not only possible to get another configuration of matrix Aé but
also vector b' is altered to a matrlf whlch(has)to be multiplied by a
vector con31_%1ng of elements r, r
It is possible to get a si 11f1c tion if r is chosen to be a stepfunction.
Then b=0 can be chosen. In thls simplification has been used. In
view of the foregoing there are a large number of possibilities to describe
the adaptive control system, depending on the structure (A to D), the
splitting up of.the time varying matrices A'(t) and A(t), the elimination of
and the difference in order of the differential equations describing the
model and the system. This enables us, in the final design stage, to choose
the solution best suited for the given condition.

2.1. The adgptive controller. 7
Choose the quadratic Liapunov fupction V=xPx where P is a positive, definite °

and symmetric (nxn) matrlx. Dependent on The spllttlng up of the matrices

A(t) and A'(t) into a constant one and a time varying one, the time derivative
of V is: .

9 oo

T(x,t)=x" (ATP4PA)x-2x"P £. . (10)
X,t)=x x £

where A is the matrix A , Ao A, or A!, and f,: depends on the configuration,
the spllttlngTup of the timé varying matrix, e,
(11)

Define -Q = A"P+PA
If by assumption A is stable then it is possible to choose a positive
definite symmetric matrix Q. Since V(x t) has to be negative definite, it is
re%ulred that

2x Pif. 78 > 0 (12)

or with the given matrix representation




21

2(p1nx1+p2nx2+...+ pnnxn)fij;o (12a)

where D, ., Py sesss P 8re elements of matrix P. Requirement (12) can be
fulfilled by an adequgge choice of f.., for the free parameter u (the
control signal) .is included in f... ﬁJpossible solution is to choose u to
be a function of g.. which includds the sum of &ll terms in except u,
miltiplied by the THctor.
sign (p1nx1+p2nx2+...+pnnxn)
Let the magnitude of each term in g.. be greater than, or egual to, the
. . 1]
magnitude of the corresponding term “in f...
Therefore the control law is T

L. .
3435

n.
u=g; ; siem €1 pypx;) (13)
i=1

The control law (13) is not the only one fulfilling requirement (12). It

is assumed that the transfer function of the system (including conven-
tional controller) has at least one pure integration; so that in the steady
state u=o when r is chosen to be a stepfunction.

The method of Liapunov can be used (the stability of motion in the neigh-
bourhoud of the equilibrium point x=o is investigated) by the same input
function to the system and the model and the same d-c gain for both. The
effect of unequal d-c gain is investigated in 5,

For the third order time varying linear system and a second order constant
linear model is found in °,

fij=c1(t)x1+c2(t)x2+c3(t)x3+ch(t)ysz+c5(t)e+u

Let gij=c1 |x1 |+02Ix2l+c3|x3'+ch ’y8’21+°5 lel

where ¢, ,c,,... are the maximum values of c,(t), c,(t),...

In this case the control law can be written as

u={c1|x1|+c2|xal+c3|x3|+ch|y82|+c5|e|} sign (p13x1+p23x2+p33x3) (1)

In this text the term &3 will be called the modulus function, and the term
n ]

sign ( ] Pinxi) the phase function, the reason for this will become clear in
i=1

next section.
It can be seen from (14) that the phase function does not depend on the way the
system is described, but is merely dependent on the choice of P and the
order of the system. Furthermore, the modulus function depends on f.., i.e.
" " 1
on the way the system is described.
The speed of convergence of the adaptive operation can be estimated by the
parameter n which is defined as

V(x,t)
n=min —v(;r for all _25#2
therefore
V(x) € vz )e (%)

where V(Eo)»is the value of V(x) for the initial state x and t=t .

It is, however, quite difficult to calculate n and thus to get a measure of
speed of convergence of the adaptive operation, for V(x,t) consists of a
linear and a nonlinear term >,

As appears from the forego .ng the control algorithm for the adaptive con-
troller is by no means simple. As opposed to this much freedom is possible
in the structure of the modulus function. The p. -coefficients can be chosen

within ample limits imposed by condition (12). s
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The choice of is, however, restricted by the matrix A. By a number of
Pin ;

examples the control algorithms which arise from different f..'s and confi-
gurations A to D are examined. =ij

In section 4 one example is extensively examined. The conclusinr can be drawn
that all algorithms give excellent results and a difference in speed of
convergence or response to a stepfunction of any other deterministic function
can hardly be noticed.

The controller has generally the form as given in fig. 1 for the case where

is eliminated. In ~ the results of linearising the adaptive controller are
méntioned. In some aspects the nonlinear controller has however advantages
over the linear one (less effects of noise, saturation of the control signal
already involved). In this paper a simplification of the adaptive controller
is examined using the results of a similar investigation via the 1nverse
describing function method.
The second method of Liapunov yields sufficient conditions for stability, so
a certain simplification of the adaptive controller can be predicted intuitively.
Possible simplifications of the modulus and phase function are examined and
the following conclusions can be drawn.

g7~ Simplification of the modulus function. This function consists of the
sum of terms in x and w. Experiments on a varlety of examples have shown for
all conflguratlons that the modulus function is not sensitive to the omission
of terms other than those dependent on x. Moreover the coefficients of the
terms in X can be varied over a wide range or even be partially omitted.

2. Slmpllflcatlon of the phase function. Experiments have shown that the
pin-coefflclents yielded by any given Liapunov function can be chosen rather
freely. Variations in p4n-coefficients influence the adaptive operations

slightly. Results are already shown in S. The influence of the p. =-coeffi-
cients is, however, quite significant when the adaptive control 1Is not
started with the same initial conditions of the system and the model (see
figs )%

Though the pin-coefficients can be chosen rather freely, none can be chosen
as zero without worsening the adaptive operation.

3. Designing by using the I.D.F. method.

As in the foregoing a modeladaptive control system has to be designed in
such a way that the output ¥ of the system in which the parameters vary
always equals the output Vm of the model, so et ¥t. Although there is more
than one solution to this problem, we choose, as an example the block
diagram of fig. 2, which is analogous to configuration A in table I.

The output u ‘of the adaptive controller (A.C.) must allow ¥g to be equal to
o That means that the transfer function from ye to ¥g

H (1+H H )
. | cm
H (1+H +H H_)
m 8 ¢c's
equals 1. This is the ease for Hc>> e and H >> - +1. However, these conditions

H c H
m s

mean that the model-adaptive system will probably be unstable (characteristic
equation: 1+Hs+HcHs=0)' The controlled system can be stabilised if the phase

shift of A.C. allows arg H H_/(14H) to be more than -180°.
If A.C. is a linear filter, then it can be difficult to fulfil these require-

ments, because the interdependence ¢f the phase and gain of linear filters
generally is in conflict with the requirements. Therefore it would be preferable
to design a filter of which the gain and phase shift can be adjusted
independently of each other. The following explains how such a filter can be
lesigned.
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45§ u1=u'0+u11* and u2=u20+u21*, then: u=u1u2=u10

If it is assumed that u,, and u,, are dc-components, u, .,
=U23in(mt+¢2), then u consists of a dc-component, a fundamental harmonic

L

20*210%2 1 W20 114 1 1al2 14"

=U1sin(wt+¢1) and

u21*
and a second harmonic.

For u11*=0 and u20=0:

u=u1ou21*=u1oU2 81n(wt+¢2)=U sin(wt+¢) where U=u, U, and ¢-62.

If x=X sin wt, then the transfer function from x to u is
R it _u &
B .=xe |H|e?® in which |Hc| v and arg H =¢.
Now it is assumed that H, can be split into two linear transfer functions and

two describing functions in accordance with fig. 3. This block diagram is only
related to the fundamental harmonics.

N, can be only a describing function of a nonlinearity with an even characte-
ristic (u,, . =0). N2 can be only a describing function of a nonlinear element

21**0)'

Fig. ba shows an even characteristic and fig. 4b shows an odd characteristic.
In accordance with the foregoing

11%
with anodd characteristic (u

U
U M0
IHCI ey u10'N2“H2| (2)
and (15)
arg H =¢= arg H,+arg N, : (b)

2z, 2c|H,|x
o z1=Z1sin(wt+w1) and N, is related to fig. ha, then B = S pson
or in accordance with (15a)
2 R, XN, |5, |
g | = ————
(3 ™

If it is required that |Hc| = |H,|, then

2c X|N2||52| 5 2ez, [N, | b
m m

or & : .
ol = zez; o

From this expression a nonlinear characteristic that belongs to N2 can be
determined by using the inverse describing function method ~.

Fig. Ub shows such a characteristic in which b=1“/8c. This result is equivalent
to the span filter in '.

Other elements that can be used are shown in fig. 5.

By choosing these nonlinearities in this way we have obtained a transfer
function H, of which |E,| = |B,| end arg B =arg H,+arg N,.

That means the magnitude and the phase of H can be chosen independently of

each other.

The path containing H, and X, in the block diagram of fig. 3 is called the
modulus-path.

The path containing H2 and N2 is called the phase-path. The modulus-path and
the modulus-function gij are equivalent, just as the phase-function

sign (] pinxi)' .

In spite of the fact that this blockdiagram contains nonlinear elements, the
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transfer function H, does not depend on the amplitude X and is only a function
of w., Therefore Hc can be seen as a linear transfer function.

If this block diagram is of the adaptive controller, then it is possible that
¥, can be made equal to y and that the model-adaptive system will remain
stable.

The following explains what the influence on Hc of the higher harmonics will be.

In accordance with fig. 3 in which the nonlinearities are defined by fig. 4:

2c2

i R )

U [1+ 3 sin 2(wt+w1)- s sin h(wt+w1) 35 sin 6\wt+w ) ..{] (17)

and

u,= ko sin(wt+y, )+ b sin 3(wt+y, )+ d sin 5 (wt+y, )+ ] (18)
2=y 2 3 2 5 2 e

if x=X sin uwt, z=Z, sin (wt+¢1) and z,=Z, sin (mt+w2).

Theseé equati:ns c:n also be written as: u,=u, +u12*‘ﬁh! ... and

u2=“21«*“23~ Upgy? oo

where u, 159 is the jth harmonic in u; (i=1 and i=2).

The output u equals:

UqUp=Uy gln 4t glo 3 iy gUnsat e e s * o 1 B1oatUy0ato3u 08 Uoset oot

o 10 bt U230 L L aos et e

The-terms that have been - :-_ 720 ‘2. -::= the “undamental harmonic u_ in
u. For this fundamental narmonic, Zor =xemple, two approximations are
possible:

1) u=u,qu,,, and

2) u=u

10%2 1% B2 1w 128 R 104 Y23

First case: u=u10u21‘ e
. : L s

In accordance with (17) and (18): u, = —5— sin (wtad,).
The transfer function from x to u is §

_ 8be ¥
99 i

L
or
Jv

2
BE= |H e ©.

This expression is the same as that which was derived in the foregoing.

Second case: USU, Uyt U0 154U e
In acoordance with (17) and (18):
8beZ

u, = "21 [sin (wt+p, )+ 3 cos (wt+2y =y, )+ % cos(wt+3¢2_2w1ﬂ (19)
or
up =|H,|X A sin (wt+s)

The transfer function from x to u is Hc=[H1|AeJG (20)
g £, i A —v,)-
where A P tg § T g=cos w2 3 91n(2¢01 wg)
L et
- 5 sin(3¥,-2¥,) and

d=sin b+ % cos(2w1-w2)+ % cos(3W2-2¢1)-
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In the tables II and III for some values of ¢2 some values of A &nd §
have been given.

Teble II. Table III
¥,=0 v.=90°
¥ A s ¥y A é
0° 1,05  18%6" 0° 1,05  18%26' -
B 1,33 B° 45° 1,0 63%26"
90° 1,04  71%3L" 90° 1,0k 108%26"
\135° 0,671 135° 135° 1,06 153%6"
180° 1,05 198°26! 180° 1,05  198%26"

In accordance with these tables and (20), [Hc] is now not defined by H,
only and arg H is not defined by H, and N2 only. However, the influence
of the higher harmonlcs in u, ard u, on IH | is relatively small. The
phase shift of H is greater.

For these two cases we can conclude that themegnitude of E_ is mainly
defined by H1. The phase shift of H is defined by H and N, and (to

& lesser extent) by H,. g

It is possible to reduce the influence of the higher harmonics by using
other nonlinearities. The extra phase shift of the modulus-path can be
compensated for by taking double-valued non-linearities. This extra phase
shift is favourable for the model-adaptive system in view of the stability.
By application of this nonlinear filter as an adaptive controller it is
necessary that the system will attenuate the higher harmonics as much as
possible. Further the dc-component in x has to be zero. In the other case,
there can be dc-components in z, and z,. The latter means that the inputs
of the nonlinearities are asymmetrlc instead of symmetric as heas been
assumed. The dc-components in 24 and z, can be made zero by using diffe-
rentiation circuits before the nonlinearities or by providing that x
equals zero. The latter can occur by choosing ]H (O)f as large as possible.
As has been mentioned before, the adaptlve actlon has to be fast. That can
be attained by adjusting the parameters in the phase path in the right way.
Remark. The above-mentioned nonlinear filter has been designed for configu-
ration A in table I. From measurements it follows that similar filters cen
also be used in configurations B, C and D in table I.

4. Measurements.

The adaptive controllersthat have been designed by using the second method
of Liapunov and the inverse describing function method have been tested in
several model-adaptive systems. The responses to & stepfunction at the
input of the model (second order) and of the controlled system were compared
with each other. The parameters of the systems varied in a wide range. The
systemsS that have been examined were of the first and third order. From
these measurements it follows that these controllers have & good adaptive
action.

As an example we shall give the measurement of & system in accordance with
configuration A in table I. This system is defined by

%;b1§mfboym = Kér and ‘§ +a9( )vs+aq\t) = K;(t; (e+u)
where 0.2<K;(t)<0.9, 0.8<a, (t)<2, 1.2<32(t)<2.u, b =K'=6.25, b,=0.k

and r=3U0(t).
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The values of these parameters have been chosen experimentally.
From these equations it follows for the block diagram in fig. 2 that

A K'
Hm(s) =—2  and Hs(s) = 2
874D, s+b s(s +azs+a1)

where the coefficients have the above-mentioned values.
Three cases have been.considered:

15 u=(|o1|x+c2|i|+c3|!|+éh|§s|+c5|e|}sign (p13x¢p23i+p332)
2, u=|c1x+c2i+e3i+chys+c5e| sign (p13x+p23i+'p332)
3 u-c1[x| sign (p13x+p23x+p33!)

where c1-0.75, c2=1.2, c3-3, ch=7.15 c5=1.5, p13-0.3,'p23l1.3, p33=1.
The first two cases are related to the controller in accordance with
the method of L1a.punov. The third case is related to the controller in
accordance with the inverse descr:.blng function method, by which |H ]-c
and arg H =arg (p134'p23s+p33s Yo 59,

First case. Fig. 6 shows the step responses.

1. : 5

2. p 75 of the unstable uncontrolled system
3. Ye of- the controlled system

It follows that the steady-state error-is very small. This error is greater
if ¢), ;'rs and csle| are omitted.
Fig. T shows the step responses:

1. 2 5

2. ¥ % of the stable uncontrolied system

3 ¥e of the system of which the controller has been inserted at the arrow
and P1"30 Byy
! =
4, as 3, but P}y hp23
5. as 3, but pé3'2p23

The latter adjustment gives the best result. It can be explained by looking
at the positions of the poles of H in the s-plane. After some calculations
it seems that there are two dominating poles. The damping factor z that
belongs to response 3 is less than the damping factors belonging to
responses 4 and 5. z

Second case. The same results were obtained as in the first case.

T . . N .
However, this controller is not good with reference to the higher harmonics
in u as the first controller.

Third case. Fig. 8 shows the step responues:

1.ym

2. Yq of the controlled system and c1=200
3. as 2, but c1=5

L, as 2, but c¢,=100.

By choosing c, as large as possible, the steady-state error can be made
equal to zero.

Fig. 9 shows the step responses:
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¥e

2, ¥g of the controlled system and p13=0
3. ¥s of the controlled system and p23=0
L, ¥g Of the controlled system and pyy=0

The controlled system will oscillate if p_,.=0. If P, =0 then there is a
steady-state error that can be attenuated3§y choos:.ng a larger Cqe

From these measurements it follows that these controllers can have a good
adaptive action. The rate of convergence and the stability are determined
by the parameters P, and p.,. The steady-state error can be made
equal to zero by a saztagie choil}é of the gain in the modulus-path.

5. Concluding Remarks.

The controllers that have been designed by using the second method of
Liapunov and the inverse describing function method, can be used very well
in model-adaptive systems. They have been tested in several systems in
which the model is of the second order and the system with time varying
parameters is of the first @’ third order. These parameters may change
simultaneously and with an unknown speed. If the signals in the system are
bounded a stable and quickly converging adaptive system can be obtained
also. The configuration of the controller in accordance with the inverse
describing method is simpler than the other controllers. By using this
method it is found that double-valued nonlinearities also may be used which
-will help the stability. By applying the method of Liapunov only single-
valued nonlinearities are found. The controllers can be considered as
elements of which the gain and phase shift can be adjusted independently
of each other. The gain can be a function of the frequency. Because of
this feature these controllers are suitable for use as compensation networks
to obtain some ends that -cannot be realized by linear networks. This
research has been done for continuous linear time dependent systems.

With reference to nonlinear system measurements, these controllers can be
used also, to reduce nonl:.near effects.
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| TABLE 1

. model: .im :'Aolmo bor
system Js =A) yg +b(t)(use)
or ¥s =A(t) yg + B()(usr)
with A(t)=A(t) - b(t). T
and e =r-cl ygo

model : Ym *Ao¥m +Bor
system: y. =A(t) yg +b(t) (uer)
model : Im= ‘o!m +byr

system: yg =A(t)yg +b(u
model : Im =Aom * 8"
system: §g =A(t) yg +R() v

8T



Table I:

M is the model

S is the time varying system

AC is the adaptive controller

r is the reference input

e is the error signal between reference input and system output
u is the adaptive control signal

Y is the (nx1) state vector of the model

Yo is the (nx1) state vector of the system

¥ is a vector containing all signals not directly related to x
A, is a constant (nm.) matrix

b, is a constant (nx1) vector

A(t) and A'(t) are time varying (nxn) matrices

b(t) is a time varying (nx1) vector

¢ is a constant (nx1) vector.
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NONLINEAR FILTERING AND LEAST SQUARES-
EXTENSIONS AND APPLICATIONS OF THE
QUASILINEARIZATION THEORY

V. S. Levadi*
Information Research Associates, Inc.
Waltham, Massachusetts, U.S.A.
I. INTRODUCTION

This paper presents extensions of the quasilinearization approaéh to the
problem of nonlinear filtering and demonstrates the application of the theory
to a problem of adaptive control. The quasilinearization procedure of  Bell-
man et 311’2 is useful because it provides a.sequential estimate without
storage of past trajectory values.

The extensions include disturbances entering the system and performance
index nonlinearly and nonquadratically respectively, integral constraints on
the disturbance and state, and an estimate of the disturbance. This formula-
tion includes the least squares counterpart of.the statistical filtering and
estimation problem for "colored" noise, and the system with "randomly" vary-
ing parameter.

The adaptive control problem is reduced to two optimization problems
that are solved simultaneously using the secuential estimation procedure ob-
tained by the quasilinearization theory. The two significant features of the
method are its generality and the tight coupling without adverse interaction
of the estimation and adjustment processes. The model is sufficiently gener-
al to include a priori knowledge about the nature of the parameter variations
and disturbances acting on the system. The effect of transients due to con-
troller parameter adjustment is included in the formulation. Results are
presented for a simple example.

II. EXTENSIONS OF THE QUASILINEARIZATION THEORY
We seek an estimate oftge trajectory endpoints x(T) and w(T) which

- minimize o ‘ 2
I(x(t), w(T)) = |7(6) - hlx,w,€)] gy At (1)
where X and w satisfies the constraint
dx
3o g(x,w,t). . (2)

The estimates are designated ;(T) and ;(T), respectively.
Here y is a known observation or data vector; h and g are known functions

and Q is a known symmetric nonsingular weighting matrix. The variable w

*
Formerly with Honeywell, Inc., Minneapolis, Minnesota, U.S.A.
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represents an unknown disturbance entering the system, in the manner speci-
fied by the system dynamic model (2); however, there is no dynamic model for
w. For example, w might be an unknown torque acting on a gyro or space vehi-
cle, or the unpredictable variations or cause of variations in A system
parameter.

The problem, as presented, is an extension of that treated by Bellman
et 111 who took the case w = o. This was later extended by Detchmendy and
Sl:i.t'llmr2 to the case where w entered g linearly, and h(x,w,t) was of the
form h' (x,w,t) = [h{ (x,t),w'].

Formulation and Solution
Estimate of Disturbance, w
The Hamiltonian for the system (1) and (2) can be written 3
H(x,w,y,t) = -|y - h]; +y's 3)

A necessary condition for optimlity3 is*
B (x,w,y,t) = 0 : (%)

From the Implicit Function Theorema, (4) implicitly defines the opti-
mum W = 6(:,1,, t) as a function of x and y, providing that the matrix
Hw(x,v,y;,t) is nonsingular. Having stated the conditions under which w
exists, we proceed formally to develop the estimation equations for w,
assuming the existence of w(x,y,t).

Solution of the Two Point Boundary Value Problem - The Hamiltonian
system for the optimization problem is

¥ = B _(x,uy,t) o)
% = H (x,%,y,t) . (6)
y(0) = y(T) = 0 @)

where (7) follows from transversality conditions at the free endpoints
x(0) and x(T).
Furthermore, having assumed the existence of v(x,,p,t), we define

B*(x,y,t) & H(x,w(x,y,t)y,t) (8)
Now, following Reference 2, we write
r(c,T) 2 P(T)c + x(T) 9)
and solve the invaria}:t inbedding equation
g—; = (g-f) BX(r,c,T) + BA(r,c,T) (10)
at c = 0. 5

s £
The notation convention for differentiation with respect to vectors is

described in the Appendix.
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Substituting (9) into (10) gives

% c+ g,r! = P HA(r,c,T) + BA(r,c,T) (11)
Differentiating (11) with respect to c gives
dP
T r H:r(t,c,l') PP H:'r(r,c,‘r) + ch(r,c,'t) B H:c(r,c,‘r)
- (12)
Evaluating (11) and (12) at ¢ = 0 gives the estimation equations
dR(T, 2
F2 =AM HE,0D + B0, (13)
%@-- P(T) B* (£,0,T) P(T) + P B* (%,0,T)
XX Yx (14)

+ n;l/(x,o,r) P+ n%(i‘,o,'r) -

The equation for the disturbance w can be written in terms of the impli-
cit function 3(:,¢,T), evaluated at y(T) = 0.

as ax(r @
€0 .0 @on R+ 0 don L2+ 430

(15)
-4.&0,m BD 4 g 20,m
where the last of (15) follows from the fact that ¢(T) = 0.
Equations (13)-(15) are the basic estimation equations. When (4) can
be solved explicitly for v?(x,w,'r), B*(x,y,T) is an explicit function, and
(13) and (14) are sufficient for the estimation. In the. case where (4) can-
not be solved explicitly for é(x,w,‘r), (15) must be adjoined to the system.
Furthermore, in the latter case, H*(x,y,T) is not known explicitly, and it is
necessary to express (13)-(15) in terms of H(x,w,w,'l‘).
Estimator Results - It follows from (8) that

B (x,y,t) = H_(x,9,%(x,9,t),t) + T H, (16)
and > A A A A
By, =B, tH,U +QH O+ B+, 0, an

where (a,b) represent any combination of x and y.

The partial derivatives of w are obtained from the Implicit Function
'l.'lxeoreu4

Gw - = H"\!/H:"l" ' (18)
a 1.

RSk T S (19)
a=- B:r Hor =0

Using (3), (4) and. (16)-(20) in (13)-(15) and evaluating at ¢y = 0

gives the following estimator equations:
A

& = 8(x,w,T) + P R_= g + 2Ph Q(y-h) (21)
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aw -1 dx ?
at "~ " R (Rxw a’t Rwr) . (22)

Q i =1 =
dT = (gx gwaRxw)P . P(gx 2 waRw

-1 soph o

+ P(Rxx - wa wa Rxw)P = wa g,

where 5 ; 2
R(x,w,T) = H(x,w,0,T) = - I)’ - h(x,w,T) IQ(T) : (24)
R_(x,%,T) = 2h Q(y-h) ; (25)
Ry (x,w,T) = B (x,9,0,T) = 2h_Q(y-h) - 2h_Qh} (26)

and a or b represent x,w, or T.

Equations (21)-(23) are the required estimator 'equations, although they
are not necessarily expressed in the most convenient form. They form the
basis for the remainder of the discussion. They are equivalent to the re-
sults.of References 1 and 2 except w is included, and there is a factor of 2
which can be eliminated by substitution of Q/2 for Q. :

Corollaries and Special Cases

Elimination of Matrix Inversion - The estimator equations involve com-

putation of the matrix inverse R;i. The computation of this inverse can be

replaced by a differential equation. Using the matrix identity
1 1 1

dA™" = - A""daA” (27)
gives B3

dr dr

wW -1 ww -1 -1 dx dw -1
dT ¥ nww dT Rw ¥ Rwv.r[R‘wx dT i wa dT 7 RM]Rw' 28)
Time Derivatives of Observation - Equation (22) for the estimate -

contains the term

R, =222 [bQ(-0)] = 2[00 & + =2(h Q)y - 52(h Qh) ] 29)

WL oT Lt Wt dT © 3T v 3T

which requires the time derivative, dy/dt of the observation, y. A suf-
ficient condition for this derivative to be unnecessary is that
hw(x,v,'l') Q %% be identically zero. This is satisfied if h is independent
of w.

Furthermore, if the performance index is of the form

3 .f[| y-hl(x,t)lgl(t) + |h2(w,t)|3z(t)] at (30)

Then
2 2
R(x,w,T) = | y-h, (x,t) + |h,(w,t)] (31)
' ; | lQl 2 QZ

and (29) becomes independent of % .
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- Performance Index Quadratic in W - Consider a performance index of

e f U b 5N 2 oy + AR 0w e (32)

J= y(t)-h, (x,t x,t)w|

z 1R ) Q,(t)
where A(x,t) is nonsingular. Writing p
2 '

BLwnt) S frrhie- = bhjs ¥e% (33)

equation (4) gives i s >
y H =-2A QAw+ gy =0 . (34)

Since g,('l‘) = 0, it follows that

9(T) = 0. (35)

The problem of Detchmendy and Sridhar falls into this class. It should
be remembered that (35) indicates that the endpoint of the disturbance tra-
jectory ia. zero, but not that the entire disturbance is zero.

Disturbance Satisfying Integral Constraints - Although the unknown dis-
turbance w is not constrained by a differential equation, it may be that the
average power of w is known; e.g., %f | wlz dt = a. To treat this and
similar cases we adjoin to the system (1) and (2), a constraint

T z
f £(x,w)dt = k(T), 36)
)
and define the new state variable
T
x (t) = f f(x,w)dt < 37)
° o
Then the Hamiltonian for the system (1),(2) and (37) becomes
: n(x,xo:ﬂl"q(loa":t) . |7'h(‘,“,t)|é +y'g + ‘dlo'f : (38)
and the necessary conditions for optimality become (5),(6),(7) and
x = H (39)
o Yo
¥, = B (40)
e h
xo(O) =0 (41)
x (T) = k(T) ' . (62)
By making the substitution of variables
- = :
- [ x°] (43)
% -K
Wt 3] |
and defining
Hl(xl"lﬂ:w) H H(x’xo:wﬂl/o"” t) (45)

the necessary conditions for optimality (5)-(7) and (39)-(42) reduce to
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S T (45)
¥ = Bpx (47)
9,(0) =9, (T) =0 (48)

This is the same form as (5)-(7), so that the solution (21)-(23) carries
over with an appropriate change of variables.
: In addition to energy constraints on the unknown disturbance, w, it may
be physically consistent to model the disturbance as having certain frequency
spectral properties or correlation properties, as is assumed in the statisti-
cal estimation problem. This can be done, approximately, by treating w as if
it were a "white" noise, since it is unconstrained by any dynamic relation-
ship. Then, use w to drive a "filter" with the desired spectral or time
. propetties. The output of the filter then is used as the disturbance acting
on the system.

For example, suppose the observation of the state of the system
il = gl(xl) is carrupted by noise, Xy, which is assumed to' be derived from
white noise, w, passing through a filter, iz = g{xz,w), where the average
power of w is 1. Figure 1 illustrates the situation. If the observation y

is the noise-corrupted measurement of x5 the criterion function becomes

2 . .
J = |y-x1|Q dt and it is constrained by x = gl(xl), x, = gz(xz,w),

and f | w|2 dt = T.

Choice of Q(t) - For some applica.tions»it may be desirable to weight the
most recent data more heavily than past data. In such a case, the weighting
matrix should be of the form Q(T,t) which tends to decrease as T-t increases.

One such form is the exponential

e g 400 8

where o is a positive scalar and Q. is a constant matrix.

Then, minimization of
T ~T
2 T 2 at
= -h dt = -h e dt 50
Ja of | 7-hlger,eydt = @ OJ 5 fig & iy

T
provides the heavier weighting of the more recent data. However, since e®

is a constant, minimization of Ja is equivalent to minimizing
T
J=eT5 = f Iy-hlg %8k (51)
2 5 a
Thus, choosing

Q(e) = g, e (52)
gives the desired heavier weighting of the most recent data.
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III. APPLICATION TO ADAPTIVE CONTROL

The adaptive control problem is defined herein as the on-line adjusiment
of controller parameters to compensate for parameter changes in the controlled
system. Specifically, let the combination of controlled plant and controller
be define by

x = g(x,v,u,a,b,t) (53)
where x is the state of the combined controller and plant; u is the known
sistem input; a is the unknown fixed system parameter; b is the known and
adjustable parameter (usually belonging to the controller), and w is an un-
known variation or disturbance acting on the system. Since u and t are known,
they will not be explicitly expressed as independent variables for the re-
mainder of the discussion. : E

The unknown parameter a represents all fixed but unknown parameters in
the controlled plant. The variable w represents the unknown "white noise-
like" variations driving the system. Disturbance w may be constrained by
power or similar integral constraint, as discussed in Section II. Unknown
variations which H;ve known spectral properties can be derived from w by
using a spectral filter, as described in Section II. These "filtered" vari-
ations are part of the state vector, x.

The variable w and resulting filtered variations are more than measure-
ment noise; they represent all the unknown variations in the system. For
example, a plant parameter, p, might be known to have a quadratic variation
with time plus an additive unknown component, Xys derived from w by a spec-
tral filter. Then p = a, + azt + 33t2 + X, would represent the parameter
with a;, a2y, and ag fixed unknown parameters.

Since parameter a is constant one may adjoin to (53) the equation

a=0-" (54)
Formulation of the Adaptive Control Problem

The general procedure, illustrated in Figure 2, is a two stage process
consisting of plant parameter estimation and control parameter design. The
controller design procedure computes the "best" value, 3, for the adjustable
system parameter b. Tbus,

b="5 (55)
for the controlled system. The controller :rameter ® is chosen to make the
observed system response'x behave like a model response, y,. The controller
design procedure is based upon the '"best" current estimate ﬁ, 4 and W of the

controlled system state, unknown parameter, and disturbance, respectively.
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Parameter, State, and Disturbance Estimation - The input to the estimation

procedure for £, ¥ and & is the observed system response y _, the known value
of the adjustable controller parameter b and the command input u. The esti-

mates xa, a, 6, of the system variables x, a, w, are chosen to minimize
. 2
3, (x,,8,9) = 5[1 [ys-ha(xa,w)|Q 6 1t (56)

where 2 is a specified function of the observed system responses; h is a
corresponding function of the hypothesized syatem state; and Q is a we1ght-
ing matrix.
Using the model (53), the minimization is constrained by
X, = g(xa,w,a,s) (57)
and (54) (and integral constraints if appropriate).
To simplify the notation now define an augmented state and system

% g(x :"Ja’s)
,"A 4 [&aJ = [ a . ] é gA(x ’QB’") (58)

’\l|

where ﬁé - [xb %']' is a vector, to be defined later, which contains § as
L

one component, just as x, contains parameter a as a component. Thus, the

A
estimation consists of minimizing
T
2 A 2
JA(XA’W) dr Iys.hA(xA’w)lQa son drI 'ys-ha(xa’lea (39

subject to constraint (58).
Control Parameter Design - The controller parameter, b, will be chosen

so that the controlled system response- behaves like a model response, >
The following controller design criterion will be used: The optimum value

of the control parameter at time T is that fixed value that would have mini-
¢

2
= ' -
mized the performance index Jb(x,b) Jﬂ B hb(x)IQb(t) dt assuming that

the actual system state arameters and disturbance are the same as the

estimates. By proper choice of the weighting matrix Qb’ the most recent
performance can be most heavily weighted in the performance index as de-
scribed in Section II.

According to this criterion, we choose b = % to minimize

‘g 2 »
Jb(xb’b) o |ym-hb(xb)|Qb dt (60)
where Xy and b are constrained by
ib > gl(xb:a’u:a:b:t) (61)

b =0 (62)
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Since 2 is a component of £, we can define the augmented state and system
. A r‘.{b gl(xb,e,a,a,b,u,t) A A
%, & i - & gB(xB,xA,G) (63)
b 0
and minimize

Jg(xg) = [T |y t%(xn)'Q it & ‘(; Iy -hb(xb)|Q dt (64)

subject to the differential constraint (63).
Combined Estimation and Control - The preceding results can be combined

to give an on-line procedure for control design illustrated in Figure 2. The
controller design procedure gives the parameter %; for given estimates of the
plant parameter 4 and disturbance @. Similarly, the estimation procedure
provides the plant parameter estimate 4 and disturbance estimaté 9 given any
history of the controller parameter b. The proposed method has the obvious
advantage of its generality.

A more important advantage is that any adverse interaction between the
estimation process and control design process is, at worst, a second order
effect. The value ﬁ used in the estimation is always the current and true
value of the controller parameter in the ‘actual system. Thus, transients on
the observed system output, ¥ due to adjustment of f effects are accounted
for in the estimation procedure. Ad justment of G has no adverse effects on
the estimation process. So, even though errors in the estimation process may
result in a non-optimum value of ﬁ, this non-optimum value does not introduce
new errors into the estimation.

The proposed scheme requires no limitation on rate of adjustment of the
parameter Q_ Actually, transients induced due to changes in b may improve
the accuracy of the estimator, particularly during periods when the system
output is small -for a long interval.

Sequential Solution

The quasilineari:ation procedure of Section II can be used to provide a
sequential solution of these optimization problems that is well-suited to
real time implementation. Applying the results.of Section II to the opti-
mization problems of (§3), (67) and (74),(75), gives

ak

A e A
T 5 RuRH + 2 Aix, (76)
dR
e _ -1 A
AT 7 RA;W Rpsx,w aT > RA;wr {0



dp, % .
— [ = [ > -
dT [gA;xA sA;vRA;wRA;xAW] PA £4 PA 8A;xA RA;wx RA;vmgA;w]
A
+P,|-R -R R R R :
A A;xAx A;wa Ajww A;xAv A 8A;w A;ng;w (78)
ﬁ =g R, ,H+rP
T - sy, 13"19;:‘B (79)
z‘ll"B
— ! & 3
dT sB;::BPB & Pl!sl!;art PBF,"B;xBxBPB s
where 2
RA " lyA i A(xA’V)lqA . (81)
2 :
By = - |vp - by(xp) |QB (82
Example

Illustrated in Figure 3, is a very simple adaptive control problem. A

second order plant with unknown gain, a, is connected in a’ servo system. The
plant output x) but not the derivative il/- x, is measurable. The input, u,

is known, The controller consists of an adjustable gain, b, which is to be
set so that the closed loop system behaves like the model of Figure 4. The

optimum fixed gain controller is to be found to satisfy the criterion

2
Jb - .{;T Iym-xblqb dt (83)
where " i

B,t .

e 1 0
Q, (t) = i ®4)

2
0 e

and e is the observed output of the model. The plant parameter is fixed, and
the optimal estimate, using only the observable state xp, is that which minimizes

T
a2 ot
;. ~£ (ys - xa,.l) e dt (85)
and ¥ is the actual observed output of the plant, X, The exponential form
for matrices Qa and Qb is used to provide heavier weighting of the most

recent data, as described earlier. The terms, according to previous defi-

nitions are:

a,2
= + - 86
g z ab(u xa’ 1) (86)

(87)
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b,2 . :
'gB = % + ab(u-xb’l) (88)
52
Fpyil
- (89)
" o2

Correct adjustment of the controlled system occurs when ab = 4; Since’
a = 2, the desired value for 5 is 2 and the correct value of a is 2. In
Figure 5, the initial values of 4 and D were both 1, and a step input was
applied to the system. Both & and i converge to the optimal values of 2.
The transient in the adjustment process is due in part to the non-optiﬁal
choice of initial conditions for PA and PB' “The accelerated convergence of
2 occurring at t = 6 is due to the step change of the input at that instant.

IV. CONCLUSION

The quasilinearization procedure for nonlinear least squares filteriné
and estimation has been generalized to include unknown disturbances entering
the system and the cost functional nonlinearly and nonquadratically, respec-
tively. A sequential estimation scheme is obtained for the &isturbance.

In the case where the performance index is quadratic in the disturbance, the
estimate of the end point of the disturbance is zero. This is true, also,
for the linear quadratic case, also.

In its most general formthe procedure requires the computation of
derivatives of the observation; however a large number of practical cases
satisfies the sufficient conditions for the derivative not to be required.

In the application to on-line adaptive control,' the formulation is
sufficiently general that it permits inclusion of practically all a priori
knowledge about the unknown variations such as noise characteristics or ran-
dom variations of parameters.

The method avoids a serious pitfall of sJ‘f adaptive schemes requiring

3
parameter identification, in which the adjustment of the controller parameter
must be conducted independently ;f the plant parameter estimation. The
method discussed in this memo provides simultaneous adjustment and estimation
of parameters. There is no adverse interaction, because alf ad justments of
controller parameters are accounted for in the parameter estimation.

The "retrospective" definition of the optimal controller is one illus-

trative example of a design criterion. Predictive schemes might be used as
well.
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APPENDIX
The following notation is used for differentiation with respect to
vectors:

Let o be a scalar. Then %% is a vector if x is a vector, having

t
i . component

1
The derivative of a vector b = [bl""bn] with respect to a vector x

is a matrix.

o D
Ix Bx1
J-ij
Thus, the second derivative of a scalar is a matrix.
a = 2 = aza
xb 9b X 9x,9b,

The second derivative of a vector b is a tensor of rank 3. For x, y,

b, vectors, 2

a2y e

IxXdy s l"xy = axiay
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Multiplication of this temsor by a vector, a, gives a-matrix

b_ _a = izi-
X,y ale‘)xi " 1j 3
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FIGURE 2 COMBINED ESTIMATION AND CONTROL IIESIGN. _
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FIGURE 4 MODEL FOR DESIRED RESPONSE
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FINDING THE ADAPTIVE FEEDFORWARD
FUNCTION OF CONTROLLER PARAMETERS BY
DIGITAL COMPUTER

Friedrich Schneider
Institut fiir MeB8- und Regelungstechnik
Technische Hochschule

Munich, Germany

1. Introduction

Processes which are described by linear differential equations
show the same behaviour under all operation conditions. They
can be controlled eoptimally with respect to a chosen criterium
by controllers with constant parameters. But in praxi most of
the processes are nonlinear. Processes, in which some of the
coefficients of the differential equation depend strongly on
certain state~ or input variables, form a class of these non-
linear processes. For instance in course control of vessels
and aircrafts the parameters depend very much on the speed v,
or in many control loops of chemical industry (like the control
of temperature, of pH-value, of analysis) on the flow of some
product. These plants cannot be controlled sufficiently by
controllers with constant parameters, if the operation con-
ditions change very much. Control can be improved by adaptive
feedforward control of the controller parameters. By measuring
appropriate state- or input variables the parameters are fitt-
ed at once optimally to the altered process. Fig. 1 shows the
simplified scheme of adaptive.feedforward control in a single-
variable loop. It is a basic assumptiocn for feedforward control
that there is a functional connection between the variable
parameters of the process and the measurable state- or input
variables. This function often isn't known analytically. Partly
rules of thumb are used instead of this function, partly one
tries to get the function and hence the control law of the
controller by lengthy experiments. During these experiments it
is necessary to disturb normal operation permanently which is
very undesirable in most cases. The following method reduces

the interference into normal operation to & minimum.
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2. Formulation of the problem

Given a plant whose parameters depend on the measurable state-
or input variables 2y e Zoo The control of this plant shall
be improved by adaptive feedforward control of controller para=-
meters. The control law between the measurable variables Zy e
zn and the controller parameters x, coe Xk, which are optimal
with respect to a chosen criterium shall be learnt by means
of a digital computerz. After a certain "starting phase" the
plant shall run as a control loop with conventional adaptive
feedforward control of controller parameters, the digital com-
puter shall not be necessary any longer. Especially it is

taken into consideration that permanent interference into the
plant has to be reduced to a mipimum. To achieve this the opti-
mization of controller parameters for the different operating
points is carried out in a model system which is simulated on .

a computer. Essentially there are the following problems to
be solved.

1. Identification

By measuring the input- and output variables of the closed
control loop a model of the plant (without codtroller) has

to be determined for any operation point.

2. Optimization

The optimization of the controller parameters is carried out
in the model system. The resulting values can be adjusted at
the controller of the plant for checking.

Identification and optimization have to be repeated for as
many states as necessary in the normal operation conditions.
The resulting falues have to be stored.

3. Adaptation

In the end the stored values have to be converted into an
analog function of the measured input vgriablos and the con-
troller parameters. Then the control loop can work as a usual
adaptive feedforward control of controller parameters later on.
The realization of this analog function is usually achieved
by Simple function generators, as they are well known from
analog computer techniques. The adjustment of controller
parameters can be done by servo-multipliers.

In principle, the method is applicable for stochastic as well
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as for deterministic input signals. In this paper determini-
stic input signals are used which seems to be admissible during
the starting phase of a plant, particularly becz:se the inter-
ferences are very seldom. By this method the control law can
be learnt for continuous as well as for discrete systems with
or without time delay. There will be calculated a model which
is linearized about the given operation state, nonlinearities
are taken into consideration by the value of controller para-
meters. If necessary and if the approximate form of the non-
linearity is known one can calculate even nonlinear models. In
the following chapter the method is explained for continuous
systems with variable parameters, in chapter 4 systems wjth
time delay are treated. The application to discrete systems

is completely analog, a thoroughly discussion therefore isn't
necessary in this paperz.

It is assumed in the following derivations that .the response
of the system to a change in the,cbﬁmand variable is essential
and therefore has to be optimized. It can be shounz, that the
response to a change in disturbance variables can be optimized
with practical the same methods.

The controller show P, I, PI, PD or PID-behaviour. In the
equations for the PD- and PID-controllers the always existing
small time constants are taken into consideration. If there
are used explicit controller equations in the following deri-
vations, the equation of the PI-controller is taken (the com~-
puter programs in ALGOL of course can use all specified con-
trollers).

The integral of time multipliéd squared error ITE2 was taken
as optimization criterium. This criterium on one hand results
in relative small overshoots and relative small settling times,
on the other hand it can be calculated analytically for linear

(continuous and discrete)systemss. If u(t) is the error, it is

ITE2 = 7t . u?(t)at (1)
[
Two methods for identification are explained in principle bcth

of which do not assume any knowledge of the structure of the
plant, since both don't lay stress on adjusting the structure
of the plant and the model - which is impossible in general.
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3. Continuous systems with variable systems.
The control loop shown in fig. 2 is given. The parameters of.
the plant depend much on z. It can be seen that the following

explanations are valid also for more than one variable Zy o eee Zo
only for the adaption the circuits for realization of the control
law become expensive since in this case functions of several
variables have to be realized. Even in praxi the parameter of

a process depend es ~ntially only on one variable in most cases.

3.1 Methods of identification

After a change of command variable the command variable w(t)

and the output variable x(t) is recorded. The operational state

of the system is known by the value of z. The transfer function

of the controller GR(s) is given, but the transfer function of

the plant Gs(s) is not known. A model shall be found so that its
output variable x fits as well as possible with the output x(t)
(Fig.3). The controller of model and system have the same equation.

1st method

Renner derived in his thesis, that the measured step response
of an open system can be approximated by a model whose poles
Si(i = 1 ... n) of the transfer function are fixed. The appro-
priate factors R, (i =0 ... n) are determined by making x(tk)
and xm(tk) equal at n+1 points tk. The step response of a
system with only single poles (complex conjugate poles are also
admitted, but they are omitted for sake of brevity since they

don't show any important new feature) at time t, is

x (tk) b Ro = R1e~ s1tk + eesscces + Rne sntk (2)
At n+1 points this is a system of n+1 linear equations in the
unknown factors Ri' which can be solved by one of the usual
methods.
This method gives amazingly good results in the open loop,
but isn't applicable for closed loop systems. Reinsch5 and
Unbehauen  have shown that even good accordance of the step
functions of the open loop does not garanty good accordance of
the closed loop since by closing the loop the position of the
dominant poles can be very different (root locus). Moreover
you can estimate only the dominant time constant of the closed
loop step response but not that of the open loop. Therefore
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it is difficult to chose the correct time scale. On the
other hand it is absolutely necessary to determine the trans-
fer function of the open loop model, since otherwise the
optimization cannot be carried out.

Therefore the following method was developped. The model
consists of n terms of the first order in parallel (Fig. 4).
(Complex conjugate poles are admitted, but they are for
reasons of simplitity not drawn).

All poles with the exception of that with the greatest time
constant, e.g. s1, and with the exception of the common
factor k are assumed fixed. The multiplication of the poles

by the factor k means a change in the time scale, it is

B

s; =k . s;' with s,;' fimed (3)

Then the control loop of Fig. 4 can be described by the
equations

u(t) = w(t) - xm(t)

r(t) = f(u(t))

d(t) = o g+ b r(t)

¢ d

xm(t)= q . E

in which the matrix A

(%)

{51000 (5)
A = 052.0

{o....ﬁs..,

contains only the poles of the model. In the vectors g re-
spectivelyRthe values a; resepctively Ri are summarized.

QT means the row vector of the column vector g . b consists
only of ones. The following method for identification is used.
w(t), x(t) and by these also u(t) and r(t) of the original
system are given. If we take these variables as appro?imate
input to the model system (thus instead of w - X, W= x),

we can calculate g(t) by eq. (%), if the time factor k and

s, are known. If we require at least at n points xXn = X

so we can get from

x(t,) =g’ . R (6)
the approximate values of the wanted Ri‘ The Bi can only
be calculated approximately, because the input of the model
wasn't w - Xn but w - x, in principle there was the structure

shown in Fig. 5. The model has to be investigated with the
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calculated Ri' wether x and X0 don't differ too nqch. If they
differ too much and this happens always when the dominant

poles differ markedly - the dominant poles are approached by
changing the factor k or the pole i1 in a very fast seeking
process so that both output functions x and x, agree sufficient-
ly. By requiring x'(tk) to be equal x(tk) at n times random
inaccuracies in the values x(tk) (measuring errors) will effect
the values of Ri very much. Therefore more than n values were
taken for determining the Ri’ If one orders these m values

(m n) according to eq.(6) in a vector X one can write

Q.-R=X (7)
The m x n matrix Q consists of the values qi(i =1 ... n)

at the times t (k = 1 ... m). This system of equations is
overdetermined, since there are m equations for n unknowns :
Ri' Therefore the factors R1 are determined by the calculus of
observations so that the quadratic distance between the
measured and thevoalculated values becomes a minimum. This
means the minimization of the Euclidean norm of

X-9-R (8)
2nd method
This method starts from the transfer function of the closed
model7?8 « It is according to Fig. 3

G, . G

X (s R SM

—i—}-e(-)-— (9)

W (s ) 1 + GRGSH

If the model ﬁlant is described by a rational fraction in s,
of which the degree n can be chosen as one likes, it is

m

b gl
GSM(S)’E“—tS———— m<n (10)

n

2 ajsi
=0
The controller shows for instance PI-behaviour

Gg (8) = Vp (1 + ==)= as i : X2 (11)

If you put eq. (10) and (11) into (9) and if you transform it
into time domain, you get for the most general case m = n the
following differential equation of (n+1)th order
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(an +X;b ) . Llust) (a,-§ + Xb o+ Xb ) . x(n) + eoe

. (n+1)
cee +Xb°x-x1bnv + ee0e X

2 2

b w (12)
If w(t) and x(t) is given and if they are differentiable

n+1 times equation (12) at time ty
n + m + 1 unknowns ai(i =1 ... n, a  can be chosen, a = 1)

and b, (k =0 ... m). By the use of n + m + 1 times you get

is an equation for the

a system of equations for the n + m + 1 unknowns.

Since the differentiability, particularly of the input variable
cannot be assumed (step function) and since differentiation,
as it is well known, amplifies possible errors, it is im-
possible to apply this method in this form. Similar as in
switching diagrams for the analog computer the difficulty is
avoided by integrating eq. (12) n + 1-times. Then there are
no longer any derivatives in eq. (12). Moreover errors are
averaged by integration. :

After integrating eq. (12) n+l1-times and after putting the
new equation in an order according to the unknowns ai' and bi
you get the following equation at time tk

t W %

ap x(tg) + an.q deto <o 4 aq J xdt.---dt+ by-(Xy x(ty)+
0o (] 0 .
n-1mal

tx t u'
+ Xy J x dt - Xy witg)- Xz Iw dt )+....+ by (X Jh xdt---dt+
3 °

o o
n-rmal
(13)
TER ~ t tx
’XZJ'""}’xdt"'d'x‘r"r" dlmd!-le ..... r wdt---dt*=|---| x dt---dt.
2 . of e

mimal

In eq. (13) the integration constants ¢ ... ¢  are assumed
to be zero. If the initial conditions aren't zero the inte-
gration constants ¢y can be easily computed for t = O from
‘eq.(13).

Since a computer performs the integrations very fast you
oaoiiy get from eq.(13) a system of equations for determining
the unknowns a, and b, which is apalog with that of eq.(7).
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8 -B=X (14)
In eq.(14) B is the vector

a
4 (15)
B=| a
bn
L bo J

Q, is a 1 x n+m+] matrix which consists according to eq.(13)
of the coefficients of the unknowns at times tk' X {s a
l-dimensional vector, in which the right sides of eq.(13)

at times tk are put together,

If 1 = n+m+1 eq.(14) is a system of equations for the

n+m+1 unknowns. Its solution gives the coefficients a; and
b, under the condition that at n+m+! times x(t,) equals
xm(tk). In this case the resulting coefficients are quite
good since in this method you use at least twice the number
of measured values as in the first method. If you take

1> n+m+1 you get the unknown coefficients by the calculus of
observations in the same manner as with the first method.

In this method it is easy to change the structure of the
model automatically so that plant and model coincide as well
as possible. Both methods were programmed in ALGOL and give
good accordance between x(t) and xm(t). As an example a
system of the 4th order with a PI-controller was identified
by a model of the 6th order. With the 1st respectively the
2nd method I got a numerator polynomial of degree 4 respective-
ly 3, and a maximum error between the step response of the
original and the model system of 2,5 % respectively 1,05 %
related to the stationary value of x(t). In the following
optimization of the, controller parameters of the original
and the model system, I got an error in the parameter X1

of less than 2 %o respectively 4 %, related to X, of the
original system. For X2 the error was less than 2,5 % re-
spectively 4 %, Even the last error - which is the most

unfavorable value which I zot with different systems - is
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by far within the range in which there is an essential

variation of the optimum.

3.2 Optimization

For the reasons stated in the introduction the integral of
time multiplied squared error ITE2 is used as optimization
criterium. This criterium shall be minimized as a function
of the controller parameters Xi, which means for a PID-con-
troller that

ITE2 o, AIME2 . g BITE2 _ g
9% Loax 3Xs : (16)

have to be fulfilled. If ITE2 is given analytically as a
function of X,, X, and X3, eq. (16) represents in general
three nonlinear equations in X1, x2 and XS. The ‘analytical
representation of ITE2 is possible in the s-domainj, if the

error u(t) can be stated as rational fraction in the s-domain.

-1
U(S) = dn—qs" P T d-O 6 (17)
ApSN 4 .. eeen..f Qg
By means of Parseval's theorem it can be proved that
¢ +joo
ITE2 = [t uldt=-}-7F -Lim £ JU(S'fS)'U(b"’-S)dSr
] ! o0 95 (18)
>N DCH-,(" DetG _ < DeiHi)
4an, Det H & Det G (o DetH

The matrices H, G, H; and G, consist of the coefficients
of U(s)s. Therefore they depend in general on the controller

parameters X1, X XS. This form isn't suited for calculating

’
explicitly the d:rivatives (16) on a computer because-of its
complexity. This is achieved by the following method, which is
explained for the integral of squared error IE2 for simplicity
reasons., The extension to ITE2 is very easy but requires more

calculations. According to3 it is

o e Det G
2 t.l- . - 1
Isz.a[u dt i J’ U UC-9)ds = 3050, (19)

-J
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where Det H is the n-th Hurwitz-determinant of the denomi-
nator polynomial of U(s)

Qn.4 An0...0
Qn.3 @n.2 0
H = - (20)
OOQO
By replacing the first column of H by the vector d
2
dn-1
-(d3; - 2dn.1dn.3)
- ' (21)

(-1)".1 doz

J

you get the matrix G. This means you can write IE2 also as
the matrix equation

22 .H.u=4d (22)

of which only the root w, = TIE2 is of 1nterest; Since the
coefficients a; of the denominator polynomial of U(s) depend
on the controller parameters the matrix H does also and can
be separated in

1>

H = + B:-X

-_—1

+ CoX, + DXy (23)

where z, B, C and D are matrices with constant coefficients.
Neglecting in eq.(22) the factor Zan and considering changes
in parameters about the operating point xio' one gets from

eq.(22) with X, =X, + %, -

io 3

B-x, + €'x, + 2-x3) wa=gd (24)

with A =X + B-X;g + C'Xpp + D'Xqq (25)

Solving the matrix equation (24) by expanding it in a series
it is

+ (a7 Bx, + AT g



59

Now v, depends very clearly on Xy X, and x3 and the derivatives
(16) can easily be calculated. Since these according to eq.
(26) lead to three nonlinear equations in Xis Xp x3 you have

to use a multidimensional Newton procedure to improve the

10° X20° x30° This means in eq.(16) you take

into consideration only linear terms.

approximations X

T =0=0b, +2a,.x, + (a12 +a, )x, + (a13 + a31)x3

T =0=Db, + (a12 + az.l)x1 + 2a,,x, + (3.2.3 + aBz)x3 (27)

T =0 =Dby+ (a13 + a31)x1 + (a23 + 332)x2 + 2a5,x,

where the bi's respectively the a_, 's are the cofresponding

ik

derivatives of w, in the parameters x and Xy about the point
Xi +« It is for example
o
poies” | e
b, =9 | x. = x =1+ Komponente {- A BaA g] (28)
1 : io
d2"’1 =1 -1 =3
a1, “gxarlx =x = 1. Komponente {A B A C A g}
v~ 241 io
Sy means of Xis X5, x3 you get new approximate values xio
by the relation X = xio - X5 The procedure is repeated

as many times as .Lue changes in parameters x5 lie above

some specified bounds. For each calculation only one matrix
has to be inverted and some multiplications of matrices have
‘to be performed. All these operations can be done very fast
on a computer so that the optimum is found within very little
time (even for ITE2, which takes more calculations).

3.3 Adaptation

Finally if there are determined and stored a sufficient number
of combinations of the variable z and the controller parameters
Xi within the operating range, of course you could approximate
these relations at once by a function generator of analog
computing techniques by replacing the continuous function

Xi = f(z) by straight lines between the calculated values.
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Such a procedure wouldn't average any error. Thefefore you.
better fit the measured values by a continuous function and
approximate this by function generators. The determination
of the continuous function can be done by inspection if the
relation is simple. If you need an analytic solution or if
the controller parameters depend on more than one variable
z;y you can get an explicit function - piecéwise or for the

whole range - by linear curve fitting.

When the functions X, = f(z) are implemented at the control-
ler of the plant by means of function generators and servo-
multipliers the process can work as a control loop with con-
ventional adaptive feedforward control of controller para-
meters, which means the controller setting is nearly optimal
for all operational states. The computer isn't any longer
necessary. As an example the course control of a vessel des-
cribed by Oppelt1 was taken. In this the parameter of the
plant depend very much on the speed. This plant was controlled
by a proportional controller with the gain V_. With assumed
values for the parameters of the plant and for the related
speed v I got the step response to a change in course :

1
shown in Fig. 6. Both curves were calculated for a speed of

v = 0.2. In one case the controller parameter was optimal for
v = 0.2, in the other case - as example for a fixed setting -
it had the optimal value for v = 1. Fig. 7 shows the function
Vp = f(v) calculated by computer.

4. Systems with time delay.

In the preceding considerations it was assumed that the time
delay of the system is negligible compared with the dominant
time constants. This assumption isn't valid in many systems,
particularly if mass transport is included. But processes with
time delay are difficult to control, therefore it is very
desirable to have adaption of controller parameters if the
time delay of the process is variable. Subsequently the
changes of the above methods for this case are outlined in
short; they are discussed thouroughly inz.

The time delay of the model loop is assumed to be in series
with the plant (Fig.8). First the time delay is determined

which is relatively simple since it is not important that
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the time delay of the system and the model are exactly the
same. For determining the time delay the following procedure
was used. By the value of t, at which the output variable

of the system x(t) is greater than a specified constant k
(to avoid random errors), and by taking into consideration
the ascent.of the output variable you get the approximate
time delay (Fig. 9). Having determined the time delay one
can identify the linear part of the plantby the methods of
3.1, modified for systems with time delay. The optimization
cannot be performed with the very fast multidimensional
Newton procedure, described in 3.2, since U(s) isn't any
longer arational fraction in s which was a hecessary con-
dition for the analytic representation of ITE2. Therefore

a numerical optimization procedure had to be used. A pro-
cedure of a "direct search" was taken for which an ALGOL-
program exists at the institute which is descriﬁed in9. For
each combination of parameters Xi the system of equations

of the model has to be solved and the error has to be inte-
grated according to eq.(1). Even though the seeking process
is very fast, the optimization is much slower than in the
linear case with the multidimensional Newton procedure,
since the solution of differential equations is relatively
small on a digital computer. There was a factor about 5 in
the computing time. To avoid this one can replace for
optimization the continuous system by a fictitious discrete
system. For discrete systems you can calculate ITE2 analytical-
ly3

only a rise in the degree of the denominator and numerator

even if there is time delay, since a time delay causes

polynomial of U(z). Then the Newton procedure of 3.2 -
modified for discrete systems -is applicable again.
The adaptation for systems with time delay is exactly the

same as for linear systems.

5. Conclusion

It was shown in this paper how to get the control law of
adaptive feedforward.control of controller parameters by
means of a digital compnter. It is an advantage of this
method that the computei - on-or off-line - is on;y neces-
sary during a starting phase. By simulating a model of the
plant on the computer the interferences into normal operation

can be reduced to a minimum.
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In this method the model is determined by means of one of two
described’ identification procedures for each operation state.
The identification procedures don't need any information about
the structure of the plant. The controller parameters are op-
timized by a multidimensional Newton procedure, respectively
by a direct search for systems with time delay. A possibility
was pointed out how to apply the Newton procédure for systems
wiéh time delay.

The extension of these methods to discrete systems is discussed
inz, so that it is possible by these procedures to determine
the control for adaptive feedforward control of controller pa-

rameters for continuous and discrete systems with or without
time delay.
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EXTREMUM-SEEKING CONTROLLER WITH
EXTRAPOLATION

H.G. Jacob C. lira
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1. INTRODUCTION

Extremum-seeking controller affects input variables of
a system or a process (S) in such a way as to seek for an
extremal value of a performance cfiterion which is a function
of certain system variables'independently on the disturbances
end changes of process characteristics which are a priori
-unknown [1]. The disturbances cause, in particular,a shifting
of tThe curve representing the performance criterion. In
general, controllers of this type are applied in cases
when initial information content in small [ﬂ] which results
in the necessity for enlarging the amount of information
by a seeking process. The presénce of the seeking process
lowers the quality of the system as far as speed of cperation
is concerned and to achieve a given accuracy the assumption
is required that the changes of the performance criterion
are sufficiently slow.
The extremum-seeking controller described in the paper
necessitates a larger amount of initial information than
a clasical extremum controller does, if & high quality is

required. Owing to this factor such a controller can not be
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so widely applied as classical one, but on the other hand
it has much better properties as far as operating speed
is concerned which is the feature of all systems with
large initial information.

ie are consideri’.ng ¥he case when the performance criterion
of the process (S) depends on a single variable only.
The block diagram for the extremum-seeking control system
[controller + (S)] is shown in Fig.1, where W, and W, are
the parts of the process - assumed linear, situated before
and benind extremal characteristic(). A and A ave the
disturbances, unknown a priori, which shift(‘e)horizontally
and vertically. To design the controller we assume that
the following initial data are at our disposal:

- the form of(¢)is known; it has single extremum
/meximum or minimum/, moreover, disturbences do not affect
(@)too much;

- the step responses of W(p) and W,(p) are knowm.

The extrapolation is of parabolic type =nd indirectly
utilizes the knowledge of two points on a parabola P
which are common to (P) and(¥), and its perameter which
is averaged for both slopes of the curve - divided Dy
She extremum point of () - in such a way that (P) and ()
be as close to each other as possible. An operaticn =
comorising four intervals - which permits to obtain the
extremum of (P) will e called an optimization sequence.

M1

The extremun oi‘(‘e}is achieved in course of a number of

ovtimization segquences.

The steps of an optimization sequence are:
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- drift detection step. It has a fixed time interval over
which drift of the operating point(output variabléf% caused
by the disturbances R., )}, searching and input control
signals - is detected.

- searching step of variable duration. Over this interval
tvio points of(‘e)are determined.

- control step of variable duration resulting from calculations
of the position of the extremum point of ( P), and taking
into account the displacement of (%” during the optimizsation
sequence, by extrapolation of drift measured in the first
interval.

- rest step of fixed duration.

The possibility of taking into account drift of (‘f) during
a sequence allows the controller to remain stable even in
the case of rapid shift of(He). The modulation of the searching
and control stepé duration allows to increase the speed of
operation if the operating points is far from the extremum
of (Y?) and to increase accuracy if the point is close to
the extremum.

After describing the main principles on which the idea of
the controller is based we describe an optimization sequence.
Later on, we mention about & possibility of "tachometric
correction" and we carry out stability analysis for the process
- controller set. The final part deals with experimen#al

investigations.

2., PRINCIPLES OF THE EXTRAPOLATION

Let us consider the extremsl charzcberistic (\?) described

by equation y = F(x), shown in Fig.2, Its deformation ceaused
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by disturbances is not significant. For two arcs forming
the slopes of the curve on both sides of the extremum point
we determine a parabcla P having its axis parallel to Oy.
The pesrabola is, on average, as close as possible To the arc
of The characterisfic (%) .

The equation of such a parabola is

x2 + ax + b = 2py

where p - parameter of (P). For the left part of the character-
isth:(?) we determine Dy and for the rigant part - Do

The sign of the change of the output value
sermits to find out which of these two parameters should be
anrvlied.

The purpose of the searching step is to find two points A
and B of the characteristic(ﬁf} « These two points and one of
the parameters P4y Do uniquely determine a parabola (2.

Let us denote: A x - increase of x after a searching step,
A ¥ - corresponding increase of y, X - abscissa of point A,

X, = abscissa of the extremal point of the parsbola ( P),

dx - increase wihich should be added to x in order to reach
the extremum of (P) - Fig.2. For the introduced symbols
we have
* AvY A x
‘p'xA'Ax=d\.:='PiAx - = /1/
1=1,2

In nmost cases of extremum-secking systems the variables

%y, ¥ are not accessible, therefore y is measured after
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the dynamic unit W2 and x is affected through Wq. For the
further calculations we assume that gains of K1 and W2 are
equal to unity. /If they differ from unity the form of (%¢)
is modified accordingly/.

~.ring the searching step‘/a is increased by an increment
A/A of constant velue, the duration time A t, of the step
being variable. Let X (A tr) be the value of the intermediate
variable x at the instant A tr /Fig. 3a/. It is the response
for a unit svep of M. Let ?(A tr) be the value of ¥ at
the instant A tr obtained as the response for unit gains of
t1 and W2 and for the same step change oflﬁA /Fig. 3b/.

Ve get
- S P (AsAM,  xaE (4w ip

s * . * £
Increment of dx corresponds to an increment of d/u which

is given by

e g5 1 INAE Y z(4+t,)
\"F(Atr) A/u 2

12/

For the controller described here Awis a constant value,
equal to A\?ﬂ , determining the variable searching interval

At

rl

3. PRINCIPLE OF THE CONTROL

In order to increase the rate of operation at the begining
of the control steplﬁd receives a step increase /called the
forcing control C./. The magnitude of Cy, is constant and as

L =&

large as it is admitted by technological constraints, its sign
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being dependent on the change of 9” after applying the step
searching signal. The duration A t, of the control Cp is
variable in such a way, that at the end of this interval

the value of X corresponds to X e Immediately after the time
A.tc the signal 'is forced to-assume the form of CD

/called definitive control/ such tihet X preszrves the value xp.
The response x(t) for different searching and control signals

/Fig. 4/ permits to determine A tc from the formula

2
X A =
(A=) Cg- MM E (At et

and the control CD from

Cp = dm -cE+A/Mi(Atr)
Therefore

A _ - 1 A;Yﬂ v P Afd x (h tr) %
TP (A, AM P =Cx sy

In practice, the term Aﬁ!i (A tn) is small in comparison
with the other terms of equations (2), (3) and(#).
The suggested controller makes use of the simplified relations

based on the following approximation:

1 -
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In case of a process (S) for which the characteristic
is not followed by dynamical unit WZ, the control step of
duration A %, is not applied end definitive control step Cp =
= C is applied at the begining of the rest interval.

The rest step‘of a constant duration is chosen according
to the response time of the dynamical unit '»'.’2 which follows
the characteristic(?,. This step is necessary in order that
the system could reach the new stable operating point by
the time the next optimization sequence starts. However, if
the duration of the rest step is shorter than the response
time of W2, i.e., if the variable ‘f still changes at the end
of the optimization sequence then, the step of detection of
the operating point drift permité/ to take this displacement

into account.

4. PRINCIPLE OF DETECTION OF THE OPERATING POINT DRIFT AND
THE EXTRAPOLATION OF IT

There are two main sources of drift of the output variable
Y of the process (S). They are:
a/ the action of external disturbances A ’ l‘ which .
move the characteristic(f)horizontally and vertically.
b/ the fact that at the end of rest step duration of
which is short_:er than the response time of the dynamical
unit ’.?2, the wvariable ‘f still changes.
The displacement AYO is detected during the first
interval of an op'cimiza‘ci;n sequence through memorizing values
of ¥ at the begining (t = to) and at the end (t = t,) of

this interval. A %p is integrated over the searching interval.
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t1+t

Po=Ploa + | APy at, Xyltq-1,)=1 AU

%

t,‘+t

The value /A\FP‘X" - P
g

is the predicted, extrapolated change of \P in the
in‘cervaff' determined without teking into consideration the .
influence of the searching signal. In this interwval this
quantity is continuously subtracted from the resultant change
ALP d(t). The change A Hod (t) results from the change of ’f
caused by the searching step as well as from the arift of
the operatving point. If the obtained difference exceeds
a threshold value A“FS, che searching step terminates.
Thus, we zet a modulation of the duration of this step as
8 func*‘:.ion of the slope of the extremal characteristic (‘e)at
the operating point.

The detection step can possibly be cancelled if the changes
of (?) caused by the disturbances A. ’ X are sufficiently siow

and if the duration of the rest interval is 1. .zer than

the response time of the unit Wz.

Ul

« DESCRIPTION OF AN COPTILIIZATION SEQUENCE [2]

different steps of each optimization sequence can be gene:
ted by means of a ring counter controlled by pulses from mono-

multivibrators (?ﬁs,‘, .32) giving pulses of a fixed
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duravion, or by comparators (Cq, C2, C5) giving the steps
of a variable duration /Fig.5 and 6/. The diagram in Fig.6
shows the principle of operation of a controller for a case
of equal parameters Pq =P chosen for each side of the
extremum of (fv .

- At the instant t = to the step of detection of the operating

point drift starts. The O stage of the ring counter /Fig.5/
is in the "binary one position" all other stages in the
"zero position". The transient state of the monostable
multivibrator (1iS,) determines the constant duration of
the first step. The unit Mo /Fig.6/ memorizes the value
Y(to) = &po 4

- At the instant t = t,, the multivibrator:(msq) switches
to its stable state and the stage 1 of the ring counter sets
to "binary one position", all other stages are at "“zero
position". The searching step starts. The M, unit /Fig.6/
holds in memory \ta(t,]) = LF’I' The difference L/?1 - Wo =A\Fp
is integrated by the integrator I,I over the duration of this
step. "

The searching signal AM is imposed on the variable /A
through the control block BC , the output unit of which may
be for example a motor. The main time constant of the motor
is small in comparizon with the time constant of W1 and WZ
and with the average duration of the searching step.

The initiel condition -u is set on the integrator 12 with

input signel + V. Its output voltage S2 linearly decreases

<t

'G,]+

”
-

S2=u- 0(2 dt:u-qutr
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*
The voltages + V, -u and gain o are so chosen that they
determine a maximum value of the time tr na which follows
from the properties of the process /Fig.7/ to be optimized.

- The searching step ends at the instant t = to when

the difference

‘l:,1 + t
A, (e) - [AY e
T,
assumes the value + Alfs H (ta -t = A tx) o The comparator
C,1 or 02/1t debends on the sign. of AS"S/ makes state transition
in the 2nd stage of the ring counter from "zero" to "one".
The other stages remain at "zero". The control step starts.
Forcing control of a constant magnitude CE' the sign of
which corresponds to the sign of Alfs if the extremum is
a maximum point, i:c imposed on the wvariable /M through the unit
(BC) simultaneously with the step change - AM , which
compensates the step change of the searching signal, +
/the switch T, in Fig.6, controlled by C,], C?_/. The voltage
Sz(t) is held at the value S, (tz). The longer the time interval
A t,» the smaller this value /Fig.7/.

In Fig.6 the element ( GF,] ) is a function generator. Its oirtpu"b

voltage is equal to
1 A‘f; D

PA%) A

AYL.P
The potentiometer P‘I setting determines the constant term -—Yf"—

aM

C ==~
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An initial condition z for the integrator I3 is
proportional to the time interval A tc. Over this interval
the control CE is to be applied. The time interval A T,
is determined from the relation (6). The voltage z is
supplied by the function generator (GFZ) 3 the potentiometer
P2 makes possible to set up the constant term 'I/CE .
The voltage -v'is integrated by 13. The gain of I3 is
equal to that of the integrator I2 until the exact compensation

of the output voltage 82 takes place:
t2 -t

S;=-12 - j (= v)oy at
*2

. ]

For S; = 0, t = ty where t5 = t, = At, /Fig.8/ (V'and o 4

are so chosen that the time scale for S3 is as shown in Fig.?).
At the instant t = t3 y the comparator 03 sets the stage 3

of the ring counter to "the positic: one"., A rest step starts.
The definitive control Cp = C - Cp is applied to (BC).
The monostable multivibrator switches on. Its transient
state determines the constant duration of the rest step.
When (HSE) switches off, thé next optimization sequence
begins.
REMARKS

The characteristic of the generator (GFq) is skown in
Fig.9. It -represents the function ﬁ:F—l——- ?efined on

v(at,)

the base of Fig.3b. For 82 = u - the valud coxresponding

to t = 0 in Fig.3p - C is set to CE.
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It results in a small modification of the curve corresponding
to ——T"———) in the vicinity of S, = u. If the process (§)
ccnsistAstrof a pure time delay T , the characteristic of (GF,I)
is such as shown in Fig.10. '
The searching si:ep duration is limited by the quantity
A tr pax ° Large value of A tr indicates that the operating
point is close to the extremum. If A t, is greater than Atr ek
the optimization sequence is discontinued, the controls CD
and CE are not used, only the step signal - A u is applied
to compensate the step change A_p. of the searching signal.
- The characteristic of the generator (GFZ) is shown in Fig.'l'l..
- In some cases /p small, A';.-. large/ the relation (4)
instead of the apﬁroximate relation (5) has to be used to
determine Cp. In such cases, to determine A t, one has to make

use of the relation (6) instead of the relation (3).

€. "TACHOMETRIC" COMPENSATION [2]

Let us assume that the process (s) consists of a dynamical
unit W,, followed by unit with an extremal characteristic (‘C) .
In other words, time constantsand delays of the unit W2 are
supposed to bé negligible with regard to those of the unit W,.
lloreover, we assume that the extremal characteristic (‘ﬁ) has
a maximum. In the case when x o is pract_ic;ally the same as
the abscissa xp of the extremal point of the characteristic )
and no displacemen:t:s of it occur, the motion of the output
variable y =\ ends at t = tB' It means that at this instant
dy/dt = O /the controller is supposed to be ideal: t. and Cp

are precisely determined/.
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If at ¢t = 'c3 -£ /¢ - smll positive constant/ x, and

xp are to the left of Xp then dy/dt is positive. It means
that in the course of the optimization sequence the operating
point does not overrun the meximum of (¥). If x, is all

the time to the left of Xp and at t = 1:3 -£ xp is to

the right of this point, dy/dt is negative what indicates
that%erathg point has overrun the maximum of () in

the course of the optimization. sequence. In such a manner,
the value of dy/dt measured at the time when the definitive
control is to be applied, gives information about the position
of the operating point with regard to the maximum of (%) .
The amplitude of the definitive control can be varied as

a function of the value of dy/dt ﬁhich is measured at that

time when the control is to be applied

aq
at

1,2

Cpe = Cp + & for x, < xp i

ay
C =Cpn = S ———— forx =
¥ g0 Wepbyingy AT F

where cDC is the corrected definitivé control
Si is a coefficient which depends upon the parameter p
/see paragraph 2/.
If dynamicai properties of W, can not be neglected, the
fact that dy /dt is negative allows to make conclusion that

the maximum point of ve) has been overrun. But under the same

conditions, the fact that d¢ /dt is positive does not allow

to draw a conclusion that the maximum point of ue) has not
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been overrun. The correction of the definitive control can-
be perfoimed but with some complications. '

Vhen drift of(%)occurs, the tachometric compensation
may be used but it has to be taken into account that for
the block of de/dt the variable ¢ is an output variable
from which the extrapolated value of shift occu%&ng during
the first step of the optimizetion sequence is subtracted.

%hen the operating point moves in the disadvantageous
direction, it is wise to decrease the rest step duration.
It can be done by meking use of information about d ¢ /dt
at t = t3 - & . Then, the rest step duration is no more

constant and varies with the motion of the operating point.

7+ CONSIDERATIONS ON CONTROLLER STABILITY

The controller is seid to be stable if in steady state
under the application of an optimization sequence the operating

ooint is not moved out of the extremum of the characteristic(@).

7«1+ Stability Versus Changes of the Parameter p of

the Parabola (P)

Let the extremal characteristic (@)be a parabola. In
the case when disturbances have no effect on this
characteristic, the parameter p corresponding to the
varsbola (P) can not be theé best approximation of
the cheracteristic(@) for all positions of the operating
point, Pecause this parameter has been chosen as an average
value. As a result of it, the contrcller stability under
changes of the parameter p of the parabola (P) has to be

considered .
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Ir order to carry out the stability analysis it is assumed
that the characteristic (‘e) is a parabola with a parameter Py
and that only an estimate of this parameter, equal to p, is
known. The error of the variable x which arises as a resul”

of this fact is as follows

o Sxrle

Axv

o
n

" where ti is a control corresponding to the ‘estimate P,

d;v - an ideal control which brings .the operating point

to an extremum of the parabola(¥). To generate this control
one has to know the exact value of p, namely pv; For
-operating points which are distant enough from the extremum

P
Figure 12 shows e" against pv . The stability limit is

determined by e e + 1. In fact, for =4 1, the control
d; is two times the control d;:v s new and previous operating

points are symmetric about the extremum. For ¢ = - 1,
d; = C and the operating point does not change its position.
: A condition for stability has the form

|o| < 2 |pvm| 19/

where |pv m.nl is the smallest pbssible value of the parameter p.
It should be noted that too small values of 'pl ought not

to be chosen, because the optimization rate decreases with lpl.
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7.2. Stability Versus Settingsof Dynamicai Characteristics.

of the w',] and W, Units

In practice, only approximations of responses X (A tr)
and §(At,) are known. Moreover, the units W, and ¥, are
nonlinear what implies that the form of the response is
a function of the amplitudes of the signalsy and y.

Control C, defined by (5), is determined with an error,

which is

d. =
o c-c, = Ay
= = ®
CV dy.v
where
- =1 = A‘Ps ho)
v - —_—
Q. (at,) ¥

Qv (A tr) is an exact response of ’.-’-J,,, ’Elz set

™
ne

P (A5,)
P(as;)

It can be found that in this cese the stability limit
. o 1 - - - de
is given by &' =+ 1 or §(8t,.)42 G(At,).The dotted
area in Fig.15 represents a region for which €Very
.urve C@'(Atr) is stable providing the exact value of
‘e parameter p is known. If we accept a curve 'Cp' which
corresvonds to a response more rapid than that of q;' !
The amplitude of the definitive control CD is greater then
that which ought to be applied. It is due %o the fact that
ne cont:

Vil

. C is smaller. Hence, the value of the second
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term of the relation (3) is smaller than the ideal one and
the time interval A'tc is smaller then the ideal time
interval A tcv providing that the generator (GFE) exactly
reproduces the response x(A'tc). In such a manner, errors
of C and A tc tend to compensate each other.

The generatoz'(GFe) determines the time inmterval A t_
and has effect upon a system transient state.

Owing to the fact that changes in settings of the dynamical
characteristics of Wﬁ and WZ affects stability in little,
the curve generated by (GFq) can be replaced with the
straight line (4) /Fig.9/ and the curve generated by (GEE)
- with the straight line (d') /Fig.11/.

7+3« Stability in the Presence of Noise

The value of the threshold A\Ps is chosen to be large
enough with regard to the amplitude of noise disturbing
the variable . However, the increase in A ¢ g Tresults in
decreasing the optimization rate and accuracy. The latter
is due to the increase in the amplitude of oscillations

about the extremum of the characteristic (Q).

7e4e Stability Versus Drift of an Optimel Characteristic

The existence of the step of detection of an operating
point Arift makes possible to preserve stability of The
controller under rapid changes of the extremal characteristic(¥
Experiments which are described in paregraph 8, corresponding
to Fig.17 and 18, illustrate stability of the controller

under’ the influence of sinusoidal and triangular disturbances.
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8. EXPERINENTAL INVESTIGATIONS

The process (S) has been simulated on an analog computer.
Investigations which are illustrated in Fig.1¢?énd b have.
been carried out in order to point out the fact that the
controller is stable under large changes of the parameter p
of the parabola (P). With this in mind the extremal
characteristic (Q)has been chosen to be strgély dissymmetrical
/the dotted curve in Fig.14/.

The transmittances of W1 and W2 units have been chosen as

follows

1 1

W p) = —mmmm—— W o e ———
1 ( ) 1+ qu 2 (p) 1+ sz

.T1 = 10s, T2 = 5s
The average value of the parameter p is Pq =Dy = -1.

It can be found that the tachometric com.pensati°n
results in better response speed.

In order to investigate the controller stability as
related to errors in settings of the dynsmical characteristics
of W1 and Wa, the response \§ (t) was recorded for various
value. of T1 and T2 $ whergas settings for (GF1) and (GFQ)
were always T1 = 10s, T2 = 58 /Fig.15/.'The characteristic (@)
is shown in Fig.14.

Fig.16 illustrates the operation of the extremum - seeking
controller in the presence of a sinusoidal disturbance ).(t)
with the amplitude equal to 3V and the period T_ = 80s.

D
This disturbance results in a horizontal displacement of
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the parabola [curve UC)] with the parameter p = =2.

For ,Aips l: 0,1 V and without the step of detection of
an operating point drift, the system is unstable, but if
the drift detection step exists, the system is stable
/Fig.16a, 16b/. For the treshold ,A Qs, greater than that
previously mentioned, namely for IA.qsl = 0,3 V, the
system is stable even without the step of detection of

an operating point drift, but when this svep exists the
system performance is better /Fig.16c/.

Fig.17 presents the response \P(t) obtained for the case
of disturbances of the triangular waveform. The disturbances
cause a vertical displacement of the characteristic U@)from
Fig.18. It should be readily apparent that the existence
of the drift detection step has stabilizing effect on
the system performance.

For investigation purposes, the generators (GF1) and
(GFZ) have been replaced with linear elements [straight
lines (d) and (4')in Fig.9 and 11]. It has given conclusive
evidence of the fact thet the controller stability is
preserved despite errors in sgttings of the dynamical

characteristics of W1 and '2‘

9. CONCLUSIOKS

The perfor..nce of the described extremum - seeking
controller can be improved by eliminating the searching
step. If it is the case, the control signal with the
amplitude CE following the first step of an optimization

sequence is also used as a searching signal. If under
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the action of control the operating point moves in the wrong
direction, the control Cg is terminated after A t,. But
if as a result of control the operating point approaches
the extremum, the control CE lasts A tc. Exact relations
(2} 5:(3)s (#), for which y = Cgy are used. The structure
of such a controller is a bit more complicated despite
decreasing the number of steps of the optimization sequence
by one.
Principles on which the controller construction is
based can be also used when the extremal characteristics
is a function of two variables, y = F (xq, xE). Tf-dbyis
the case, revolutionary or elliptic paraboloids are used
for extrapolation instead of the parabola (P). As the base
for this choice, the initial information about (Q)is used.
To conclude these considerations it should be noted
that the described controller belongs to the class of
model - reference adaptive systems. As a consequence of it,
the generators (GFq) and (GFa) as well as their inPut and

output elements can be replaced with models of W1 and WZ.

[1] A.&. Krasovskii

"Dynamics of Continuous Self - adjusted Systems "
/in Russian/.Edited by Gosizdat Fiématlit, lloscow,1963.
[2] H.G. Jacob 4
"Itude de Systémes de Régulation Extrémale par extrapolation”
h.D. Thesis, Faculté de Sciences de 1 Université

de Touluse, lay, 19G6.
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Vertical triangular
disturbances

) A =014 Ysec )t
(without prediction ond
compensotion of drift)

b) A= (004 Vsec)-t
(with prediction)

{division =2V (vertically)
= 5sec(horizontally)

\ T.-i0sec ; T, =5sec
t rest =5sec ; A,=threshold
Me=5V 5 ICI=10V

c) A= (028 YViec)-t
(with prediction)

d) A= (042 Ysec)-t
(with prediction)

Fiqure 17
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AN OPTIMAL EXTREMUM CONTROL SYSTEM

7.L.R. Jacobs and S.M. Langdon
Department of Engineering Science
University of Oxford

U.K.

1. Introduction

Extremum control or 'hill climbing' problems are a well definedl’2
class of control problems in which the output of a controlled process
is minimised (or maximised) by automatic adjustment of the input, based
on observations of the output. There are many poteﬁtial applications
including automatic maximisation of combustion efficiency in engines
and boilers, automatic maximisation of efficiency in chemical plant,
automatic minimisation of wear in drilling machinery, automatic
minimisation of errors in control systems, automatic focuséing of
optical systems. Two obstacles in the way of widespread practical use

of extremum control are:-

(1) The practical difficulty of measuring many of the output variables

that it might be desirable tovminimise or maximise.

(ii) The lack of theoretical information about what is the best
performance that can be expected of an extremum control system and about
what control law will yield that performance, assuming that the output

can be measured or estimated.

This paper is a contribution to the removal of the second of the above
obstacles.

A variety of extremum control laws have been proposedl-ll, but these
have mostly been derived by empirical arguments and little is known
either about their relative merits or about optimal extremum control laws
although the question of what would be an optimal law has been raised

by several authorsz’7’12-16.

An optimal extremum control law is derived here for a simplified,
discrete-time, extremum cc trol problem. This is thought to be the first
such explicit statement ot an optimal extremum control law. The

14,15

problem solved has been discussed elsewhere and it has been shown

that the optimal control can be expressed as the solution of a dymamic
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ATs 28 equation. Hozgova.yal5 showed how the problem

programming
could be simplified by separating the steady state and transient terms,
but solved an incorrect equation for the steady state term; Jacobsl4

formulated a correct but impracticable equation for the transient term.

The two approaches are combined here to yield the correct solution.

The resulting control law gives an indication of the structure
of. optimal extremum control laws and it gives a measure of the best
performance that can be achieved for the particular problem investigated.
This performance had previously been achieved using a simpler suboptimal
policy14 and it i1s concluded that the suboptimal policy should in this

case be prefered for practical purposes.

2. The Simplified Extremum Control Problem

Figure 1 shows the simplified extremum control problem in which
effects of measurement noise and dynamic lags are neglected. The
observable output variable c¢ is assumed to be a quadratic function of

a variable x

¢ = Ax (1)

where x is the unobservable sum of a control variable u and a disturbance

variable z

X ¥ SIS ACR (2)

It is assumed that all variables are discrete-time variables, as is the
case when a digital computer is used as a controller, and the integer
variable i is used to represent time. The disturbance 2z is a

stochastic variable with transformation

z(i+1) =z (i) + r(i) (3)

wvhere r is an independent random variable with zZero-mean, stationary

Gaussian probability density

s | 2 2
p(r) = exp (-r /2&8°) (4)
652 x

The problem is to make the series of control decisions u(1), u(2)....

so as to minimise the expected value of the time average ¢ of the output

¢ defined by N
=Lt 1 z c(i)
c sy
N .
N=woo ¥ i =1 (5)

—
= A x*
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where the expectation is taken over the known probability demnsities
(equation (4)) for the random variables r(1), r(2) ...
A first step towards formulating the equations of optimal control is

the choice of state variables. For this purpose it is convenient to

consider increments v in the control variable @
v(i) = u(i + 1) - u(i) e (6)

so that the system difference equation cam be written (combining
equations (2), (3) and (6))

x(i + 1) = x(i) + v(i) + r(i) (7)

Equation (7) shows that the variable x is the state variable of the system
and that its dynamics are linear. If the variable x were observable the
quadratic performance criterion ¢ of equation (5) would be minimised by a

linear control law
v(i)! = -x(i) ¢ (8)

However x is not directly observable; what is observable is the output c

and so each observation gives two possible values for x,

x(i) =1‘/dﬂn =+ w(i)

where w is an observable variable defined by
v = +Je/A = x| (9)

it being assumed that the constant A is known.

3. Sufficient Statistics

In the absence of direct observations of the state x it becomes

necessary to describe the state of the system by a probability distribution
for x. For each observation ¢ the state x has two possible values + w
and so the probability distribution for x can be represented by the value
of w and by a number q such that

probability that x(i) has the positive value w .
probability that x(i) has the negative value - w

q(i)
1 - aq(i)

This probability distribution has expected va;ue
Efx(1)] = a(i)w(i) - (1 - q(i)) w(i)
= (2q(i) - 1) w(i) ©(10)
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After each stage of the process an updated probability distribution
[w(i +1), q(i + 1)] can be derived from knowledge of the probability
distribution [w(i), ‘(i)] at the previous stage, of the control incrememt
v(i) , and of the resulting output c(i+1). The new value w(i+1)
is given by equation (9) and the new value q(i+ 1), derivedl4 by

application of Bayes' rule to the system of equations (1) - (6), is

P, q(i) + P,(1 -a(i))

q(i +1) = )
(P, + Py)a(i) + (P, +P,)(1 - a(i)) s
where
P, = exp(-(w(i +1) - w(i) - v(1)f/2¢%)
P2 = exp(-(w(i +1) + w(i) - v(i))2/2¢2)
P3 = exp(-(w(i +1) + w(i) + v(i))2/2°'2)

(llb)
P, = exp(=(w(i +1) - w(i) + v(i)Y2¢2)

The variables w and q completely specify the probability
distribution Por the state of the system at each stage; they are
sufficient statistics ’18. They play the role of state variables in
formulating the optimal control equations, and the resulting optimal
optimal control law is specified by a function v*[w, q] giving the

optimal control v(i)as a function of the current values w(i) and q(i).

(4) Optimal Control Equations

The optimal control is derived by considering the possible up-
dated values w ( i+ 1) and q(i+ 1) that may result from a control v(i).
The updated value w( i+ 1) is given by equations (1), (7) and (9)

w(i+ 1)

Ix(i + )= Ix(i) + v(i) + r(i)]

. |+ w(i) + v(i) + r(i)]

so that there are two possible values depending on whether x( i) is positive
or negative. These are

w(i +1)

Jw(i) + v(i) + r(i)| with probability q(i)

(12)
|-w(i) + v(i) + r(i)| with probability 1 - q(i)

w(i +1)
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It is convenient to write

(i) + v(i) + r(i)) ="

]
]

and J=w(i) + v(i) + r(i))

and to use the notation q+, q~ for the two corresponding possible

values of q(i + 1) given by combining equations (11) and(12).

18
The dynamic programming approach  is to define an optimal

expected return function
N

By [w, @] = The expected value of the sum Zc (i)- when the
1=1

optimal control v* is used for N stages starting
from w(1) = w, q(1) = q.
The principle of optimality states that when the optimal policy is
used and the first decision is v(1) = v and the random variable r(1)
takes the value r the return to be expected from the remaining N - 1

stages is

QPN -~ 1V[w+r q+J * (1 - q) FN £ 1[ V-, q‘]

But the contribution from the first stage is sz and so, taking into
account the known probability distribution for r(1l), the expression
for total expected return can be written

oo .
o+ Jlary L, @'Y 4 (- a) By 06,0 Datedar

When the optimal control law is used this expected return is minimised
with respect to all decisions v(1)..., v(N), including the first
decision v(1), so that

L]
2 " + - :
FNtw, ql = Aw +m¢n{!~(qFN_l[w,q 1 +

B (13)
+(-q) B _ [+, a 1) p(x)ar}
Equation (13) is the dynamic programming functional recurrence
equation for the total return from a finite-time process. For a single-

stage process, N = 1, the decision v cannot affect the return and the

definitions give

% [v, d] = e (14)
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Putting N = 2 in equation (13), using equation (14), performing the
integration for the probability demsity p(r) of equation (4) and

then minimising gives the optimal control for a process with only

two stages

72:‘ [V, q] =(1—2q)w

axid the optimal expected return is

B, [v, al = A(wz-o- 41'2q(1 -q) +d’2) (15)

The optimal policy for a process with an infinite number of
stages, as specified by the performance criterion of equation (5),
could, in principle, be determined by repeated iteration of equation
(13). 1In practice it is more convenient to regard the total return
Pﬂ v, al as the sum of a transient term £ that depends on the

initial conditions [w, q] and a steady state term that depends only on
the number of stages N

Felv, a]

»
2y v, qd] + Ney
(16)

fN[o,o] 0

Substituting equations (16) into equation (13) and i.tezl:'u‘t.ing19 from the
initial solution of eruation (15) it was found that for large N (N> 7)

the transient term, the average steady state term and the optimal
control all become independent of N

fN [v,dd — ¢ [v, a]
c*N —= -c# : (17)
vN* [v; 4] —= v*[w, q]

Combining equations (16) and (17) gives

1w 1 Blv al = o*
N0 N

and the definition of the. total return function FN shows that c* is

the minimum value of the performance criterion ¢ of equation (5).
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Thus the limiting control law v* [w, q] is the optimal control for

the extremum control problem specified in Section 2.

5. Optimal Control Law
The optimal control law v* [w, q] was found by writing a digital

computer program to iterate a discretised form of the functional
recurrence equation. Details of the computation which givés results
to an accuracy of approximately + 1% will be described elsewherelg.
Figure 2 shows the numerical results (normalised with respect to the
standard deviation 0" of the random variable r) which are subject to a

symmetry condition

*[v, q] =-v*[v, (1-4q)] (18)
and to an asymptotic approximation for large w

v[vw, q] ~ -(2q-1) v (19)

where (2q - 1)w is the expected value of the state x,given by
equation (10).
The computation also gave the value of the steady state performance

criterion

ot w winfa} w2226? (20)

Another digital computer program was written19 to simulate the perfor-
ance of the system in Section 2 using the optimal control law of Figure 2.
The average walue of thg vas found to be 2.2 (to accuracy approximately
tZ%) and this agreement with the value predicted by equation (20) is regarded
as confirmation that the optimal control law has been correctly derived.
(A corresponding simulation using the 'optimal' control law proposed by
Mozgovaya15 for the same system gave E/Ad2 the value 7, which indicates

performance far from optimal).

For purposes of comparisom with suboptimal policies the control v
is regarded as the sum of two terms, a correction term equal in magnitude
and opposite in sign to the expected value of the state x and an information-

2 ? " 7
sensing term, the 'intentional error''.
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v(i) = - E [x(i)] + intentional error (21)

Equations (10) and (21) and Figure 2 were combined to give Figure 3, which
shows the normalised intentional error as a function of[w, qJ . The

intentional error is subject to a symmetry condition similar to
equation (18),

Intentional error[w, q] = - Intentional error[w, (1 - q)] (22)

An interesting feature of the optimal control law is the discontinuity
that is evident in some of the lines in Figures 2 and 3. This is due
to the 'dua1'20 nature of the control which must provide both correction
and information-sensing functions, as indicated by equation (21). The

discontinuity arises as one of these functions becomes more important
than the other.

6. Comparison with a Sub-optimal Control Law

A suboptimal control law has been described elsewherel4 vhich gives
performance as good as that of the optimal control law derived here.
The suboptimal law uses an intentional error of constant magnitude a
and with sign that can be chosen according to either of the rules

(z1)%s (23)

intentional error

or

intentional error = a sign [ 1 - 2q] (23b)

It was found that when the system of Section 2 was controlled by a law
based on equations (10), (21) and either of equations (23) the average
value of ¢/A® " could be reduced to the optimal value 2.2 by using an

intentional error of magnitude

a=0.8¢ (24)

This magnitude of intentional error is indicated in Figure 3 and can be

seen to be typical of the magnitude of the optimal intentional errors.

7. Conclusions
It is a characteristic feature21 of extremum control problems that
the true state of the controlled process, for example the variable x in

equation (1), is never directly observable. Even when measurement noise
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is negligible, as in the system discussed here, the non-linear extremal
function introduces ambiguity between the observable variable ¢ and the
true state x. For problems like this, where there is uncertainty about
the true value of the state, it is known14’ H that the equations of
optimal control must be formulated by using as effective state variable
an updated probability distribution for the true state. Such a
formulation is only feasible if the updated probability disiribution can
be represented by sufficient statistics, and numerical solution of the
resulting dynamic programming equation is not usually feasible if its

dimensionality exceeds two.

The extremum control problem that has been solved here was specially
simplified so that the updated probability distribution could be
represented by two sufficient statistics. When additional features of
practical problems are introduced, such as dynamic lags and measurement
noise, the dimensionality of the problem increases and the.probability
distributions can no longer be represented by sufficient statistics. The
optimal control equations can then be neither formulated nor solved and
so optimal control theory cannot be regarded as a geﬁeral procedure for the

design of practical extremum controllers.

The control law derived here is therefore of particular interest as
the only known example of an optimal extremum control law. The following

conclusions can be drawns-

(i) The optimal céntrol is a 'dual control' that is the sum of a
correction term and of an information-sensing term which depends on the
current state. 'Dual control' (or 'adaptive') strategies have been
proposed by many authors22 but there-has hitherto been some doubt about
the circumstances under which such 'dual control' would be optima123. It
seems that it is the non-linearity of the extremum problem that forces the

optimal control to be 'dual'.

(ii) The suboptimal control law described in Section 6 has the 'dual'’
structure of the optimal law, but is simpler to realise because its
intentional error is constent in magnitude. The performance of the
suboptimal law is indistinguishable from that of the optimal law and so
the suboptimal law is to be prefered, on the grounds of its simplicity,

for practical control of the problem specified in Section 2.
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The question of how the optimal and suboptimal laws compare, and

of how they might be modified, for extremum control problems where

dynamic lags and measurement noise are not negligible is a matter for

further research.

10.

11,

1D
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CAMOOPT'AHU3AIIMA CHCTEMN SKCTPEMAJBHOI'O YIPABJEHHA
Msaxsesxo A.T'., Xpymesa H.B., Hecxomosckuit B.I.

/K u e B/ 2
"o TPYAHOCTH pa3pemeHAf X NOCIeg-
CTBHUAM ZJIA HAYKUM M NPAKTUKHA aTaKy
Ha NPOGNEMH CaMOOPTaHM3amui MORHO
CPaBHUTH C HaCTyIIeHNEM Ha TaifHY
aTOMHOrO fiZpa. {l ecaM nmepsas MoJo-
BHHA JBAfUaTOr0 BEKa BO#ZET B UCTO-
pUO HAYKHM KaK 3M0xXa (yHZAMEHTAJBHHX
OTKPHTUI! B o0NacT# AZNEPHOX OuU3uUKH,
T0 BTOpas MOJOBMHA HAWero BeKa, MH
HajeeMCsi, OyZeT O3HaMeHOBaHa pas3pe-
MeHUeM IeHTPAABHON NpOOIEeMH Kuoep-
HETUKHM - NMPOGIeMH CaMoopranmsamuu”.
A5l . Sleprep, peducsobue x Kwuze
Jpunyume camogoeonuiayuu ] v3d Myp’, /366,

Ompezesaenue moHsATAs "camoolydenue" u "camoopranusamuq”

Mox TepMuHOM "caMoopraHu3auusa"™ MOHMMaeTCH NMPOLNECC CaMo-
NPOM3BOJNBHOTO /MIM CNOHTAHHOrO/ yBeJAMUYEHUA ODPraEU3amuu, T.€.
JMEHBUIEHMA SHTPONMM CHCTEMH, COCTOAME# M3 MHOTUMX B3aMMOCBA3aH-
HHX 3NIeMEHTOB, NpoucXozxaAmuit moz zeflcTBMEM BHEMHEH CPeZH UM
COGCTBEHHHX MOJORATEIBHHX OOpaTHHX CBA36il, Boiee y3KUM MOHATHEM
ABnAeTCA "camooOyueHme" unm "azanramgua", moz KOTOPOH NOHMMABTCH
OCHYHO TOIBKO HOOCTENEHHOE M3MEHEHHNe HacCTpaMBaeMHX MapaMeTpOB
cucTeMH /K03pdMuMEHTOB ypaBHeHM#t/. CaMOOpraHM3alUsf OTIMYAETCA
pozoM BO3zeiCTBMRA M BKADYAET TAKKE BUIOM3MEHEHME CTDPYKTYDH.

[lpuMepauyu aaropuTMa CaMOOCYUEHUA DpaCHO3Hapuielt CHCTEMH MO
BXOZHHM CHUTHasaM MOTYT OHTH METOZH CaMOpa3CUEHMSA MHOEECTBa
BXOZHHX H308paxcHuil Ha KOMIIaK THHE rpynnﬁ[i u 2] . YenoBeRy -
JUATENIN OCTaeTCH TONBKO COOOMUTE CUCTEMe Ha3BarEMe 00pasa Kaxzoit
TDYNIH, OPMHATHE B 46JI0OBEUYECKOM O0LecTBEe. Le3 3Toro cucreMma
TaKxe CyZeT pas3iuuaTh M306pameHus, OXHAKO eit mpuzeTcs zaTh 06—

pasaM CBOM COGCTBEHHHE HAa3BaHUA, KOTODHE TONBKO CIYy4ailHO MOT'YT
COBNacCTh C NMPUHATHMHU.
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llepBHE 3KCNEPUMEHTH IO CaMOOCYUEHHAD DAaCIO3HEDIHUX cucTeM
OHJNM CBASAHH C MCIONB30BAHMEM BO3ZeficTBHt MONOEUTENBHHX 0GpaTHHX
cBfsefl /ro-ecTh He BXOZOB, a BHXOZOB CHCTeMH/. [IpM 3TOM mpouecc
CaMOOOyuYeEUs NPOTOTHIOB HOZOCEH ONPOKMIHBAHMD HeycTofiumsoro re-
7a. B ciyuae OTCyTCTBHA BMENATJBCTBA YEIOBEKA CHCTEMA NOUTH C
PaBHO# BEPOSTHOCTHK BHOHDAET Ty HJM MHYD KIaCCHPUKamup M300paxe-
Huit Ha oOpasH /3/. H3BECTHH M KOMGHHHMDOBAHHOE MCIOJH30BAHME KaK
BXOZ0B, TaKk H BHXOZOB CHCTSMH IJf CaMOOCyUeHHA DPACHO3HAKHMX CHC-
e /2/.

Cauooprannsaﬁna, TaKKe KaK ¥ CaMOOCy4YeHHe, IPOMCXOZMT IIOZ
ZelicTBMEeM BHEMHUMX BO3ZeiicTBui# uam oCpaTHHX CBfA3eil. OxHako, eciu
Opy CaMOOOGYyYeHMM BCerza MOXHO NPOCJEAMTH JHMHHE NEepezaul BOSzeii-
CTBUH /BXOZN M BHXOZH/, TO IPH CaMOOPT'aEM3aNMU DTO IIOUTE HEBO3-
MOEHO, TaK Kak Bo3zelicTBMA zeiicTBY® MHTErpalbHO Ha MHOX6CTBO
OZHOTHUIHKNX, C HEKOTODOil TOUKM 3PEHMf, SJNEGMEHTOB CHCTEMH. POIb
YeJ0BEKa-KOHCTPYKTOpPA COCTOMT B TOM, UYTO OF BHOApAeT HOIMHEIHHS
XapaKTepUCTUKM STHX MHTETPANBHHX BO3zeficTBmit /mampuMep, HeauHeil-
HOCTH NOZOXOZHOrO Hanora/ M CHaGKAeT YaCTHOH CHCTEMH /HampaMep,
(QupMH/ onpezeNeHHEHMM "3JeMEHTADHHMN aJropUTMaME" B3aMMOZGHCTBHA.

l3BecTHHE 3aTPYAHEHMS, CBASAHHHE C MHOI'OMEDHOCTBHD CIORHHX
CHCTEM, HEe OTHOCATCA K CaMOODPraHM3yRUEMCA CHCTeMaM, I'Ze zsicrBy- -
pT "MHTErpaybEHE BO3ZeficTBUA" M "saeMeHTapHHE airopuTMu". Ilpmie-
poM MOEeT OHTH 3azavua JKIAZKN ZeTalnel B AMMKE IPM NOMOMM TPACKH -
OZIHOBPEMEHHOT'0 ZieiicTBMS Ha BCE ZeTall.

Hmke paccmMaTpuBaeTCd MHEEHEDHasS aanaqé - CaMOOpragmn3anms
CHCTEMH 3KCTPEMaJbHOI'0 yNpaBieHHsd. [[ponecc CaMOOpraHW3anuy Npa-
BOZMT K YUOPAZOYEHMD DACIOJOXKEHHUS MHOKECTBA NPOTOTHIOB pacmo-
3Hapmeit cucremu /"mOANCHOTO rasa"/, KaEAHil U3 KOTODHX MMEET CBOH
"3NeMEHTApHEH anropuTM™ M HAXOZMTCA NMOZA KOHTDOJEM ™MHTErpabHHX

BO3zelicTBUil".
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KoMOuMHMpOBaHHAS CHCTEMAa 3KCTDEMAJBHOrO YNDaBJAGHUS
C_KODDSKTODOM - pacnosHawimeil cucreMoit. OrpaEuyeHus

3a7auy ¥ ONpeze]IeHNe 0CJacTi NPAMEHEHHS:

Bume MH I'OBOPMAM O CaMOOCYYeHHM PACIO3HANMAX CUCTEM NO-
TOMy, UYTO NPSZMETOM JaHHOR padoTH ABIASTCH CAMOOPTaHM3amMA KOM-
" GMEAPOBAHHOR CHCTEMH BKCTDEMANBHOTO YNpaBIEEMH, COCTORmelt u3
pa3ourEyTOft wacTu /PY/ u ee koppexropa /K/, rze B KauecTBe IO-
CI6ZHEro NpezJaraeTCi MCIONH30BAaTh PAaCHO3HADmy®w cEcTeMy /puc.l/.
BuficHEM OrpaHWYeHMs 3azaud. PaccMaTpUBANTCA Kak OZHOMO-
FalbHHE, TAK M MHOTOMOZAIBHEHE SKCTPOMAIBHHE XapaKTePUCTMKM /XOJ-
M/, JAOBIGTBOPDANME TAKOMY TPEGOBAHMD: ONTMMAarbHafd XapaKTepUCTH-
Ka 00beKTa ynpaBieHus /"MHOXECTBO EeJaeMHX COCTOAHMA"/ B oGrac-
T¥ paGOuMX PEXMMOB MPOACTABIAAET COGO{ ZOCTATOUHO NNABHYD JUHMUD
O% 0“, KOTOPYD MOXHO anpPOKCHMAPOBATH KYCOUHO-JMHeUHOH PyHKIU-
eit /puc.2/. [lpz 3TOM mpezmOIaraeTCd, UTO MHOTOMEDHHE 3aZaud NpH
NMOMOMK NpUeMa, NOIXYUYABMEI0 HA3BaHWE AUBEPreHOUM,  CBOZATCA K
OZHOMEpHOIl 3azaue, pemaeMoii B NMPOCTPAHCTBE TPEX NEPEMEHHHX _/})
‘/ﬁl u¥, THe A - oGodmesgoe BO3Mymapmee Bo3zxeiicTeue U //- 0600~
meHEOE peryampyomee poszeicrsue, ¥ — 0COCWEHEH] IOKa3aTeNb Ka-
9ecTBa /yuMTHBADNAR KaK NMOKa3aTeNb SKCTPeMyMa _9_0 / TaK K 3Haue-
HAS BO3MYWeHMH ¥/ = fz(W\)/. Hampumep, B mpocTeiimeM ciryuae, mpa
auEe#fHO#t BKCTDPEMaNBHO! XapaKTepUCTHKE OyZeT

$= Lo+ Tp U+ IZ?.A"’ZJW*ZA + J.//j

ONTUMAaNBHAf XapaKTepPUCTHKE Oé 0II OnpezenseTCH BHPAEKCHHEM

4
9,/2 2 %4 223

MlorpeGyeM, uYTOGH BO BCEX TOUKaX 3TOi xapaxmepnc'rmm OHIIO0
¥ = 1. Uckapuas £/, nomyumu /Ha IHHUAA 02 0 /

=0 wm =+ , rzxe/é"——-f n,é;s-—_'_i_\i
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OueBHZHO, ANA BHIONHGHMS TAKOTO TPEGOBAHMS CIGZYET MpH-

MEENTH NpeoOpasoBaTeldb:

C/ =
VJ il o : =
& Go+ Bor » G A% £(2d).

llpr raxoM mpeoCpasoBaEuM B IwGO#t TOouKe xomMa Oyzer: (P< 7

a Ea ero rpecae ¥ = I. B§Jxee TOUHO

R 50+ Eaedd 5oA?, £ g
W o rBoa+ Tonr Tl T9A° Toma_ 2-Chhpop)

s bo+ G + £3)0%
[lpak THYECKM TaKOil NpeoOpa30BaTENb COZEPEAT B ce0e TaCIALNH

/kapTH/, yKasHBapmue A3MEHEHME HamAX TpecdoBaHMlil K BeJRUMHE MOKa-
sarens srcrpemyMa £ B saBMCHMOCTE OT ZManasoHa, B KOTODOM HEXO-
ZuTCH BEJIUUMHA ]l_ . Hampumep, mpu ozHOM copTe pynu_/_\_@, MH MOEEM
CKa3aTh "zocraTouHO Xopomo", r.e._‘;_": I, ecam cozxeﬁxhnne x6JIe3a

B 0TXOZax ZCyAeT _9_" = [0%. Ilpm ppyrom copre }_Qmi Ty E6 OLEHKY
¥=1 namm, ecim = 8% u 7.0.. |

lpoueccH azanTamuM BH3HBanTCH ZeiicTBEEM HeM3MEpAGMHX az-
IUTUBHHX IIOM6X, BH3HBApUMX Zpeild # mMOBOPOT SKCTPEMANBHOIO XOJMA.
B nanHOM nmpmMepe OyzeT:

=t (Lo O] Lot DI2 < pr )

rae Mo(Z), Np(E) - wennerso mauemspmmecs momexn
A %@( }’ ='ﬂ( /cﬁemenne u moBopor/

Yr00H YCTPAHATH BAMAHME NEPEXOZHHX NPOLNECCOB, AATUMK MOKa-
3aTens KaueCTBA AOIEEH HMETH HEKOTOPO@ yCPeAHGHHMe HIN HHEDIMOH-
HOCTH OOBEKTa NONXHA OHTH KOMIEHCHMDOBAHA NPX NOMOMM YHDPEAHMTEINEH
/5/, 4TO B M3MEDHTENBHHX [ENAX HE BH3HBaeT GOIBNUX 3aTPyAEEHMI.

CnezoBaTeNbHO, MH NOJaraeM, 4ro Bemqm_yj/_/, A momzapres
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M3MEPEHAD, NPUUEM ¥ ZOCTATOYHO OLEHUTH TONBKO IO IBYXGanbHOH
cucTeMe, 'HampuMep:

72y = 0,8 - "gocraTouHO XOpOWO"
¥ <

OmuT, XOTH M HEOONBmO, MO CPaBHEHHD DA3IMUHHX CUCTEM azal-

0,8 - "perymmposars"

THBHONO SKCTPEMANBHOI'0 YNDABIGHAA C MpEZIAraeMoil 3ZeCh CHCTeMOl
MOKa3HBA6T, UTO OHA OKA3HBAGTCH KOHKYDEHTHO-CIOCOGHOA MMEHHO B
3TOM, BECHMA DACNPOCTDAHEHHOM B RW3HM, CIydYae. Ecim moxasaTens
BKCTPEMYMa MOXHO H3MEDATH ZOCTATOYHO TOYHO, TO 6IECO0CPa3HOCTH
NPEMEHEHNs CaMOOPTaHM3aNMM M PACHO3HADUHKX CHCTEM MOXET BH3HBATH
COMHEHHs. B TO %6 BpeMs BO MHOTMX CIOEHHX 3a7auaX MH MOEEM CKa-
3aTh TONBKO "xopomo" mmM "uro-TO He HpaBMUTCA" T.6. pas’nAMUATH

IBa ypOBHfA KauecTBa. lMEHHO B TaKUX CayyYafx PEKOMEHZyETCHA ONH-
CHBaeMaf 376Ch CHCTEMd.

PasoMkHyTaf 4acTh cHCTeMH H "3yOmH"

PasoMxKHyTas 4aCTh CHMCTEMH NIpEZCTABIAAET COGOHl HYHKIUOHAIB-
HHif MpeoGpa3oBaTeNb C XapaKTEePUCTUKOH#, KOTODYH JErKO CMemaTs, IO-
BOpauuBaTh AAA Zaxe BUAOM3MEHATH, [[pM ONTUMaNBHON HacCTpOiiKe Xa-
PaKTEPUCTUEA DA3OMKHYTOIl 4acCTH ZONKHA COOTBETCTBOBATH ONTUMAIB-
HO/ XapaxTepucTMKe 06BexTa yNpaBieEAR. B NpUMepe, DPaCCMOTDPEHHOM
BHIEe, TpefyeTCA IMHE{HAR 3aBUCUMOCTB:

A=A A T - Fpm kot Mo(L), o=fr 4, (F)
B Gonee CIOEHHX CIydYafX XapaKTEpHUCTHKAa OOHEKTA BHPAa®aeTCH
nomusoucws - /= [ kot No(E+ Lk Mot E)IAr Ry A% Lty
TOr'Zla XapaKTepUCTUKAE paaouxnymoﬁ yacTu dyner'

M= d *d\}\*dgl *.. *Q’/LF/
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3azaua caMOOOyueHHMs /azanTanus/ COCTOMT B TOM, UTOGH KO3J-
Guuuer T xapaxTepucTurs PY "ciaezuim" 3a MBMEHEHMAMH KOS(@MIMEH-
TOB ONTHUMANBHO! XapaKkTepUCTHKA OCBEKTA, TO-6CTH UTOOH

.w"/z')fA/aff)] a.’« *H’)*N{f}] [Z' '*/.Vﬁ,(f)]

OcymecTBaAEHUE maxoﬁ azanranuy gpnngnnuanbn Bosuoxno TOJNb-
KO IpX M3MEPEeHNMN He MEHEe ZBYX TOYEK NOBEDXHOCTH 3KCTPEMAIbHOT'O
XoiMa, TaK KaKk NMOCIeZHMA MpexCTaBAAET coGoit ueTHYD GyERuMM. Emne
B paGoTe /6/ OHNO IOKa3aHO, UTO NpH UETHOH XapaKTEPUCTUKE MOUCK
Ha 00bEKTe NPUHIMNMANBHO HEOGXozuM. OmMCHBaEeMas 376Ch CHCTEMa
BC@ ®e HA3HBAeTCA OECHOMCKOBO#, TaK Kax BMECTO NEPMOZMUECKAX H3-
MeHEHM# peryaupywnux BoszeiicrTBuit B yEKOMM BpeMeHM B Hell mpume-
HEHO CNenuaibHOe HAJOXEHME HEGONBNMX "3yOuoB" Ha XapaKTepUCTHKY
P4, samenswpmme coGoif nmpoCHHe marm /6/. Yka3aHHOE BHIE BHDAXECHUE
_4?{2//'upn 3TOM OTHOCHTCHA JHNG K CpezHel IMHMN XapaKTepUCTHKH.
AMnuutyza ¥ pacnpezeneEde 3yOHmOB BHOMpanTCH IO PopMe XOmMa u
pacopezeneHUn BO3MYIEHMA TaKk, YTOCOH OC6CIEUATH MAKCHMAalbHOE OH-
crpozeiicTeue cmcrTeMH. I[IpM OTCYTCTBHE KOPPEKTOpa "3yOmu" He HYRHH.
V [lpaxTMYEeCKM pPa30OMKHyTas YacTh BHIOJIHAGTCH B BHZE MaTDUIH
Kapdeil, OTKDHTME KOTODHX 3aBHCHT OT NOJOXeHMA "SHAUymero pas-
pAza" B YEATApDHOM K0Ze 0COCLEHEOr0 BO3MYNEHHMS, 8 TAKEKe OT HOME-
pa cpal0oTaBmero TPArTEepa B KOJBOEBHX CYETUMKAX nunynhcaalﬁal.
Ipyras KOHCTDYKIMA YOPaBIAAEMOTO QYHKIMOHAJBHOTO NpeolpasoBaTels
NpezcTaBIfeT COOO# JOrMYECKYD CXeMy C MOPOrOBHMM 3iaeMeHTaMm /8/.

PacnosHapiasi cucTeMa-KOppPeKTOp /mepsuit BapuaHT/

Kak u3BeCTHO, pacHo3Hapias CHCTEMa MDEACTABAAET COCOH

IOr'HYECKOe YCTPOiiCTBO, KOTOPOE C LEABD KIaCCHPMKANMM BXOAHHX
CUTHAJOB /OGHUHO Ha3HBAEMHX "M300paxeHMAMM"/ Ha KIACCH /UK
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"o6pasH"/ COMOCTABIAANT MOEAY codpﬁ HOKOTODHE uepngannaocrn‘
3THX CHI'HANIOB K CHI'HajaM NPOTOTHNOB /MIM 3TalOHOB/, 00pasymmux-
cA B CHCTEMe B Ipomecce ee OCYyUeHHH.

HuEe ONMCHBANTCA AATOPUTMH ZA6HCTBAA ZABYyX BapMAETOB paclno-
3HADIUX CUCTEM, MCHONB3YEMHX ANf KODPERIUM XapaKrepucrTury PU,
mpuueM o6pamaeTCs BHAMAEME Ha NPONECCH CaMOOpTaEd3amun unomeci-
Ba NPOTOTHIOB. B KOPPeRTOpe MO NMEPBOMY BapuaHTy B KaueCTBE BXOZA-
HHX CHTEAlOB /NpMSHAKOB/ MCHOAB3YNTCA KOOPZMEATH NpejCTaBaAApmeit
TOUKH gz?, orBeuapmeft "cocrosEEL" OoGpeKTa B ZaE-uit MoMeHT. Kak

NOKa3aHo Ha DHC.3 MIOCKOCTH f/-) MORHO Da3ZeIMTh HA TPH 06IacTH
amn "cmryanmn™/

I. Perymmposars, yMeEsmaTs 4/

. JocraTouHO XOpOmO, TAaK ABPEATh

I. Peryamposars, YBEIUUHTH J@Z :

PacnosHapmasi CHCTeMa ABIAETCH BEChMa I'MOKOi#t B yZoOHO Ha-
cTpauBaeMoil MOZeAbD OObEKTA yNpaBieHUsA. Hampumep, B caydae mpda-
MONUHERHOR (HOPMH ONTMMANBHO! XapaKTepUCTUKM OOH6KTA ZOCTATOUHO

OIPAMEHNTE pPacCHO3HANIYyD CHCTEMYy BCEro C TpeMd TOYEUHHHH MPOTO-
TANaMu:

% (4, 23) , Ay (M, Da) , X (Wts, 45)
CucreMa NMOZCUMTHBAET MEpPy OIM3OCTH BXOZHOT'O CHUT'HAzIA M
NPOTOTUIOB, HampUMep, TaK:
§h" //_l./’é//o‘/* 2 ‘&‘9/ > 5@"/‘&/—_,@/-* /_/}‘/)37/ ’ '
' 2= Ip-pl+ 1 2-23.
JNanee xoummapaTop UMH BHOuMpaeT HaMMEHbNEe M3 TPeX paccrof-
HUil ¥ TEM CaMHM YKa3HBAeT CHUTyaL:D. Hanpnuep, npepcTaBIADLas

TOUKA X;ﬂ, NoXas3aHHafA Ha pHC.3, a OyZeT OTHECEHA K cHuryamud I,

X/Tepmunu "cocroarue" u "cmryamua" SABAANTCA aAHANOTAMA TEDPMUHOB

"uzoGpaxenne” u "o6pa3”, mpUMeHAeMHMM B pacHO3HABaHuM rpadu-
YeCKUX u300paxenuit
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3Has cUTyanup, JI6I'KO yKa3aTh, B KaKyD CTOPOEY CIGZYE6T UBMEHATH
A 4ro0H mONacTh B CHTyanup I, UTO ABAAETCA LEJBD DEryaMpo-
igﬁnﬂ.

Pacnosnanmasi cECTeMa NPABHIBHO YKA3HBAET CHTYALUHD TONBKO
TOrza, KOrza rpasunH "o0JacTd NpUTAXEHAA" nonmcoa_;?%; 5;;55
£§;= 5%5 COBNaZanT C rpaHunamu curyanuy II /noxasaau(éa pub;3
myExTupos/. [lpn mpsMoIMHG#tHHX IpaEMIEX AOCTAaTOUHO NOCTABUTH
TPH noxnca B "nmepneHAMKYASpHOe NONOXEHHE", yRas3aEHO6 Ha pHC.3,0.
[lponecc ycraHOBAEHHS NOJDCOB B HYEKHO® NOJOXKGHHe M MOCTOAHHOE
NOZZBPRAHME TAKOrO NMONOXGHMS NPH MBMEHOHMAX M NEPeMeleHMAX
"2RCTPEMAaNbHEOI'0 XOIMa™ M €CTh IPONECCOM CaMOOpTaHM3amuy paclo-
3Hapmeil CHCTeMH. ;

CaMoopragnsanus Tpex NOANCOB NO METOZY B3BOMEHHOI'O
CMOIeHNS

OZME K3 BOSMOXHHX aJTOPATMOB CaMOOPraHH3alMd TpeX Noo-
COB NIOKa3aH Ha puc.3. B ciaydae ycmemHOro OKOHYaHHS npomecca Ca-
MOOpPraBEM3anuy NOoJNCa AANEHH OPUATH B TAK HasHBaeMOe "IepNeHZEKY-
aspHOE moJoxenus" /puc.3,06/.

CrHavaja zBa KpailHEX moznmca pas3BOAATCA B BEDXHHHt neBHH K
HMXHA# OpaBHi YTaH MIOCKOCTH, -M CHCTEMa NMPEACTaBJAAETCH CaMoi
ce0e M ZeiicTBEN BHENHHX BO3MymMeHHii. HaumEaeTcs CaMONMpPOU3BOABHHI
CIydaitHH{l mpomecc CaMOYCTAHOBJIGHMA NONDCOB. J@TUMK OOpPaTHO# CBsA-
34, YCTaHOBIGHHO# Ha 00bEKTe, ZaeT TOIBKO ZBa YKasaHMA: "pery-
aRpoBaTH" MaM "ZOCTATOYHO XOpOmO, TAaK AepEaTh". PacnosHapmas
cCHCTEMa MMEST TPH IPOTOTMNA M, CIeZOBaTeNBHO, TpX BuXoza® "pery-
JUpOBATH, yuensmurgé{", "Z0CTaTOYHO XOpOmO, TAaK ZepEaTh" ¥ "pe-
TyIKPOBAaThH, YBEJIUUUTH ,/l_l ", flcEO, UTO MEXZy YKa3aHMAMY AaTUUKE

U pacmosMapmeil CHCTeMH MOEET OHTH AMO0 HECOOTBETCTBHE, JUGO
COOTBETCTBUE.
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B mepsoM ciayyas, T.8. IDY HECOOTBETCTBMH, OZAUH M3 KpalHmx
NOJKCOB, KOTODH{t OKaszaixcA OaumaimuM K NpEACTABAADIEH# TOuKe /mnen-
HO B 3TOM NMOABIAETCA BIMSAHUE 3yOLOB XapaKTEPUCTUKM Da3OMKHYTOi
YyacTH Ha BHGOD HampaBlIeHUA MOBOPOTA MOJWCOB/ ZenaeT mMar B Hampas-
neHMM K Helt /pmc.3,a u 3,8/, a Bropo# Kpaitnuif moiwc ABEEETCA Na-
pajielbE0 eMy B OOpaTHOM HampaBieHMu. llar yMeHBmaeTCH C yMEHBIE-
HueM PaCCTOSHMA OO 3aKOHYy SKCTDPEMANBHOI'O CTIAXMBAHHMA M DEKOMEH-
ZanuAM CTOXaCTHYeCKO#t anmpoxcuManuu. CpezEEil MOINC C MOMOLBH
SKCIIOHGHIUAIBHOTO CTIAaEMBAHUA BCE BpeMs yAepEMBaeTCsA B "LEHTpe
rARecTH" /T.68. B CpezHelt Touxe/ MHORECTBA COCTOSHMiIt xopomeit pa-
GOTH O0BEKTa.

Bo BTOpOM CIyyae, T.68. B CIyuaeT COOTBETCTBMUA BHXOZOB nér-
UfKa ¥ pacnosHapuei CHCTeMH, KpaiiHMe mojnca HE MepeMelanTCH.
CucreMa JONYCKAeTCH K YNPABIGHUD /T.€. K KODPPEKIHM NOJOXEHMA
unM GOpMH XapaKTepUCTUKM Da3OMKHYTO#t vacTs/ TOABKO NOCAE foCTa-
TOYHO ZJNMTEJBHOTO CYMECTBOBAHMA COOTBETCTBUA MEEAY BHXOZAMU
IaTuMKa U pacnosHapmeit cucremm /puc.3,6/.

[lpeznoxeHHH{t HaMM MeTOZ CaMOOGYyYEHUA MNPOTOTUNOB OHI BIOCIE;
CTBMK HA3BaH 3arpaHuineit "MeTozoM B3BemEHHOrOo cmemenus" /9/. Xa-
paxTepHOit yepTo#f 3TOrO0 METOZA ABAAETCA TO, UTO HA NPUXOZ NpeZA-
craBaspmeit TOUKM pearmpynT Gamzaiimue xBa mMporoTuna /moanca/,
npuueM "mpaBHABAHI" /IO yKa3aHMO YUMTENA MIM BHXOZOB CaMoit cuc-
TeMb/ NPOTOTHN ZBUEKETCA MO HANPABIGEUD K npejcraxnﬁmmeﬁ TOUKE,

a "HempaBMNBHHI" - OT Hee /buc.#/.

[lpn TaxoM MeToze MHOTOMEDHEAd CTOXaCTHUECKasd annpoKCcHMannis
BCSX KOODPIMHAT MOJNCOB

by =Ky o (7-KE ) x,
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3aMeHAETCA OZHOMEDHOi
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TaK KaKk HanpaBJIE€HHE IBUECHHAA OIPEZGJ6HO OXHO3HAYHO.

TeopeMa 00 yCTOUMBOCTE NIPOLECCOB CAMOOPTaHM38IHHA
"noapcHOro rasa”

MHOXeCTBO HPOTOTUNOB YZOOHO paCCMaTpUBaTh, Kak  HEKOTOPHi
"moxwcHui ras", YacTHOH KOTOPOro B3auMOZeiicTBYNT OZHA C ZAPYTOi
M C BHemMHe# cpezoit. DIeMEHTAapHHE AJAT'OPATMH B3aMMOZE#CTBHA NOJN-
COB BHOMPARTCH YEJNOBEKOM. IIX MOXHO BHOpaTh Tak, 4YTOOH NpoOLEcCe
caMoopraHu3anuu OHI CXOZAmUMCH. Hume GOpMyIHpyeTCH TeopeMa 00
ycroffumBoCTH Ipomecca CaMOOpPTaHK3amiM IOJNCHOI'O rasa.

llns caMOOpraHM3anud YacCTHN HOJIMCHOrO r'a3a MOXHO HpPeAIO-
EUTH DAZ AITODUTMOB, B CBASK C ueM OyZ6T H3MEHATHCA M (DOPMyNH-
pOBKa TEOpEMH, B KauecTBe NpuMepa NPHEBEZEM OAHY M3 H3BECTHHX
(GopMyIMpOBOK. JTa QOPMYIMPOBEA ZeitcTBMTEABHA ANA MHOXECTBA IIPO-
TOTHANOB /NONONCHOrO rasa/ Taroif CHCTEMH, NPHHOMN ZeiiCTBHA KOTODOH
noscEAeTCa puc.S.

lompca pacmosHapmel CHCTeMH HIM XECTKO 3aKpelsenH /Te,
KOTODHE OrpaEMYMBADT 0GIaCTh BO3MOXHHX DEXMMOB PaGOTH CHCTEMH/
HJX EECTKO CBA3AHH C BepUMHAMU 3YONOB UIM ABAANTCH CBOOOZHHMH.
Kax B "BepxseM", Tak u B "HuEHeM" MHOEECTBE IIOJNCOB OTZEIBHHE
noyoca B3auMOZeiicTBYOT APYT C APYTOM, C 3aKDPEINOHHHMH HENMOZBHX-
HO NOJWCaMé ¥ C NOJKNCaMM, KOODZAMHATH KOTODHX COBMEHEHH C KOOp-

IMHATAMU BEDXHMX /ZNS8 "HUXHErO" MEOXECTBa - HEEHNX/ 3yOLOB Xa-
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PaKTepUCTHKY DA3OMKHYTO!l HacTH. _

3akoH B3auMozelficTBUA ABYX COCEAHMX UAaCTUN Irasa fABIA6TCHA
X "37eMeHTapHHM anropuTMOM". 3HAK CUJH B3auMozeiiCTBUA COCEZHUX
YaCTUL M3MEHAETCA Ha NPOTUBOMOJORHH{ IO OTHONEHUD K HOJNWCY, KOODp-
AMHATH KOTOPOT'O COBNAZAanT C NpeZACTaBAAWNEd TOUKOH, eCIM AATYME
IBYXGallbHO!l OLGHKM NMOKasaTelNs KaueCTBa yKaswBaeT "perymupoBaTh".
Ecin %e mpezcTaBifApmAs TOUKAa JEXUT B OOIacTH Xxopome#t paGoTH O0HEeK-
Ta, TO ZAeH#CTBYET CHMNA B3aUMOASHCTBUA C TEM Xe 3HAKOM, 4TO H ¥
GONBUAHCTBA YaCTHI.

MecTononoxeHue Kaxzo#i CBOGOZHON YACTHOH OINpPEZENAeTCA CyM-—
MO}t BIMFAHMA SMEMEHTAPHHX AITrOPUTMOB BCEBX €€ COCEAHMX YaCTHL U3
TOTO X6 MHOX6CTBA. lI3MEeHEHME 3HAKa XOTA OH OZHOI'O0 3JEMEHTAapHOT'O
ajropuTMa BH3HBAET NEpPEMEleHMe CBOGOZHO# YaCTMUN M, CIEAOBATEIB-
HO, CPeZHeR IMHMM XapaKTePUCTUKM pa3OMKHYTO# uactu. llomwca me-
peMenanTCA NaraMM, OCTOPOXKHO, a XapPaKTepPUCTHKA - KAK YTOAHO
GHCTPO.

TeopeMa. Jlaza TOro 4YTOOH NOZ zAeficTBUMEM MEpeMEmEHM YacTUL
IIOJINCHOI'O I'a3a XapaKTepUCTUKA DAa3OMKHYTO# vYacTHM BCErza yZAepRuBa-
J1achk NMOCpezM 30HH XOpomeit paGoTH CHCTEMH, AOCTATOYHO, 9PO0H:

[/ aneMeHTapHHE aJTOPMTMH OTBEYAJM OTTAJIKMBAHUD YacCTUL
MOJICHOT'O ra3a MEeRZy COo0O#f M NPUTAREHMD TO OTHOMEHUN K MOJNCY
K NpezcTaBispNeit TOUKe, KOTOpAf BHIJA 33 IPAHAINH 30HH Xopomeii

padoTH OOHEKTa;

2/ BHXOJ NMpeZCTABAANWEH TOUKM 3a I'PAaBMIH YKa3aHHOX SOHH

He ZOIXeH NMPeBOCXOZATH BHCOTY 3YGLOB;
3/ BEpOATHOCTH KAEZOTO BOSMYLEHAA ZONEHA OTANYATHCH OT HYMAY

x/TpeThe yCIOBME NMpaKTAYECKM BCEr[a BHIOJHAETCH, NOCKONBKY 3YOLUH
yCTAHABIMBANTCA B padoueM AMaNa30HE XapakTePUCTAKM, T.E. OTBEYanT
3HQUEHUAM TEX BO3MYLEHU/, KOTODHE AEHiCTBATENBHO MMENT MECTO. [Isf
JCKODEHMS MPOUECCA CAMOOPraHM3amui 3yOUs JOJXHH OTBEYATH TEM 3HA-
YeHUAM BOSMYWARUMX BO376HCTBMII, KOTODHE HAGIOZANTCH yYalle.
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B ciyuae OpOrpaMMMPOBAEMA NOADCHOTO rasa Ha BHUYCIHUTEIb-
HHX MamiHAX B3auUMHOE OTTAJKMBAHME YAaCTHN YAOGHO 3aMEHHTH TPEGO-
BQHEEM COXPAaHEHMA DABHHX DACCTOAHMI MOXZy HMMH, M TaKkmM oGpa3oM,
BHUMCHAATH IONOKEHME KAEJOI'0 M3 MOANCOB. [Ipm 3TOM mpoimecc ycra-
HOBJIGEMA BCEX 3THX YaCTHN B ONpEASNEeHHOe IOJOXeHHME OYEHH IOXOX
Ha TOT NPOLECC IOCJeZOBATEJBHO!l CTOXaCTHYECKO# ammpOKCHUMAIHM,
KOTOpHi MMeeT MeCTO B aHANOro-naPPOBHX HpeoGpas3oBaTeNfX, B CaMO-
ofyvapmmixcs ZaTuMKax /4/ B ApYyrEX ycTpo#icTBax, KOTODHE HCIOIb-
3yDT NOCIeZOBaTEIBHOE BO BPEMEHM HAKOMIGHHe MHPODMAIMK.

TakuM 06pa3oM, B ZAHHOM CIyYae MH MMEEM NDHMED DealM3amuy
aIaropMTMOB CTOXAacTHUeCKoil ammpoxcumanum /I10/. JogasaTeIbCTBO
TEOpeMH HE OTIMYaeTCH OT AOKA3aTeABCTBA CXOZEMOCTH HpoHecca
CTOXaCTHYe CKOit annpox cumannu. /11/.

PacnosHapmas ciCTeMa-KOPPEKTO BTOpOf BapHaHT

B KOppeKTOpe MO BTODOMY BapMaHTy B KaueCTBE NPH3HAKOB HC-
NOAB3YNTCH HECKONBKO MOCAEIHMX MO BPEMEHM 3HAUGHHMIl NMOKa3aTels

95).” ,9657’ HA3MEPEHHHe B OTIAMYHHX ZAPYT OT Zpyra

—

KauecTBa —%’
BEpUHMHAX 3yOHOB XapaKTEPUCTHKN DPa30MKHYTO yacTH. MEHMMalbHOE
YACNO YUMTHBAEGMHX BEDHNMH paBEO TpeM, OZHAKO NpM HAJIMUMK pasopoca
NOKa3anuii ZaTYMKa, UMCIO YUMTHBAGMHX BEDNAH CIEZYeT YBOJIMUMTH
Z0 ZecATH-NATHAZANATH.

lpz 3TOM B OTAMYME OT NpeZHZymero "cocrosrueM" HasHBaeTCH
B3alNMHOE pACIOJOEKEeHMe ONTUMaIbHO# XapakTepHCTHMKM OCbEKTa M Xa-
pakTepucTarr PY. KaxzoMmy "cocTofHED" CHCTEMH OTBEYAET ONPEZAEIEH-
HHft KOZ 3HaueHUi! MOKa3arTess KauecTBa, NPMMEDH KOTOPOI'0O YKA3aEH
B racaune I. MHOZECTBO pa3IMuBEHX COCTOfHMI MOTYT OHTE Das3zeleHH,
Hénpmmep, Ha MeCTh OC ‘OBHHX "curyamuii" ykasaHHHX TaM ¥e. B pacmo-

3HapIeil CUCTeMe-KOpPeKTOpe 3alOEeHO APV NMOMOmM OGyueHHs /moxasa/



o I8.
mecTh KOZOB MPOTOTUNOB /3TaloHOB/. B KauecTBe MEPH GIM30CTH CHC-
TeMa BHUMCHSAET CKAJADHHE nponaneﬁenuﬁ BXOZHHX CHTHANIOB H KOZOB
OpOTOTHIOB, NpUYEM, KAk JETKO yO6AMTHCH, PE3yAbTaT HE 3aBUCHT 0F
TOr0, B K4KHX MMEHHO BepDHMHAX NOOHBaja B NOCIEZHEEe BPeMH Npez-
CTaBAARLAA TOUEA CHCTEMH.

B raGaMne | MpUBEZEHH NPUMEDH TOUHOTO COOTBETCTBHS BXOZ-
HHX COCTOSHMil NMpOTOTMNAM, 3amMCAHHEM B pacHo3Hammeil cucreme.
Bce oCTanBHHE COCTORHHA OGBEKTAa CHCTEMA OTHECET K OZHOMY MIM He-
CKONBKAM M3 3THX NPOTOTHNOB. ANTODHTM DAaCOTH CHCTEMH B STOM CIy-
yae MOACHAETCH CIGAYDNMUM IIPMMEPOM.

lycrs, HampuMep, COCTOSHHE CHCTEMH ONpEZeAAETCA TaKMM KO-
ZOM /YUMTHBAOTCA TPE "TeKymme" BepUMHH/: :

=

7 =0+4100+1-1000000

HaxozuM mATh CKaAApPHHX NPOU3BEZeHM BXOZ[HOI‘O CHAT'HaJa MOATHH
NEPBHMHA MPOTOTHUMAMH:

=, =0-100+41+000000=+l
3, =0+100-1-1000000=-I
S, =0+100+1-1000000=+I
57,)=0-100+1-1000000=-I
59=0+100+1-1000000=4

CucreMa MPMHMMAET DENEHME N0 TAKOMY NMpaBUILY:

e 325 > O, T0 naHEAA CUTyaUUs UMEET MECTO MONHOCTHR
= —7 WIM BMeCTe C APYTUMM CHTyaOUAMU

Ecau 3 coCTaBAANWEH, COOTBETC i namH
%:.'{/Q(_), Sograrmiont, podmercmINEL B oit

B naHHOM npuMepe GyZeT NPMEATO pelleHME: XapaKTepucTuxa PY
CMellaHa BBEpX / = +[/ u MOBeDHyTa MPOTHUB YACOBOH CTPEIKH A§7-+IA
HO B o6GnacTd padoqnx DERUMOB GOJBUMX OTKIOHEHUI HeT Aé;r +I/



Ta6nanna llecrs OCHOBHHX CATYAIMM M MX KOZAH
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