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HAYAJA MIGOPMALYIOHHOW TEOPLM YIPABIEHWSA

llerpos R.H, , [lerpos B.B., KouyOuesckult .7,
YnagoB T.M, Arees B.H., CHOUpPCKOE OTZEe-
UBcTRTYT aB- Samopoxery A.B.,  JHCHUE Axazeuun
TOMATVEN U Te- Youde 4L Hayx
NeUEXaEU KK s BrazyBOCTOK
Hocksa MocxoBcruft
aBUuan OHHK I
WHCTUTYT
Mocksa
CCCP
1.Ke00xozuuocTs coszgHns MHOODMAIMOHHOR Teopuy
YIpaBIeHUA

+KnGepHeTUKa B LMPOKOM CMHCIE CIOBA ~ 3T0 Hayka 00 Mﬁ@op—
MAINI M YOPEBICHWE B [ENCHARPABICHHO QYHKUMOHMPYOIMX JMHAMU-
YECKUX CHCTEeMaX.

CoBpeuerHas Teopus YNPaBIEHWS XOPOMO OMMICHBAET JMIb OT-
HOCUTEJIEHO IPOCTHE CiayyaM. [IoaToMy CUCTEMHHR MOZXOZ K KOMIIEK-
CHOIl aBTONATU3ALMN NMPOM3BOACTBEHHHX NpPONECCOB, a TaK®ke CO37a-
HU€ MEOIOLIEPHHX CHCTEM TpeOynT pasBuTUE ezuHoR uMHOOpMamIoHHOM
TEODUM CIOXHHMM AWHAMAYSCKEMM CHCTEMAMM .

BuecTe ¢ TeuM, eciE Anf CHUCTEM CBA3K Ha 0ase MOHATHA HH-
$opManuY CO3ZAHA ZOCTATOUHO oluas TEOpWE, TO B TO EE BpeuA
NS CUCTEM ynmpaBJeHuA BTO NOHATUE HAXOAUT MOKA BECHEMAa OI'paHE-
YEHHOE NpUNMEHEHNE.

II. OCOGEGHHOCTM CHCTEM YUpaBJIEHHS

CucTeyuy ympaBIEHWS NpPEACTABIANT COGON ZMHAMUYECKHE CHC-
TEMH, OMEepVpYKIME OrpaHMUEEHHMM pecypcaMu /aHepruf, KONMUECTBO
BemecTsa U T.l./. 9T CBOHCTBA INEMEHTOB W CHCTEM HAUNH CBOE
oTpazeHre B oTamumofl o eZMEMIM mepezaTouHOd QyHkimM. LiBUXE-
HU€ TaKKY ClUCTEM OMICHBAEeTCA NEPEMEHHHMA, Or'paBMUCHHHMI IO
MOZYTH, PAcCLATPHIAEMHMI B KOHEUHOH mozoce yacToT ¥ OrpaHMueH-
HOM MHTepzaie BpeMeHW. CleZoBaTeNbHO, TPOLECCH B TAKMX CHCTE-
MaX mpejcTasliADTCO00f mocNeA0BATENIBHOCTS B3aWMOCBA3AHHEX

COCTOSIHN .



B meneHanmpaBIeHENX AMHAMWYECKUX CHCTEMAX HMEHT MECTO
KaR ZeTEPMUHNDOBAHHNHE, TAaK W CIyvYallHHe CTAaIMOHADHHE ¥ HecTald-
OHapHHE CHI'HANH, @ TAKXe WX Da3NMYHHE COUeTaHMA. B 3THX yCiuo-
BUAX BO3HMKAeT oOmas 3aZauya pasiVuEMOCTY COCTOSHMNE M AMHaMUUEC-
Kofl TOYHOCTH BOCHPOM3BEZEHUA TPEOYESMHX MpOLNECCOB, & TAKEe MicH-
TRQUKAIMY JMEMEHTOB ¥ CHCTEM. /A pelleHMS YKa3aHHHX 3a/iay ecrec-
TBEHHO NpUBJIEYb ammapaT TeOopUr MEQHOpMALHH .

li. HEPopManMOHHNA MOZXOX K TEODHH AWHAMUUECKUX CHCTEM

I. PasuHuUEMOCTH COCTOAHMS O0GBEKTA yIpanteHud

JIpOo#f 00BSKT mpezcTaBIAeT COCOR CAOXHYD COBOEKYIHOCTH B
olmeM CIydyae paSHODOZHHX 3NEMEHTOB. [[09TOMy COCTOAHME TAaKOI'0
00BEKTa MOrYyT pas3iMyaThCd UG TOrZia, KOT'ZA ZMHAMUUECKUEe MNepe-
MeHHHE ONMCHBanIMEe B IENOM 3TOT OOBEKT OTAMYADTCH Ha HEKOTODYD
BemMuuEy € >O, HasuBaeMyg moporou pasmuumocts {I1,2) . [idEmuit
MEeTOJ OMMCAHUA NMOBEASHMS AUHAMUYECKO! CHCTeMH OO0BEeZUHAET CBOU-
cTBa HEMPEPHBHOI'O M ZMCKPETHOI'O NpeJCTaBICHUA. Bsezenne pasmun-
MOCTH MO3BONAET ZATH ' aA3KBATHOS OMACAHME OO0BEKTOB Ha PA3MUYHHX
UepapXMueCKUX YPOBHAX OpraHNW3aIMM B ONpeZend®s OpeAelNbHOe KOIA-
YeCcTBO MEfOpMAIdK, HEOOXOZuMOe Ziafd (yHKIMOHMPOBAHUA CHCTEMH
ynpaBleHud.

BuGop mopora pasaMYMMOCTM BBOZMMOI'O B MaTEMATHIECKYD MO-
7els AWHaMu4yeCKO# cHCTeMH MOxeT Taxke 6asMpoBaTHCA HAa HE00Xo0-
Z¥MO# TOYHOCTHE MCCHACZOBAaHUE OTINYHOE OT €CTECTBEHHHX (Qu3uuec-
KUX CBOi#cTB 00BEKTa. JTO MO3BOLAET ONEGpPUPOBATH C MUHMMAIBHO
HEOOXOZUMHM KOJANYECTBOM BEQODMAIME Zif DEmEHHA MOCTaBICHHOH!
3azaul.

Beeziene MOpOroB pasmIumioCTH X yueT orpanuueHa#t Ha Ga-
30BHE MEepeMEHHHe AWHAMUYECKO{ CHCTEMH ONpEe/eXSbT IOPOTOBHE
CcBOiicTBa BCeX MApaMeTpoB €€ MaTeMaTuyeckodl MozewmH.

2. TeopeMa oTCueTOB NMpH 3a7BHHO# ZMHAMAYECKOH

TOYHOCTH

B peanBHHX cHCTeMaX TpH OrpaHNYEHHHX pecypcax Bceria
UueeT MecTO JMHaMWUIECKadA OmEOKAa, KOTOpas MPABOZAMT K HEKOTOpOiH
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norepe MHQOPMAIMM W, KAK CNEACTBHE, K CHUECHMD TPEeCOBamHUR K
TOUHOCTY BOCMpOU3BEZEHUA. [[09TOMy ZAS AMHAMHYECKUX CUCTEM
NpEeZCTABIAETCA LEeNec000pasHHM OCNa0ATh TPEGOBAaHME B KOIAUECTEE
MHHMMIBHOTO 9YUCla OTCUETOB [0 CPaBHEHMD C H3BeCTHOR Teopeuoflt
OTCUETOB XN AMHAMMYECKUX cHcTeM [3,4] ZOCTaTOUHO MepAaBaTh
3HaueHUs Mpolecca vepes nnrepnann BPEMEHH:

At = l(w~) )
rze K - yuMeHbLIEHEe NMONOCH 4YacTOT, KOTOpPOe OmpeZienfercs U3 ycle—
B sanannoﬁ ZuHaMM4yeckolft TOUHOCTH:

= $,(w)olw < 8%, (3.I)

rae 52&5} CHeKTpalbHas NIOTHOCTH CHIHAZA

§ - npeZesbHo ZomycTuMas CpPEAHEKBAZPATHUYECKAS OUMOKA

3 ycnosus § =0 caezyer K=0 H MH ODAXOZEM K YCIOBUAM
TeopeMH KoTeabHMKOBA.

3. NEfopMamioHHad TeOpHA yHnpaBAeHHA GasUpyerCs HA BSH-
TPONUI{HOM OMUCAHWYM CIOKHHX ¥ MHOIOMEDHHX AMHAMUUECKUX CHCTEM
(5). Tako#t smTpomuitAN MOAXOZA MO3BOAAET ZATH ONEHKY pasmAU~
HHX MpPOLEeCCOB yIpaBICHHH.

4, PaGoTa aBTOMATUYECKO! CHCTEMH NPOHMCXOZMT OJarozaps
cnelnabHo OpraHMsSoBaHEOX KOMNEHCAIEM ynpaBAcHWEM CXIyuvaiHuX
Bo3MyueHuft. KauecTBO mponecca yunpaBleHHS 3aBHCUT OP CTONEHH
aToit KOMIEECaIMy .

OCHOBHHE YCNOBHMA yNpaBlieEWM# Ha WHPOpMamMOHHOM H3HKE H
NpezcTaBiainT OalaHC IHTpONNKi, BHpaxavmu# KouIeHCHpyDmee
zZeficTBue ympaBieHuf. B oOmeM BHZe STOT pEe3yAHLTAT MOXHO 3aMHe
carb kag [I]:

, 00 = B-H K -He @)+ He (V0.
(3.2)
37ech MHZEKCOM }1{ oGo3HayeHa AMHAMUYECKAH JHTponms,
XapaKTepu3ybmas BEeoNnpeAeNeHHOCTh HEKOTOPofl BEMMUMHH 33 MauHR
MPOMEZYTOKX BPEMEHH, COOTBETCTBYDIME NMOpOry pasIyuMMOCTH Bpe-
MEHH .
B cayuae moxHO#f KOMIEECAIWMH ZOCTUIaeTCf MONHAfA WHBE-

DMAHTHOCTH CHCTEMH yupaBlemms. [Ipy aToM ypaBHeHHEe GanaHca
sHTpomufl ynpaBIADLmEro ¥ BOBMymAbmero Bo3ZelicTBEM 3amECHBaeTCH
B BUZe
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H, W-H (%)=H)+H, (¥/x,7). (3.3)

[lpn HeCONBEMX OTKIOHEHEAX OT MOJHOro GaxaHca (3.3) BumomHAeT-
CH yCIOBES WHBApMAHTHOCTE 7o & (2,6,7,8] .

JHasaHHHE WHOOPMAIMOHHHE JCIOBHR HRBIANTCA HEOQGX.O0ZMMLEMA
ZAns OeneHANMpaBiReHHOro (YHKUMOHMPOBAEUA AMHAMIYECKMX CUCTEM.

Iy. Bompocu uHdopManuoHHO# TEODUE YIpDaBIEHUS
HA_KOHTDOJA

PaccuoTpuu pesyuapTaTH HEKOTODHX paspaCoTOK B 3To# 06-
JlacTu, OTpamapmue Cnenu@uKy CUCTeM yUpaBICHUA, OTMEUEHHYD
BHIIE .

I. BBezieHWe MepH KOJIH4YECTBa pa3H00Gpa3uf
ZMHaMAYECKO# cHCTEMN

HeoOxozuuocTs BBEZHUE 3TOY MEDH CBA3aHA C OrpaHMUCHHAME
NpUMEHeHUA SHTPOIMME ZfA ONEGHKM HNPONECCOB yNpaBIeHMA .
3fech MIb NMpeZCTaBAACTCA BOSMOZEHM ZaTh ocnbnnym uzen
aro#t MepH, MOKa3aB 3TO Ha NpuMepe HenmpepHBHOR Mozenn.
Oycrs X(t)- mpousBomsEnil /B oOmeM cIyuae HecTaIMoHAap-
EHit/nponiecc ympaBieHMA, 3aZaHHHE HA NpOM3BEZEHWE NIPOCTDPAHCTE
XeT . [IpexcraBNM 3TOP NMPOHECC B BUZE:

X(4) = § () + X (&), (4.7)

rae §(4)- QyERmA uaTewaTWueckoro omuzamus mpomecca X(t),

onpezeasnmas pacnpegenekue suauerntt f € F mo oGmacru ompezeme-
ma T u X (t)- nemrpuposenuit cayuafinsfi mpomecc, ompeXeneHHH
BEpPOATHOCTHHY pacnpezeneruer smauemit X € X ama xammorot €T,

BBezieM OLEHKY pacrpeZeneHus 3HaueHuil mpomecca X(t) Ha
XeT - Mepy pa3EooOp=-.f MHOiecTBa 3HaueHu#l mpouecca, EIUHYD
Zns ZeTepLMEUPOBAHHHX 4 cayvaiiHux QyExmuil.

Pasyuno nmorpeGopaTh, uYTOOH 3Ta Mepa pasHoolpasus oOxa-
Zana cBo#CTBOM aZNMTUBHOCTH ¥ HE 3aBHCENa OT KOHKDETHHE 3Ha-
meEnit mponecca m macuTadoB, @ YUYATHBAZNE TONBKO XapaKTep pacrnpe-
ZeneHus 3HaueHui mpomecca, T.e. OO0NazZana CBOHCTBOM, MOZOCHHM
cBoftcTBaM SHTPOMEE CHyualiHHX BEJWuuWH /mponeccoB/ B TeOpUM HH-
@opranu#.,
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Ecm saga’a MAOTHOCTS pacmpejeieHus BeposTHocTel P L)
anavenu#l X € X HempepusHoro npouecea X (t) zmns wazzoro t e'T'
TO AMHAUMYECKAR SHTDOMMA ITOro Hpouecca /T.e. SHTPOIMA B MO-
Mesr t [I] 3amvcHBBSETCE B BUZE

B, (1) =~ [ P () log [ &x P, (A) 1 d,
ot 3 (4.2)
rie &x - MOPOr pasNMUMMOCTY 3HAUEGHUH, ONMpeZENeHHO! Ha MHO-
xecrse X .

Nomarad, uTO HaJWule MOCTOSHHOTO CMENLEHMA HE MEHAET

BUJa pachpezencHEuit, uMeeM:
H, (X)) == ]P (x) bog[e, P0]dx=H(x) 4.3
X t

CrezoBaTeNbHO, AWHAMWYECKAS 3HTDONUE NMPEACTABAAET CO-
coit uepy pa3HooOpa3us sHaueHu# X€ X mpomecca X(t) Tompko Ha

ana kaxzgoro 1€ T ¥ He yumTuBaeT JyHKIMWO MATEMATUYECKO-
IO OXU7AHUA f( t)r.e. BazHo#f ZmHauwyeckoll XapaxTepUCTUKE TMpO-
necca X(t).

MoarouMy Ans nmoxHo# MepH pasHOOGpasWd paclpeAeneEus 3Ha-
yemuil nponecca X(t) #a X T HeoGxozuMo BBECTY xapam'epncrn-
Xy pecnpeiencHus suauekmil mpomecca Ha 1 , onpezemdeuyn § ().

7717 BO3MOXZHOCTE yueTa TONBKO XapaKTepa paclpeiencHus
sHaueHuil mpomecca Ha | BHE 3aBUCHMOCTH OT €ro uacurada u
Ju3UuSCKOrO XapaxTepa OyZeu PacCaTpUBATH BOPMADOBAHHHA mMpo-
nece X (t) _ $ (%) + X@)

X A O x may X YALX ‘

(4.4)
BBeZieu B KAauecTBE XapaKTEPUCTHKE paclpezencH¥a 3HaueHui
Hempe puBHER HOpPMADOBAHHOR QYHKIEM MATCMATHUYECKOrO ORUARHUA
NI0THOCT B pacupeneneuuﬂ ee sHauenn Ha T B suge
| (&)
- PR 4.5)
j* (|- XapaxTepusyeT MHTEHCHBHOCTH M3MEHEHUA 3HAUCHUE mpo-
gecca BO BPEMEHH.
Torza ONOTHOCTH paclmpejenchua sHaueHud mpouecca Ha X®T
MOXHO TMpeACTABUTH B BiZE



f\,((x,t]= fx(t) P €% }unnny (4.8)

BeezenM B KauecTBE MONHOR XapaERTepHUCTUKE paclpezeneHus
smauemuit mponecca X(t)s wouemr speuems t€ T mumaumueckoe
passoodpasme R . (X)

R, (X)= ju(xt)ﬁog[ae c»a(xt\]ou-

-t( 3 \ ) (4. )
rae

&(Fh—ﬁf\ bog L&, §" (1)) .8)

eCTh ZMHAMKUECKOE pasHooGpasue AeTepuMMHMpOBaHHO# cocTasnsomeft
/OyHKIMY uaTeuaTwyeckoro oxuzaHug/ mpomecca X (t)B MOMEET Bpe-
weEn + & 'T‘
H g X) - 7IWMHawMueCcKaS 3HTDOMME ONpEACNCHNE B COOTBETCTBMN

(4. 3\ ;
§ &\H@Q— IMHaMIYeCKoe pas3EooGpasue mpomecca X (t)wa te€ T
B MOMEHT

¢4 — TOPOT pasnAYMMOCTY BDEMEHH.

Beeze B xauecTBe NoIHOR MEDH pasHOQOpasHf 3HaueHMd mpo-

necca X (1) ma X®T gymxosaz R (X T)s suze

R(X,T)==] @ (R0 Dog [ €&y f (X, t)]dudit=
Tx_ R ('F’,'\“)H—Zf H, (X)

(4.9)
rze .

R(FT)= ff(ﬂﬁog[etf t) Jdt. @.10)

Mepa paaaoodpaaﬁa LeTepMMHUDOBaEHO# cocraBiRwmed /OyHk-
UMM MaTeuaTHueckoro oxuzamus/ mpomecca X(t)ma T

E, H,(X)= HMH (X)olt - (4.II)

f - 3HTpONASL upouecca x(ﬂ ycpezmermaﬂ ga T ¢ yuerou
cpenrelt ¥ETEHCUMBHOCTH M3MEHEHUH Mpolecca j" &).

TaxaM 00pasoy, MpeAnoxeHHaf Mepa Pa3Eo00pasuf MpOM3BOIB-

EOr0 NMpolecca yUpaBieHus TPeACTaBAfAeT COCOR CYMMy MEpH pasHo=
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o0pasuf zeTepMAENpoBaEHOR cocTaBaspmeft mpomecca ¥ AMHAMAUECKOM
SHTPONMM 3TOr'0 NIpouecca, yCpeAeHHEOR C yueToOM WHFEHCHBHOCTH M3-
MEHEHHS ZeTepMUEEpOBaHHOHl cocraBaspmEd.
lpeznozeHHas OLEHKA MOXET CIYXMTH OCHOBOR ZNR MHJopMa-
IMOHHOT'O aHANU3& CHCTEM YUPAaBICHUR ¥ KOHTDOIH .
[leranrsHOe DacCMOTDPEEWE CBOUCTB pasHOOGDA3ER MOXET OHTH
OpeaMe TOM HeCOCTOAT6NHHEOre ZOKIAZA .

2. lloreHNUarsHad XapaKTePUCTHKE 3AEMEHTOB
M CHCTeM yUpaBIeHUR

OZHMM 3 OCHOBEHX BOTNDOCOB MEJOPMANHOEHOR TEODHH SBISET-
cf "4TO MOZHO M UEro Heubas ZOCTUYD B aBTOMATHUECKoR} cucrewe,
KaKOBH ee MOTeHIUUaNbHHe BO3MOXHOCTH",

Pememe aToro Bompoca JBAXHO GasWpOBATHCA Ha (QyHAAMEH-
TAJHGHOM MOHATUM TEOPMM - NOTEHIWAaJAHHOR XapakTepHCTUKE .

BenuuuHy XapaxTepusybm@e NpeZeNbHHE ZWHAMWIECKHE CBoHfcTBa
OyZeu HasHBaTh HOTEHUEANBEOH xapanrepucrnnnﬂ 3nAeMeHTa /cucre-
Mu/. B HemeM cuyuae

¢ (X)= max R (X), @.72)

IZe MAKCUMyM pacCMaTpUBAETCA HO BCEM BO3MOXHHM 3HAUGHMAM BO3-
ZeficTsuit @j(t) , BusuBapmaM mponece X (t)

CamMo0 MOHATHE MOTEHUUANBHON XapaKTePUCTHKE AIA aBTOMATH-
YECKUX CHCTEM B 3HAUMTENbHOHR CTENEHM OTHOCHTENBHO.

[Ipexze BCero OHO 3aBUCHUT OT pexMMa DAaCOTH CHCTEMH, KpATe-
pUf KauecTea, ¥ OT TOrO, YTO NpMHATO 3a Upxoz" B “BHXOZ".

HauGonee xapaxTepHoll AnfA aBTOMATHYECKUX CHCTEM OyAET IM-
HauyuuecKas NOTEHUUaNBHAR XapPaKTePUCTHKA, OTpaxanmag CBoiicTsa
CHCTEMH B MOMEHT t uIM ToYHee HEa HETEepBalNe, PaBHOM NOpOT'y
pasmMuMMOCTY BpEMEHH C ¢ .

BBezeHHOE MOHATHE NMOTEHIMANBHOR XapaKTePUCTHUKA MO3BOJNA-
€T CHOPMYZMMpOBATH M JOKA3aTh A8 JUHAMWICCKAX GHUCTEM OCHOB-
Hyb Teopeuy, COOTBETCTBYRHYD Teopeue [leHHOHA B TeODEM BWHGOp-
wamm (9],

O6uas QopiLymipOBEa TaKOil TEODPEUH A AMHAMUUYECKUX CHC-—
TeM MOXeT OHTH MpefcTanRneHa B cuezyomei gopue:
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EcIM Ha BXOZE 0CBEKTA NDH Da3IWUMMOCTH &, BXOZHOE BO3-

. Zeitcrswe Y (t) mueer mimauwzeckoe pasmooGpasie Ry (Y), To cy-

meCTByeT BO3MOEHOCTH HOIYUATH HA BHXOJE DTOFO EE O0BEKTA TaKoe
xe pasmoodpasme coctosma® X (1), [R¢(X)=Ry (Y)] nuayme-
Pyewos oTEM %6 BosZelicTueM (t) ecm

R OYy <o ¢.18)
E 9%0 HOBOSMORHO, CCIH .
R, (Y) =Gkl @.14)

B mpeanaraemolf Mozexm aTa TEopeMa pacHpOCTDAHAETCH Ha
NpONSBOABEHE HPOLNSCCH ynpqxnexnﬂ; B TOM QUCIe ¥ Ha JeTEpMUHU-
POBAHHHG ¥ HECTam@oHapHHe. [elicTRATENHHC, pacmucaB BHpaxeHUe
ZUHAMEYECKOr'0 pasHoobpasus (4.7) DO COCTaBAANIMM, TOTYUHM
BuecTo (4,I3) BHpameHEe &

Re (F) + 1, (W) He(Y) s €y (X)) weur9
#3 KOTOPON0 CIOAYET, UTO BOSMOERHOCTH HEPEZAau® OGEMX COCTABIAD-
IEX OorpaE@duesH ozHO#f B ToR xe moTeHIMaNBHOR xapaxTepucTHXOH,-
DOSTOMYy YBeIMYeHWe pasHooGpasusd OAHOX U3 COCTABIAKIMX BO3MOX-
HO TONBKC 3a CUeT yMeHbINEHHHA pasHooOpasus Apyroit. CiaezcpaTens
HO, B NpeZelne KAk AeTEpMUHUpOBaHHOEe BO3ZKedcTBHE, TaKk ¥ CIyuall
HOe MOZeT NepeZaBaThCH B I'paEMIEAX OZHOM ¥ Tol xe moTeHuuaXb-
Holt. XapaKTepUCTHKH,

Eciz B cucTeMe MMEDTCH MOMEXM W MCKAxCHUA, TO HX Da3HO-
0o0pasEe B JMHAMMKE® MORET OHWTH YUTEEC COOTBETCTBYDINMMY afId-
TUBHHMM UNeHAMA, HE W3MEHAA CYmMeCTBO NpHBEZEHHOR Brue Qopuy-
I¥DOBEM OCEOBHOM TEOpOMH.

- Jnfl pa3IMYHHEX aBTOMATHYSCKAX CUCTEM OCHOBHas Teopeua Mo-—
RET BMETH DASIMUEHe JOpPMYAMPOBKH TAKO! TEOpEMH NS CUCTEM
craCumisaman npasezeHa B[ I1.

Ciexyez oOpaTHTh BEMMAHIE, UTO B (OpMyMApPOBKAX OCHOBHOH
TEOPEMH NDUMEHRDTCH § —-ONCHKW, CBASAHEHWE C MOPOTOM Da3muA-
MCCTH ®au BooOme ¢ HexoTopoR BemuumHOd £ , XaparTEpUsyH—
mefl MBAMMUECKYL TOYHOCTH. PasHO0Gpa3us ABIADTCH yOwBabpne#
Gymrume#t o & .

Taxzu 06pasoM, JEHaMUUeCKad MOTEHUWANbEAA XapakTepuCTH-
¥a ABIAETCH NpeieubEodl XapakTepucTHKoR, orpaHMumzapmeR BLOOD
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MeEAy MHTEHCHBHOCTHD BO3ZEHCTBMA M TOYHOCTH €r0 BOCIPOM3BEZGHIH
Irar, bCAKOE ympaBiiceHAe B CBOUX BO3MOXHOCTHX OI'PaHWYEHO

noTeHnManbHEo#t xapakTepucTuko#. MMEeHHO 9Ta BeaMuMHA OTBEuaeT

Ha OCHOBHO® BODDOC, UTO MORHO M Yel0 HENH3A ZOCTHYD B CHCTEMAX

yUpaRICHMS .

3. Mepa sErpomaiiHoR ycroftumBOoCTH mpomEcCoB
yupasieHEs

Jerosua sHTponniiiof ¥ uHQopMammoOHHOR ycTofluMBOCTH MOEHO
pacCMaTpHBATH, KAaK KpUTEpU# oNpesieNeHHOCTH NPOTEKAHHS NpPONECCOB
ynpasnesus [I0, II, I2] .

OcoOeHHOCTHD 3HTPONMUIHOrO NpejACTaBIeRUA GONbmON COBOKYN-
HOCTH COOHTHUH MJM NMponeccOB ABIAETCH BHZAGNEHNE U3 HEE BHCOKO-
BEpOATHOY IpynnH, YTO NO3BONAET NpY aHAM36 U pacueTe peams-
30BaTh DEANBHHE DERUMH DaGOTH.

AuenEO 3TO CBoilcTBO rpynnoBo#f SETpONMM M MHGODMAIMM FOM-
%HO HO3BOINTH BHACNUTH XapaKTepHHE CBOHCTEA AMHAMHUSCEHX CHC-
TEM Npd UX HHYOPMAIEOHHOM ONMCAHMK.

B 9THX yCHOBMAX HpEZCTABIAETCH NENeCO0CDAa3EHM BBECTE Me-
Py omnpeZeneHHOCTH NMpOPEKAHEf Mpounecca..B ciayuae HeynpaBaaemo#
CUCTEMH Haubozxee nednaronpuanuﬁ ciyvaeM fBIfIETCH paBHOMEpHOE
pacrpezeneHue ¥ ZUHaMWueCKas SETDONWA, MpU STOM OmpezenseTca

KaK E{ QO% l)(\
teT.

ECTECTBEHHO, BOSEMKAET BOMPOC, HAa CKONBKD OyZeT OTIMYATE~
Cfl SHTDONNIiHAA OLEHKA, ECIM OCBEKT ABNAETCH YNPABAACMHM ¥ pac—
npeZieNeERe CTAHOBUTCH OTIMUHHM OT DaBHOMEDHOTO.

LA peleHHWs 3TOr0 BONpoca, HAPAZY C MOHATUEM SHTDPOMIK
Kak MaTEeMATHUYECKOTO Oxuzanus sHTpomuilHof HIOTHOCTH [ QA% &xE>(x§]
Ienec0o6pasKo PacCMOTPETh €€ IMCHEPCHD, T.€.

Dy, = M M [-%og &, P (X) - -H (xyy
Dy, =] P00 Log [mx\]dmﬂ )],

>
rIe }{ (X) mdde pesIpansEan sHTponus. A3 nociezEero BHPaReHHA
clIenyer, YTo BEAWYMHA BH He 3aBHCHT OT WAra KBaHTOBAHUA IO

s

Torza
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YPOBHD, OHNpeZeNsaeTCA TOABKO JyHKmeR} pachmpezeneEus cuyyalino#
BeIWYMHH ¥ ABIARTCH orpaHMYeHHONX BeawunHo##, B TO BpeMs Kak al-
CONOTHAA SHTDONUH HempepwBHOR cayualiHoi#f BenMUMHH CTpeMuTCH K
GECKOHEYHOCTY NpY HEOrpaHMYSHHOM yYMEHBUEHHM Wlara KBaHTOBAHUA
Mo yPOBHB.

lioxHo mokasaTh, WTO NpH paBHOMepHOM pacmpefenemuu [) .= O
BeIMYMHA Dy MOXeT XapaKTepU30BaTh CTENeHh ONpeAeNeHHOCTH
IIpOTEKaHKA MPOLECCOB YNpaBIeHUH.

JBeRUUSHNUE DH OTpaxaeT pDOAH BHCOKOBEPOATHHX COCTOAHUi
yupaBaAeMoro Ipounecca ¥ MOXeT UCIOAB30BATHCA KAaK Mepa MHGop-
ManuoHHOR ycToftumBoCTH.

4, BonpocH $MabTpalMHd CHUTHANOB B OI'pDAHKYSHHOH
OJOCe YacToP

B HexoTopHX sazauaX CAY B KOHTDONE NpEACTABIAETCH Leje-
coo6pa3EHM TOYHO BOCHDOM3BOAUTH CHI'HAA NMIB B YaCTH IOJIOCH
vacror W) .

/W,= W- K ; W - mozoca 9acToT CHrsana/

Ins aro#t meim cormacHo oGoCmMeHHO# Teopeme OTCueTOB [4]

ZOCTAaTOYHO NMPOM3BOAUTS K3MEpPeHUA 4Yepes WHTEpBad

1
= W ~ /W,K- B repuax/

{Ipm 3TroM JyHKOUE OTCUETOB NMpPHHEUMAET BUZ
\ sin [ 2 (w-2k)t)
Ut) = =z (w=-x1t

B peanbHMX ycTpoficTBax Ha mojesHHfl CHI'HAN H3KNAZHBAETCH
HOMEXa . :

[p# Ha/MUMM BHCOKOYACTOTHON MOMEXE ONTMMANBHHA NMpAMOYIONB~
mu# funsTp HalizeMm w3 ycnosus muHUMyMa C.K.O.

[in# cursanoB, OTDaHMYEHHHX MO YacToTe, BHpaxesue C.K.O.

uMeer BUA S W + AW(W- K*)
=2 A wl
3 =§.H5m(m)dw+3’5nw\d )
o

am{w-K")
VuEMMMauUpys sHpaxemue /4.I6 no mapaserpy K, uMeeM
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wW=-K")= - K”
Sk )= $. (W-K*), S

CooTHomeHHMe (4.I7) MoxeT pacCMaTpMBATHCH TAaK Xe, KAK X
oGolmenue TeopeMH KorembHuKoBa B.A. Ha cayyall, Eorza Ha rozes-
HEufl cursan Hazomesa mouexa™’ .

OneHouHHMH (pumv:vmp Jour.1/ onpenegla_%rca H3 yCAOBAS
2
T, 7 ] Spdw +[ 5, () dw .

Jna peanusalyy OLEHOYHOI'O (Imm:r%a ¢ monoco W—K moxer
OHNTH MCIONB30BaH METOZ HWHTErpanbHOf KBazpaTuyHOf ammporcuMa-
DAY NpPAMOYT'ONBHOR XapaxkTepUCTHKN BHpageHUEM Buza

s BPm (1) 4 B, (1) 4+ Py iw e

Leis i i (L) + Kppoq (Luo)™ 4ot O 100+
OmicaHHHA MeTOZ Be CBH3aH ¢ NMpoCneMOR peryIapr3amEd ¥ IO3BO-
neT CHHTE3UPOBATH (MABTPH NpR 3aaHHOR AMHAMMUECKOR TOUHOCTH
¢ MMHMMAanbHOA nmonocolf MponycKaHUE .

[Ipy orpaHEYeHUE MOJIOCH MPONYCKAHUE ONEHOUYHOR BoaMumHON

W-K % TOYHO BHUMCJIEHHHX CHEKTDANBFHHX NJIOTHOCTAX MOAEG3HOrO
CHIHAJIA W MOMEXM 3azaya CHHTE33a MOXeT OHWTH CBE/i6HA K DEUeHMD
3azaun Konuopopom-lguepa: s 3 b

¢° (lw\ Sm('w) tw

3 { : ~iwt

rzie Y (iW), P ({)- KOMITORCHO-CONPARCHENS MHORATONH, He HMD-
me H¥ Hynedl, HM NONDCOB COOTBETCTBOHHC B HuEHOR m B BepxHel
MOJYTIOCKOCTAX KOMINEKCHO# niockacTd W .

WHEW)WHIw) = § (W) + ) (W)

& (i) - uzeansmult oneparop

et [Ww-W Kkl
!q> ) . W (W-K) v (4.19)
P ¥ , lwl = (w-K)ex
P, W - LW W-K)

4/7n7 cMrPHANOB ¢ HeCIpAHENVEHMMM CUEKPpOM BupameEne [4.I7)uucer
BAL Smiw ) =3 n(w") . TEe WS~ [ONOCa YACTOT NpAMOy-
roNBHOr0 {MABTDA,
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Nomaras B supazemm (4.I9) %X>X pre (< xocraroumo
GONBmOe WUCAO, MOAYUIMM CeMeiiCTBO OMEpaTOpOB CAU3KUX K OLe-—
HouHOMy /$ur.2/.

lpu <=0 gopuyna [4.I8)maer XapaxTepucTUKY onTUMATE-
Horo fuasrpa. lomaras B BupazeEud (4.I9) (=0 ¥ 3aueHss B
nepBol unrerpasne (4.I8) O Ha oo momyuuM fUIWUECKH Hepeami-
3yeMyD ONTMMANBHYD MEepPeAaTOUHyD QYHKIMUD

m (w
P (lw) = SSm ((E))’-)Sn(w) : (4.20)
Coorsercrsynmas seruyuHa C.K.0. onpezemiercs Qopuynolt
Gy v Sm (w) Sn(w)
g =9~—W__°° Swm (W) + Sh(w) dw : (4.21)

BupazenueM (4.2I) MOXET HCMONB30BATHCH B KAUECTBE OG-
HoyHO# (OpMYIH NpH NMPOEKTHPOBAHEMM ONTMMANBHHX (QUIBTDPOB. 20p-
MynH 4.20) , .y (4.2I) ¥MeNT TPUHOUMMANBHOE 3HAUEHUE.
Hcnons3ys Bupaxenus (4.20) ,(4.2I) , HeTPYyZAHO MOKA3aTh CBA3G
pesyuapraToB lleHEOHa ¢ pes3yinbTaTaMy¥, NOAYUYEHHHMY METOZOM CTa-
THRTHYeCKOR onTHMU3anuy QUABTPOB.

PaccuaTpuBag ¢ 3To# neasp OWMOKY B KJacce MHOOpMAIMOH-
HHX CHT'HAalOB, T.€. OrpAHUUMBAS €€ MPUOAMHEHHO MONOCOH YacTOT
cmexTpa W ¥ NPOTAEGHHOCTHD MO BpeMeRH T |, MOMYyuMM SHTPO-
nUEO OMUGKE B MONOCE A j .

Hﬁ* = Taflog dme , (§) 2] (4.22)
AETerpEpys + (4.22) MO MOAOCE M UCMONB3YR BHWPAXEHUE
(4.2I) , nomy4yuM SHTPONMUD, MPUXOZRIYWCA HA OZHY CTENEHb CUrHa-

a8 OmAGKH
i | S m ('S ) +Sn (ﬂo{
H, (&) = H (m) W i Qo% S (3) f(4..23)
lETerpan B npaBoff wacTu cosmazaer ¢ [leHHOHOBCKMM BHpa-

ECHIGM MAaKCHMANBHOR CKOPOCTH NEepezauu MHHOpMAIMyM IO KaHay
¢ momoco#t W .

ToT ®e pes3yAbTAT MORET ONTH MOMAydeH, UCMOAB3YR Popuymy
lledHoHa AN NOTEDPHE SHTPOMAM B JAUHEHHOM (WIBTPE.

Taxuu 00pasSoM MOIYyYEHO COOTBETCTBUE MERNY (opuynoit llen-
HOHA W ONTMMANBHNM QUIBTPOM KonmoropoBa-Bunepa. [I0CKOABKY




15

OpE OTHCKaHMM IOCIEZHEr0 YCXOBMEe Pu3MUESCKO# OCyWEeCTBUMOCTH He
JUMTHBANOCh, MaKCHMAJbHAS CKOPOCTH nepezaud uHGopuamym mo Nes-
HOHY He peanusyeua. To ecTh (Qopuyna lleHHOHa ZaeT 3aBHEEEEYD
OLEHKY MAKeUWMaNbHOR CKODOCTHE Nepezayuy¥ MHPopMaImM.

5. Kommuecrso MEQOpMAIMK ¥ HEPEXOZHHE NPONECCH.

OneHny H3MeEEHWe KOJNMYECTBa WEQOpDMAL MM NPH OCONBNMX OMHAC-
Ka8X CHUCTEMH, MMEDIEX MECTO B IEPEXOZHHX pERUMAX.

liycrs samad arcamGar cursamos X (t) , mpmemmaoms®t smave-
HEA Ha OTFPAHWYEHHOM MEOESCTBe ¢ MeTpmmoB P ( Xi Xy)=(X(= Xi) ,
Eoropult B momen® BpemexE t>0 mocrymaer ma Bxopx muueitmoR zu- -
gauwuecxolt cucreus ¢ mumyrscEo# mepexozsoft dymmume# U (t . Ha-
YansHHe ycnomm npeZnonaraprc HyIeBuuu. Ha BX0Ze CHCTEMH -
ancau6ms Y (t) c uerpuxcd P (Y Y2)=(Y,~ Y») . Hycrs curram
x(t) = \g(t MOTyT OHTD npencmaxnexu CISAYRIMM OCPA3OM

X {41 () = L(t +AX§(‘H,
Wit (t _\jl (t +A‘j (t)

rae ‘Ag(’c)‘Ang(“c ~T)u(T)ot
B I000H MOMEHT Bpeuerm 1
5 = Kk
ﬂlm( ) ‘(‘b'g') 3( ) % i‘g(-&-‘t)u(’t)dft K-H)
r;ae :; o{ 'g‘) - AKOONaH npeodpaa'onamm KOOpZMHAT B MOMEHT

BDEMEHE t .

B Teopuu EHOOpuAlMM, CBeZEHHA o HexoTopoll cayuaiuol Bem-
uHe X , NONyvYaeMHe B De3yNHTATE HACINASHHA cuyuainofl Bemmum-
BN Y , W3MEHANT €€ HEONPEACAEHHOCTH. MlocnezEee XapaxTepusyer-
cA samesoff Ge3ycHOBHOH SHTDONMMA BeMMuMEH X  cpezuefi ycmosHolt
SHTpONME! BENMWMHN X  OTHOCHTEUBEO BeMMUMEM Y . C yuerou
auEeNHEOCTH MpeoCpaz0BaHus, KOIMUECTBO MHDODMAIME B JUCOHN MOEMEHT B
BpeMeHH ONMCHBAGTCH CHEAYDIAM cowaomexneu.

9 (Y, X ) = Ho(X)- €og x (1),
HeoGXOZMMO OTMETHTH, YTO NPU M3MEHEHMM CHYYAHHHX BGIMUNH
gyuemma K (t) ompezemserca mpocTo:
1 {

fumdt  AG)

D\

w L

e .-
HYMETOKU Jow
ymst Uk

& /
5
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OnpezemuB nHOHM U3 H3BECTHHX CHOCOGOB I8 PEXOZHYD QyHEIHD
cucremd A(t), MOXHO BHUMCIMTH KONMMYECTBEHHOE M3MEHEHUO MH-
$opMaIE® B TePEXOZHOM POLECCE.

flepexoZs K CTanWoHapHHM CIyyaflHHM CHIHaiaM ¢ orpaHWYeH-
Ho#f momocoft vacror F , ofnazawmuxX EWHPOPMAIMOHHOCTEN B INCOR
MOMBHT Bpememm H (x), dyneu HMETH: ;

3 ()= H(X)+ 35 [ Log [ (1) [%lf=tog k(e helog G

HonyueHre MCXOZHHX cooraomennn ANd MOXYYSHHOI'0 BHPAXEHAA
B 0OOmMEM CIy4yae SaTpYAHMTENBHO. 0ZHAKO B HEKOTOPHX YaCTHHX
cayyasx /raycCoBCKMe IDOIECCH, (JMABTD omucHBaeTcH Zuddepen-
IMaGHHM ypaBHeEMEM NepBOro MopAZzra/ 3Ta 3aZavya pemaeTCi OT-
HOCUTEIBHO IpOCTO.

Y. HepcnexTuBH ¥ 3a7aud HHYOPMANMOHHOW Teopuu

[IpuMeHeHue moxoxeHMit KIaccKHueCKOR Teopmy HEGOpMAIMU K
337a9aM yOpaBIEHUE BCTPEUAST 3HAUNTEIBEHE TPYAHOCTH. [IA HX
ycTpaHeHHS HeoOXoZMMO AanbHeilimee pas3BUTHE OCHOBHHX M7e# Teo-
pud BEHOpPMAIMM B YCTAHOBIGEME KOANUECTBSHHHX COOTHOmEHU
NMEexZy NOTepAMM MEQOpMAIMU M TOYHOCTHD €€ BOCHDOMBEZECHUS B ZAHA-
HaMUYECKUX CHCTEMaX.

OcHoBHO# BOMpOC, KOTOpH# AONXEH OHTH pENEeE ZMA TOr0, 4TOGH
HMEeTHh MHPOPMANUOHHYW TEOPUD YHpaBICHUE U KOHTpOJd — 3TO pelie-
Hue 3aZauM mepezaud pasHooOpasusd B CUCTEMaX C DABIUUHHMU TH-
naMy QOpaTHHX CBA3e# X 0COOGHHO B MHOPOCBA3aHHHX M MHOI'OMED-—
HHX cUCTeMaX.

Bropoit, HE MeHee BaxHO#, NMpPoOnEMO# ABNAETCH U3yUEHUE
cucTeM ¢ pasBeTBIeHHOX mepapxuueckoit cTpyKTypoit ¥ mpuopuTe-
TOM KOMAaHZ. ¢

Tperss HEOTIORHAA aanaqa, KOTOpag BO3HMKIA CEroZfHA B CBA-
34 C HEOOXOZMMOCTHD BHEZpPEHUS B MpPAKTUKY PO3YyAbTATOB MHPOpMA=
IOHHO#l TeopMM ympaBleHUH, COCTOMT B Da3paGOTKE BHUMCIATEIB-
HHX METOZ0B uHOpMAMMOHHOrO aHANM3a ¥ CHHTE33 CJOMHHX MHOI'O-
MEepHHX CHMCTEM C MHOTOAPYCHOH CTPYKTypoil.

IHGopMaIMOEHEA TOZX0Z NMO3BONAET C EAUHOM TEOPETUUECKOH
TOUKA 3pEHUs DaccMaTpPUBATH KOMIIGKC cucTeM M3MEepeHpd ympaB-
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NEHUR ¥ KOHTDONR B HE3aBUCHMOCTM OT WX HAa3HAUEHUR X CIOCCO0B
Deanu3anu®, YTO MO3BONMT yxe HA paHHe# cTazuy¥ OPOEKTUpesSaEdA
NpUHMMATS HEYYHO OOCOCHOBAHHHE pEWEHNE B TeX CAyYasX, rze X0
CHX MOp DOCHOACTBYWT ONWT ¥ HHTYWINA.
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MONTE CARLO TECHNICQUES FOR PREDICTION
AND FILTERING OF NONLINEAR STOCHASTIC
PROCESSES

J.E. Handschin (Switzerland)*
Centre for Computing and Automation
Imperial College of Science and Technology
University of London
London, S£.W. 7. (U.K.)

1. Introduction

The object of this paper is to establish Monte Carlo
techniques for the state estimation of nonlinear, discrete=
time dynamical systems. In Section 2 we define the
mathematical model of the problems considered. The pre-
diction problem is discussed in Section 3. This section
also serves to introduce the basic concepts of Monte Carlo
work. Two variance reduction methods are derived in order
to increase the efficiency of the Crude Monte Carlo esti-
mator.

The importance of nonlinear filtering problems
(Section 4) is reflected in the various contributions in
this field during the last few years. Most of this work
has been devoted to continuous=time systems. For a survey
see Fisher1 or Schwartzz. The main contributions for
discrete-time systems are due to Cox3 and Sorensonl't in
developing the approximate nonlinear filter equations.

The new feature of the approach presented here is
that sampling methods are introduced which enable us to
estimate parameters of probability density functions
(p.d.f.), such as the density p(§k) in the prediction
problem and the posterior density p(zklx¥) in the filtering
problem.

Monte Carlo techniques provide stochastic solutions

to the nonlinear filtering and prediction'problems. There=

* This research was supported by SA Brown, Boveri & Co.

CH-5401 Baden, Switzerland.
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fore all results are estimates whose errors,in turn,can
be estimated from their sampling variances. The sampling
schemas can be improved by using variance reduction tech-
niques, This permits the reduction of the sampling error
to a value lower than that obtained by approximate non-

linear filters.

2. Problem Formulation

In this paper, k-stage, time-discrete systems are
considered. The state X of the dynamical system evolves
according to the following nonlinear stochastic difference

equation:
T = I (e me X 1Y,

X is an n~-dimensional state, and Wy is a p £ n dimen~
sional disturbance vector. The explicit dependence of
gk(...,.) on the time parameter k accounts for any known

i . k A

input, e.g. control signals. The sequence w =~ Wao Moreea¥y

is assumed to be a white noise sequence with a known p.d.f.

k
kyw _ T
px) = .. ple) (2.2)
The initial condition of (2.1) is given as a p.d.f. p(El).

The random variable X, is uncorrelated with any other

disturbance acting onlthe system.

The states Ek of eqgn. (2.1) are observed through the
m=dimensional observation vectors xk, which are function=-
ally related to Ek’ and which contain random errors. The

nonlinear transformation is assumed to be given by

Yoo =8 (B Kl oy (2.3)

The m=dimensional noise vector X is supposed to be a
member of a white noise sequence with known p.d.f. p(xk)

and uncorrelated with w, . The variance of v, is denoted by z

k
The problems considered in this paper are concermned

.
v

with the determination of the state Xt

»
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1) In the prediction problem, where we are given
the initial density p(El) and the noise density
p(Ek)’ it is desired to estimate the parameters

of the p.de. pxg).

2) 1In the filtering problem,where, we afe given in
addition to the information of 1) a sequence of
observations x#, it is desired to estimate para-
meters of the posterior p.d.f. p(zkl z#).

3 Nonlinear Prediction

Under the assumptions made in Section 2, the solution
of the prediction problem is given by the Chapman-~Kolmo-
gorov equationsz

+00

pix | x) = _ép(;xklgk_l) " e, x) dx ) (1)

where j € k=2. The integral appearing in egn. (3.1), is
a condensed form of the n-fold integral over all elements
of the vector dik-l'

To avoid the evaluation of egn. (3.1l) using an approxi-
mation method, Monte Carlo procedures are employed to
estimate parameters of the p.d.f. p(Ek)’ i.e. the p.d.f.
of the state PSR k=1 steps ahead.

3.1. The Crude Monte Carlo Predictor

Most applications of Monte Carlo techniques are con-
cerned with the evaluation of an integral. That is, Monte
Carlo methods are better suited to finding some parameters
of a function, rather than the entire function itself.

The first order moment mes i.e. the mean, of the p.d.f.
p(zk) at time k is defined as

o= Bx]l . ] & cple)ea (3.2)

By the strong law of large numbers? the random vector
>

Rt e T (3.3)
j=1
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converges with probability one to By if N samples (Ek)j’
j=1,2,...4N, are drawn from the p.d.f. P(Ek) and N— 00.
By the central limit theorems, the sampling distribution
of Ek tends to a normal distribution as N— ®, and there-
fore approximate confidence limits can be given for the
estimate ék' The covariance matrix V associated with the

random vector ék is:
v = ELl@ -elxD (@ - &lx)7T) (3.4)

Since the true moment EEEk] is unknown we must use eqn.

(3.5) as an estimate of V:

N

A -

v o:nN? j§1 L), - BI0(x), - BIT (3.5)
The confidence limits are siv?n in terms of the sampling
error which is defined as (V)~Z.

The final problem to be solved is drawing the random
sample (Ek)j' j=1,2,.+.,N, from the unknown p.d.f. P(Ek)‘
The solution is given by direct simulation. (Ek)j denotes
the value of x5 obtained by simulation of the original
nonlinear system (2.1). (El)j is dra:n from the given

)

initial condition demsity p(x,), (!F- . are drawn from

P(E#-l)' and (Ek)j is obtained as the solution of egn. (2.1).
We will refer to a predictor based on eqn. (3.3) as

a Crude Monte Carlo estimator. In the sequel, variance

reduction methods are introduced to improve the Crude Monte

Carlo estimator.

3.2. Variance Reduction Techniques

There are two basic methods for improving Monte Carlo

estimates:

1) Change the sampling experiment, as described in
Section 3.2.1.

2) Replace part of the sampling experiment by an
analytical method, as described in Section 3.2.2.

Although there are many different ways for implementing
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one or the other of these two alternatives, not all of
them are applicable to the prediction problem.

3.2.1. Antithetic Variate Method

The principle of this method, introduced by HammersleyG,
requires the assumption that the p.d.f., from which samples
are to be drawn, must be unimodal and symmetric. In
addition to Section 2, we assume the initial condition is

given by a normal diﬁtribution, denoted by:
p(il) = n(il ;_zgm. Zx) (3.6)

where X is the mean and Zx the variance. The noise p.d.f.
p(!k) is given by:

Plw) = 0wy 5 0,2) (3.7)

In addition to the original sample (Ek); y J=1,2,...Ny, a
negatively correlated sample (Ek)g is generated as the
solution of eqn. (2.1), using the antithetic initial

condition variate:

- +
(X)) = 23x, =4(x), (3.8)

The antithetic noise sequence (!F-l); is generated by:

(“k-l)- T (wk-l)f

e iy (3.9)

Finally, the first order moment m is estimated as:

N

B =0 L ) o+ y)] =¥ @+ D) 5.20)

j=1 ‘
where

N

+ 0

Q.; = N1 '21 (,.‘_k); (3.11)
JB

Since the two estimates @; and é; are correlated, the
sampling covariance matrix

var(@k) = % var(é;) + % var(ﬁi’ + 5 cov(é;. Q;) (3.12)
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can be made smaller than var(Q;) of the crude estimator.
This is because (Ek); and (Ek); , being negatively
correlated, yield cov(ﬁ; ’ @i) ool 5

A useful property of an efficient Monte Carlo method
is to have zero sampling variance, when applied to a linear

system with additive Gaussian white noise !k' Indeed, for

o T At X Sy
k-1,2
an antithetic pair (x;, ¥ )J- yields:
. k;cl p kil k;tl =
(x,), = A, (x)7 + A (w.)T  (3.14)
kg 1a1’ T TR e pad ke

Using eqn. (3.8) and (3.9), the first order moment m is
estimated with egqn. (3.10) as:
k-1
i:-‘k - .11; A, & (3.15)
i=1
There is no randomness in this estimator (3.15), and thus
the following result is established:
The Antithetic Variate method yields an estimator
for the mean Ek’ with zero sampling variance, when
applied to a linear system with Gaussian noise (3.13).
This result holds for the first order moment only. The
Antithetic Variate method (3.10) does not give zero
sampling variance for estimates of higher order moments,

even in the linear Gaussian case.

3.3.2. The Control Variate Method

In the Control Variate method part of the sampling
procedure is replaced by an analytical method. A new
two stage estimator is derived below for the nonlinear
prediction problem. In order to kéep the notation simple,
the discussion is restricted to a scalar, nonlinear system

of the form:

xk"'l = fk (xkl Wit k) - (3.16)

The extension to the multidimensional case is discussed
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in reference7 .

The first stage of the Control Variate estimator is
concerned with the determination of the coefficient vector

g’r é [al. azoocoqak] (3‘17)

in the linear model
k-1
* = o=
xt = Z- a; W, oy x; =AW (3.18)
i=1
in order to make eqn. (3.18) a close approximation to the

nonlinear system (3.16).

The random vector w is defined as

(_u_T é [wliwztnooqwk_lnxll (3.19)

The assumptions of Section 2 imply
k-1 :
plw) = T& plw;) . plx)) (3.20)
i=1

and therefore, using eqn.(3.6) and (3.7) as a univariate
Biadet s (e x Zx' Zw are scalars), p(w) is a k=-variate
normal p.d.f.

p(w) = n(w; a, Z) (3.21)

where the mean a and the variance i are given by

& .= [0, 0,...0, x] (3.21a)
zw o
5= (3.21b)
=
° .

The parameter o9 is said to be optimal, denoted as _q_o. if

the variance of the error ey’ defined as the difference
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between system and model state X and xi respectively,

is minimal. Thus the functional F(a) to be minimized is:
F(g)=var(ek)=var(xk-x;)=var(xk)+var(xﬁ)-2 cov(xk,xi) (3.22)

Since var(z) is defined as:

A T i e
var(z) = Elz z'J - E[2z] . (E Lz]) (3.23)

then F(g) is a quadratic function in o and thus the

optimal g? is obtained as:

o -1
a = &~-F, " F, (3.24)
where Ea is the gradient and Faa the matrix of second
order derivatives of F(a) with respect to a. Using egn.

(3.21), (3.22) and (3.23), the gradient is given by:

L

Fo=2) oo’ arp@ a-2f o 0o awloes@a
(3.25)

-2 f) x wplx,0dx d+2)x plx) de ) 0 plw)de

The matrix Faa is obtained by differentiating (3.25) with
respect to a. This yields with eqn. (3.21):

Faa =2 z (3-26)

Since the p.d.f. p(xk) and the joint density p(xk.g) are
unknown in egn. (3.22), the gradient has to be estimated

as:
5 i o
N -
Bo=2 N LX wola- 2 aTo, X u
jui 3 =i =1 e
(3.27)
% By e
L et Zodx), & w, ]
=1 353 =1 ¥ Ryt =4

where o 3 drawn from p(w) of eqn. (3.21), denotes the
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random sequence (wl,wz,...wk_l,xl)j, j=1,2,...,N1. The
same random sequence gj is used to simulate eqn.(3.16)
to find (xk)j’ which denotes the state xk of the nonlinear
system (3.16).

Since the gradient Ea has to be replaced in eqgn.
(3.24) by 1ts estimate F the optimal go is obtained as
an estimate a defined as

A
o

A -
spd S STE o

o ga (3.28)

The coefficient é? could be estimated by ordinary regression
analysis. The new feature of our method is the deterministi=-
cally specified matrix F in egn. (3.28).

The sample size N affects the accuracy of the estimate
éq and therefore the accuracy of the estimate a .

In the second stage of the sampling procedure, the
linear model (3.18), with g'replaced by é?, is used to
break egn. (3.2) into two parts:

Bled =l fx pix) ax, =f 2y (x) ¢ xt ]

g uf o (x8)d xp i
The subscript 'm' indicates the p.d.f. pm(xi) belongs to
the linear model (3.18). We integrate the two parts of
eqn. (3.29) separately, the first part by the Crude Monte
Carlo method and the second analytically. Indeed,due to
linearity, the last integral can be evaluated with egn.
(3.21) as:

Elxg) = ) xp p(xp) axg =E[a” .0l =a".a (3.30

and thus the new estimator tales the form:
N

m = 2: gy = et § (3.31)
J—

Here (x, ). denotes the state x _ of the system (3.16)
*x’; *x

=%

using the random sequence Q? = (w ’xl)j’ where (xl)j

is drawn from p(xl) and (wk'l):j are drawn from p(wk=1l),
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The same random vector gj is used to generate (xi)j as

the solution of the linear stochastic difference eqgn.(3.18).
The middle term in egn. (3.31) is known as the Control

Variate of the first term. A reduced sampling variance

var(ﬁk) is obtained provided that the linear model (3.18),

giving rise to the control variate, is a close approxi-

mation to the original nonlinear problem, and absorbs

most of the variations in the sampling procedure; i.e.

(xl‘c)j must be a close approximation to the original state

(xk)j of egn. (3.16).

The computing routine for the control variate method

can be summarized as follows:

1) Choose an arbitrary set of values for a and
estimate the gradient ga wifh eqn. (3.27), using
a sample of size Nl. .

2) Update the parameter o using eqn. (3.26) and
(3.28).

3) Compute the analytic result of egn. (3.30).

4) Simulate the original system (3.16) and the linear
model (3.18) to generate the random sample (xk)j
and (xﬁ)j, J=ks2y0003No

5) Estimate the mean with egn. (3.31). An analogous
expression to egn. (3.5) is used to find an

A -
estimate V for the reduced sampling covariance V.,

3.3. Numerical Results

As an illustrative example let us consider the

fellowing scalar system:

ey = X - 0.2 x£3 + W (3.32)

with a deterministic initial condition xm=1.0 and a noise
variance Ew = 0.0625. Table 1 shows averages over ten
ensemnbles with samples of size N=500. Thus E; is the
ensemble average of ﬁk and Gkis the ensemble average of
Gk’ the estimate of var(ﬁk). The nonlinear prediction

is nipe intervals ahead. Further numerical results are

given in reference’.
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z -4

iy

mlO le « 10
Crude Estimator (3.3) 0.27020 4.879
Antithetic Variate 0.26720 0.112
Estimator (3.10) .
Control variate esti=- 0.27774 1.202
mator (3.31) a1=0.4 ' _
Control Variate esti= 0427332 0.262

mator (3.31) &1°= 0.1814

Table 1: Nonlinear prediction nine intervals ahead.

The optimal Control Variate estimator shows a
significant variance reduction compared with the crude
estimator and the Control Variate estimator with an
arbitrary chosen value for a. Although the results here
seem to indicate that the Antithetic Variate estimator
gives the smallest sampling variance for predicting the
mean, the optimal Control Variate estimator is superior
for estimating higher order moments.

Aithoush there are approximate methods to solve the
Chapman-Kolmogorov egn. (3.1), judiciously designed Monte
Carlo methods yiild estimates, such as the mean ék’ whose
sampling error (Vy)* can be less than the approximation
error of énalytic methods. However, this is obtained at
the expense of generating a random sample of appropriate

size N.

L, Nonlinear, Multistage Filtering

Referring to the mathematical model introduced in
Section 2,it is desired to estimate the state ¥, con=
ditioned on all past and present observations 1# e Yyrdor oYy
This requires the determination of the posterior p.d.f.

P(Ekl z}) (see Doobs). Using Bayes' theorem, p(x 'x?)
can be replaced by the likelihood functions p(xi! 51)’
i=zl,25.4:.k, and the priocr p.d.f. p(gk}. The conditional
mean E(§k| zk],defined as

E[;.lek]e J.’é;P(Z;tlzk)dssk, (L.1)
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can then be expressed as X
5k = Blylzd - = gy

fof BV £
i ply.|x.) p(x) d
i=1 o e i (4.2)

The numerator © K is an n-dimensional vector which can
n

be expressed as

k
) = Elx T | (4.3)
=n,k Zk 4 Pl ! x)]
The denominator Od k is a scalar constant and can be
9,
expressed as:
k
= T
94,k EL ply; | x;)] (4.4)
i=1

It is easy to verify that this scalar constant is related
to the conditional p.d.f. P(Zkl 13-1) by

k
_ sl
S = b P ITT) | pg) (4.5)

This result will be used again in Section 4.2.

4,1. A Crude Monte Carlo Estimator

Since the expectafions in eqn. (4.3) and (4.4) are
with respect to p(EF) with x# kept constant, the random

variables
N k

A o

& x =N ;E; (Ek); ;Ei ply,; |(§i)j) (4.6)
and

A 3 N k

= N TC
Sac = ¥ & 5 eyl (4.7)

converge again by the strong law of large numbers with
probability one to © and 6 respecfively, provided
k -n,k d,k Kk
that N samples (x )j.j=1.2,...N, are drawn from p(x") and
N-—+co.
A
Eqn. (4.2) implies that the estimate Eklk of the
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glaas k
conditional mean EEEkI pA ] is given as the ratio of two

random variables:

(4.8)

Although this estimator is a biased approximation it has

9

been shown by Handschin and Mayne” that the error is

A
negligible in comparison with the sampling error (var(Eklk))t'
provided that N—00. An approximation V to the sampling

covariance matrix Vo, defined as

v, = var(x,)= Bl - Bl ) YD (&, - Blx)yDH T, (4.9)

is obtained by expanding the RHS of egn.(4.8) as a Taylor
K= E[é J and

’

= E[Od k] and truncating terms higher than the second

series around the respective means 0

ed k

k]

order. Denoting the r:th element of © as © (r), the
—n,k n,k

(r,p):th element of V is found to be:

A
k(). Gn’k(p) 5 °°"(8n,k(r)'°n,k(p))

[var(ed,k)

V(r,p) = P, 5 2
ed.k ed,k on'k(r).On'k(p)
A A o~ 2
: cov(en’k(p),ed’k) = cov(On'k(r), ed,k) (4.10)
k(p)'od,k en’k(r).od‘k

A
An estimate V of V is obtained by replacing all the terms
in eqn. (4.10) by their estimates; e.g.

6 2 § 0 q ¢ 82 . 3= (k)
var(8, ) =N ¥ [ T »ly;l(x);) -85 .
Jj=1 i=1l )

In conclusion, eqn. (4.8) defines a Crude Monte Carlo
estimator for the conditional mean E[§k|xF] if the numerator
gn,k and denominator Od x
egn. (4.6) and (4.7). The sample (x ) 321,240y Ny is
again generated by the direct 51mu1at1on principle: (Ek)j

of eqn.(h’z) are estimated by

denotes the state X cf the nonlinear system (2.1) obtained

by simulation of the system with the random sequence
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(x5 !lﬁli.'!k'l)j' (El)j is d;izn from the p.d.f. p(x;)
and (w )j are drawn from p(w )

The Crude Monte Carlo estimator (4.8) is not confined
by any restrictive assumption. However, this generality is
offset by the low accuracy of the estimator. In the following,
Section 4.2, a Control Variate method is derived to give a

reduced variance V.

4,2, Variance Reduction Technigques

A combination of the nonlinear filter equation and a
Monte Carlo method is used to yield a Control Variate esti-
mator for the conditional mean with reduced sampling variance.
Up to the present time, several trials have been made on the
physical realisation of optimal nonlinear filters in an
approximate form of finite dimensional filter. Sunahara1
uses a method of stochastic linearigétion which has been
applied by Handschin and Mayne9 to derive a Monte Carlo esti=-
mator for the conditional mean. In this paper a different
set of nonlinear filtering equations due to Sorenson4 is
used to specify an approximate solution. The nonlinear
transformations f(.,.) and g(.,.) are subsequently linearizéd
along this reference trajectory to yield a linear model
required for the Control Variate method. This model is a

statistical version of an exact nonlinear filter.

4,2.1. Approximate Nonlinear Filtering

A set of nonlinear filter equations is derived by

Sorenson for the following system

T Ly EeR) ta (k.12)

whose states are observed by eqn. (2.3). Under the assumption

that Ek(.,.) has at least continuous first derivatives, and

gk(.,.) has first and second order derivatives, an approximate

posterior p.d.f. is assumed to be Gaussian and defined as

k+1
PalZean| 2777) = 0y Wichajxer zk+l|k+l) L% 9

where the mean Ek+l|k+l and the variance Zk+1|k+1 are given

by:



33

-1
Bice1]xe1™ Zrer* T ka1 kel Cenrl v Dien T Sk (Zian))

Zeer T I (Mg ®)
» T, -1 Te -1
Liorper = HE L + P Ly BT 4 6 787 6y

(4.14)

'
Mg

L q-1
3 Jk+1(i) Uy (D]

i
where Uesl (i) are the components of the vector

-1 (. .
le+1 = Bl (Ek+1)]' In addition to the

T zv
notation introduced in Section 2, we use locally the following

abbreviations for the first partial derivatives:

R oo
F, = a;: Gyyy = 3——22 (4.15)
e "R Hee1 "Ei Qg ™)

The second partials of the i:th component of &4y 2TE
denoted as:

2 .
7 (1) B 0 g4y (1)
k+1 551“1 55“_1 (4.16)

2&“_1 = gk(glik' k)
The recursive eqn. (4.14) starts at time k=1 with

-1
B = %t Ly (4 -5 ix)

m (4.17)
o - ol oy E 2; =
Lp = [E 7+ 6 8y 6 - 2 50 @)
i=1

A z -1 - .
where u, = & de - 51(5m)]' The set of nonlinear eqn.
(4.14) is obtained by expanding the exponents of the p.d.f.
appearing in Bayes' theorem eqn. (4.2) into a Taylor series
up to second order, around |1 for gk(.,.), and around
f(uﬂk'k) for £k+1("')' The full derivation is given by

Sorenson ~.

4.,2.2. A Linear Model

The coefficients 2 Bk' S5 and Dk of the linear model
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2 * By (X - ) (4.18)

Py
¥
A

L

Y3 = e *+D (5; -u'kik) (4.19)

are obtained by expanding gk(fk.k) and ﬁk(ik'k) into a
Taylor series around.u,k|k such that the mean squared norm
of the remainders of the expansions are minimal with respect

to pa(Ekle)‘ This yields:

y =B, Lf (x 01 ¥ ] (4.20)
- (3 NIE .

B, = Epa £ (x0k) - g_k)(ik-u,m‘) 1y Nk .21)

G =B [y (o) [ ] (4.22)

-1
D = Ep [(.&k(gk.k)- &)(ﬁ:ﬂm)TIZk] Zl{k (4.23)

Using Bayes' theorem in the form of eqn. (4.2) for the
linear model (4.18) and (4.19), the combination of nonlinear
system and linear models allows to rewrite the numerator

e and denominator © as follows:

-n,k d,k
k k

Kk, . k * * * *x

o= Iz 11}1 ply;|x;)p(x)dx"= J.)x, Elpm(xil x{)p,(x ) ax

+ e (4.z2h)

-mn, k

k k
0a 5= S Toptyl xppax s f+f T oGyl x)py(x"™)ax"™

+ 0 (4.25)

md, k

The index m refers to the linear model and due to linearity

the correction terms gmn,k and omd,k have an analytic
result defined as:
k
Ld * Ed -
= Jo " k k ;
Cum,k = o) m - T opp(yyx) pu(x ) ax G 26
ol Do (x7%) ax'® (k.
9md»k AN pm(xilii) Py X ) dx -27)

i=1
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Because of the linear structure of the model (4.18) and
(4.19), the p.d.f. pm(lk+1|!¥) is an m-variate Gaussian
density with mean Ek+l|k and variance vk+1|k given by

M1l = Sxe1 ¥ Daalay * By (Mg B e [ 141

. L O T
Vis1]x#1 = Psr Bi Vigie B Diwn * Dian Ly Diay * Lo (4:.28)

These recursive relations (4.29) start with

Bijo . %% ¥ 0y (x Slyyy)

v =pr Toopd (4.29)

1|0 1 %5 Py Ty .
Clearly |4 is given by egqn. (4.14), and the mean and

variance V. of the posterior p.d.f. pm(§k+l[zk+l) of the

linear model (4.18) and (4.19) are obtained by linear

filter theoryll:

=3
Bee1]ieel = 23t Bi (Bagcthg)t Vige Dl T (%im g1
: T,=-1 ¢ -1 -1
Vieen]ker = DOZ % By Vige B') ™ + D T Dyl (4.30)
These recursive eqn. (4.30) start with

-1
My =X * Vi Dy - omy )
(4.31)
-1 T =1 -1
Vij = [E, " +# D7 Ly D]

Using eqn. (4.5) the solution of eqn. (4.26) and (4.27) is
given by eqgn. (4.28) as
k=1 i 3
md,x = inl Pu{¥ian X)) o p (3y) : ih-20)

and

mn,x = Bigc * ®ma,k . (£.33)

4,2.3. The Control Variate Estimator

Based on the foregoing discussion, the computatipnal
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procedure for the Control Variate method can be summarized
as follows:
1) Compute the approximate nonlinear filter eqn.(4.14).
2) Establish the linear model (4.18) and (4.19) and
the linear filtering solution (4.30), (4.31).
3) Compute the correction terms (4.32) and (4.33)
using eqn. (4.28).

4) Estimate the numerator 8, . using eqgn. (4.24), as

'k

40)

N k k
= -1 - £ 5
k= N jgl(-y:k)‘j iT__Flp(xil(Ei)j) (x) Elpm(zil(gi)j)

+ gmn.k (4.34)
and the denominator © yusing (4.25), as:
d,k %
N k ’ k
A _ -1 n & n *
edfk_N j§1 R iat p(yil(xi)j) b pm(yil(xi)j)
+ de’k (4.35)

5) The estimate : of the conditional mean E[Eklxkl
is given by eqn. (4.8). Its sampling variance
matrix V is given by egn. (4.10).
Applying this Monte Carlo procedure to a linear system
with Gaussian noise Wi the following result holds.
The Control Variate method based on eqn. (4.34) and
(4.35) yields an estimate 3ak of the conditional mean
E[§k|zkl with zero sampling variance.
The proof of this result follows from the property
that the nonlinear filter eqn. (4.14) reduces to the ordinary
linear filter eqn. (4.30) when applied to a linear system.
Thus, a linear model is obtained which is identical with
the original system. That implies the differences between
the original variates and the control variates in eqgn. (4.3%4)
and (4.35) are identically equal to zero, thus removing
all randomness from the estimator. This proof indicates
that the Control Variate method yields zero sampling
variance estimates for any order moments in linear Gaussian

systems.
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4,3. Numerical Example

The following scalar example is used to illustrate
multistage nonlinear filtering method using Monte Carlo
techniques.:

ﬁg-l-l = xk - 0.2 xk3 + wk y (4.

Yx = Tanh (xk) + v

k (l*.

where

p(xl) = n(xl; 1, 0.01)‘p(wk; 0, 0.01) p(vk)= n(vk; 0, O.
. (4.
In the following table the methods of Section 4.1 and 4.

the

36)

37)

1)

38)
2

are compared. These results are averages over ten ensembles

with samples of size N=500. The following results are

shown in this order: the time parameter k, the given sequence

of observations Yy the ensemble average iﬂk(l) of the

conditional mean EL |yk) using a crude Monte Carlo esti-
*x

mator, the sampling error (var(ﬁuél)))*. the ensemble

average §hk(2) of the conditional mean using a Control

Variate estimator, the sampling error (var(§ué2)))?, the

approximate nonlinear result'iak and finally, the ensemble

average of the error Eik defined as

e = 1 Xge = Poge (4.39)

koy §H£1) [var(ﬁéi;]% §H£2) [var(igig]%puk Eg
107 1074 1073
1 1.1 1.01126 4.397 1.01418 1.407 1.01367 0.502
2 .79 .80662 4,632 .80832 3.912 .81281 4.490
3 .68 .70567 5.077 «70533 4.332 .71140 6.067
4 .58 .63420 5.370 .63416 L.544 64100 6.836
5 <5 .57918 5.620 .57804 5,009 .58480 6.755
6 44 .53390 5.762 .53060 5.589 .53681 6.213
7 o4 . 49461 6.028 49043 6.483 .-49533 4.889
8 .36  .45797 6.208 45417 7.554 45728 3.119
9 .33  .42600 6.487 42136 8.495 42271 1.346
10 .28 .39110 6.787 .38737 9.867 .38613 1.244

Table 2: Nonlinear, multistage filtering using Monte Carlo

techniques.
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These results indicate that the approximation error
is larger than the sampling error of the Control Variate
estimator,and thus the following two objects have been
achieved: "

1) A judiciously designed sampling experiment improves
the efficiency of the estimator compared with Crude
Monte Carlo techniques.

2) The combination of the nonlinear filtering equation
and Monte Carlo techniques yields an estimate whose
sampling error is less than the approximation error

of the nonlinear filter.

5. Summary and Conclusions
The application of Monte Carlo techniques has been

found to be of great use for filtering and predicting the
states of nonlinear, dynamic systems. The prediction problem
haé-been solved by three different estimators. The efficiency
of the €rude Monte Carlo estimator was improved by either
using the Antithetic Variate method or the more general
Control Variate method. A two stage procedure for the latter
case offers an elegant alternative to ordinary regression
analysis to establish a linear model.

The Bayesian approach is adopted for the filtering
problem, which requires the estimation of parameters for the
posterior p.d.f. The Crude Monte Carlo estimator is appli-
cable under very general conditions, but its efficiency is
significantly improved by the Control Variate Method.

For a specific example it has been shown that the
approximation error of the nonlinear filter is larger than
the sampling error of the Control Variate estimator, and
thus the latter is a considerable improvement over existing
nonlinear filters. Although throughout the paper we assumed
to know the system dynamics, the parameter identification
problem of nonlinear systems can readily be solved with the
presented methods, by increasing the dimensionality of the

state space.
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INTRODUCTION TO MULTICHANNEL STOCHASTIC
COMPUTATION AND CONTROL

G.A. Ferraté, L. Puigjaner and J. Agulld
High Technical School of Engineering
Barcelona (Spain)

1. INTRCDUCTION

As a departure from conventional digital or analog computing techniques,
the stochastic (random-pulse) computer utilizes logical elements (gates)
to process the analog magnitude that has been chosento represent the
variables. The analog magnitude referred to is the probability of pulse-
occurrence in a train of random pulses.

It is easy to see, for instance, that given two statistically independent
stationary random-pulse trains driving the two inputs of an AND gate
the output' pulse train, once eventually reshaped, will have a probability
of occurrence equal to the product of the probabilities of the incoming
inputs. A crude and simple form of multiplier will thus have been obtained.

The use of random-pulse sequences with measurable mean-rates to
drive logical operators was first introduced by von Newmann with the
aim to show that reliably accurate results could be obtained, through
redundancy, from a basically inaccurate representation of variables and
unreliable components. Very recently, Poppelbaum' , Ribeiro ? , and
Gaines ?, have extended those ideas to the development of practical
computing systems.

As will be shown later, addition, multiplication, delay, integration (and
even differentiation), function generation, etc., can be performed with a
good accuracy by relatively simple logic arrays. The inherently
parallel structure of analog computation together with the increasing
availability of complex logic functions in integrated or large scale inte -
grated form suggest a wealth of applications and a very fast develop -
ment of stochastic computing techniques inthe field of process control.
This specialized application is further enhanced by the ease with which
algebraic and non linear operations can be performed. However, the
evaluation of the expected accuracy and computing speed of the
stochastic methods should be a prerequisite before each special
purpose real time on line control application is envisaged.

With the control application in view, the research that has been carried
out at the Automatic Control Dept. of the High Technical School of
Engineering in Barcelona is mainly concerned with the generation of
stochastic pulse sequences from analog or digital outputs of sensors,
together with the feasibility of special multichannel processing
techniques to increase the accuracy to bandwidth ratio. Among these
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is of particular interest the development of a floating-point stochastic
information processing method. Attention has also been payed to novel
ways of stochastic function-generators through the manipulation of
stochastic digital or analog noise of special probability distribution
functions.

2. STOCHASTIC REPRESENTATION OF VARIABLES

In the stochastic computing techniques the physical magnitudes are
internally represented by the probability associated with the correspond
ing random-pulse-rate. Several coding schemes are possible or have
been proposed. Initially, non-clocked random-pulse sequences were
used, but present trends favour clocked (or syncronous) random-
pulse sequences which have many advantages as far as the ease with
which some operators can be realized is concerned, if not because
they lead to a somewhat simpler mathematical analysis ?

In this paper, we will be exclusively concerned with clocked random-
pulse sequences (CRPS) to stochastically represent a variable .
Several such sequences may be used in multichannel operation, either
to deal with the sign transmission problem, to improve the accuracy/
speed ratio (the ergodicity of the different pulse trains being assumed),
to allow for an easy way of differentiation or to increase the dynamic
range of the variables through the use of a floating point stochastic
technique.

At this point it is worth to note that the use of clocked random pulse
sequences to code an information in analog form introduces from the
beginning a kind of sampling of the variables, the probability of pulse
occurrence in each clock interval being related to the value of the
sampled variable.

2.1. Stochastic Codification

Given a function of time x=£(t), normalized in the interval O=x=l
for any value of t, and a sequence §*(t) of clock pulses of period 6,
we can consider the values x(t*) of x(t) at the sampling instants
coded in analog, digital or stochastic form:

Ax(Eh), 7 Px(t%), ~sx(t%)
or, in simplified notation:
A, Ox, sx

x representing the instantaneous probability of pulse occurrence of the
corresponding associated random-pulse trainx at the sampling instants
t*, this probability being equal to x(t*).

At this point we must emphasize that unlike the analog or digital form
of representation, an instantaneous probability cannot be measured
directly. This implies that in order to recover the value of an
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stochastically coded variable we must use statistical methods, either
averaging over a period oftime if stationarity is assumed or in the limit,
averaging the instantaneous outputs of a multichannel system of stochastic
codification, making use of the ergodicity of those channels.

Averaging a random-pulse train (ratio of actual pulses to number of
clock pulses in the averaging period T) we obtain a value for the
instantaneous probability every clock pulse. As it is well known this
value, for a stationary random=-pulse train will fluctuate according to
a binomial distribution which, for a sample of sufficient size, can be
approximated by the normal distribution. The standard deviation will be:

p(1-p) p = probability of R.P.T.
o = o p (1)
n=?= sample size

Equation (1) relates the sample size, the precision and hence its
confidence level x. We can observe that as the precision is inversely
proportional to ¢ it will be proportional to vn. This is also true when
the probability is averaged over N ergodic channels if n=N.T/0 .

In Fig. 1 is shown the sample-size/confidence-level relationship for
a precision of 0,1 % and a signal probability (worst case) of 0.5.

2.2, The Dynami of the Aver Process

To determine the dynamic behaviour of the stochastic codification ,
intimately related to the statistical problem of value retrieval through
the measurement of pulse rate average, it is useful to define the
averaging process as:

AV ( 5x) =f’§(r‘)q(t - t*)dr (R)
(+]

where 3x(7*) is the clocked sequence of binary values of the random
pulse train 3x and q isthe weighting function which defines the process.

The conventional averaging process (Fig. 2.a) caﬁ be found taking
o 5
=T T+T >t

q=0 T+T<t
and Eq. (2) reduces to :
Aval( 5x) =%‘/‘3_:( T*). u(T=-t +T¥dT
o
the corresponding L.aplace transform of the averager itself being:

g e-'I‘s

[ [Ava] ="1,:' s

from which the module and the argument of its frequency response
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Hied Tw/2
As can be seen in Fig. 3 and Fig. 4 the crossover frequency for an
attenuation of 3 db isWesw /T (fom1/2T cps). If now it is assumed that
a static accuracy of 0.001 is required, Fig. 1 gives a sample size of
10.000.000 for a confidence level of 0'16%.

If the clock frequency were 10 MHz the crossover frequency, in cps,
would be 0.5, corresponding to a sampling period T =1 sec.

At the assumed 3db crossover frequency the error would be about 30%,
however, should the sample size be reduced to n=100.000 the new

3db crossover frequency would increase to 50 cps and the attenuation

at the former 0.5 cps point could be neglected (0.004%), the new

static accuracy being now 0.01. Fig. 5, shows the total error (static

and dynamic) versus sample-size for different frequencies.

From the foregoing follows that the dynamic range of the SC can be
increased at the expense of the static accuracy, decreasingthe sample
size, the clock frequency remaining constant. This fact, peculiar to
the stochastic computation, has no direct counterpart in the con -
ventional analog or digital computers and may have interesting im -
plications in the on line control field.

Wide band-pass together with a high accuracy easily involve the use
of extremely high clock frequencies which may reach a few hundred
megacycles. Besides multichannel operation, which will be discussed
later, other methods can be considered in order to optimize the
precision-bandwidth ratio. It is proposed here the use of more
sophisticated weighting functions for the averaging process.

The ideal averager would be a low-pass filter (numerical or analog)
such that the attenuation would remain constant over the entire band-
width.

The weighting function of the ideal averager will be described by the
inverse Laplace transform

Y Hjeo
=j—; 2(s)eds
§-ie
where
_f1 for W< Y |= _em
]Q(jhﬂ {0 otherwise Q(w)j=o a T

resulting
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The function of Eq. (3) which involves the use of negative values of
t (Fig. 2.b), presuposes that the system must respond prior to the
input excitation. This filter is physically unrealizable but an approximation
can be made if the computer time is allowed to lag the problem time
by an amount equal to the maximum value of negative time used for the
approximation. To avoid the pure delay thus introduced, the positive
time going portion of Eq. 3 can be used at the expense of the armonic
response (Fig. 2.c), which in this latter case, after normalization,
is given by

e
L [i psaet =—Arctg-9$— (L)
The module of Eq. 4 for the rangesw nis

Vo gl

which has an infinite resonance-peak at w=n (see Fig. 3).

Again, the averager of Eq. (4) can be approximated by stochastic
computing operators according to Fig. 2.d and 2.f.

The approximated averager of Flig. 2.d. is shown for two different
values of the constants K, and K, of the weighting function

K,u(t) - (K, +K, ) u(t-T/2) + K, u(t-T).

The first set of values has been chosen according to:

K, T/2
___1_.__ = =
K, T/2 5.55 and K, T/2-K,T/2=1

p being the ratio of the areas of the first two lobes of Fig. 2.¢. The
second set is for p = 10. The averager of Fig.3. g is of the same kind,

with ¢ = 10, but for double sampling time. Special attention has been
payed to the rectangular or multirectangular approximation because

the implementation can be easily performed either by thethe use of

pulse delay-lines or shifted channels in a multichannel technique.

The response of the single time constant averager, which has ©been
proposed elsewhere, has been included in Fig.3 and Fig.L as a
reference,

The above considerations would be strictly valid for deterministic
pulse-rate codification systems. When the input to the averager is a
random pulse~train %z the variance of the fluctuation of the statistical
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measurement of %x, supposed stationary, will depend onthe weighting
function of the averager. When the averager is not of the type shown
in Fig.2.a. the approach of Paragraph 2.1. must be revised. Further
more the power density spectrum of the supeimposed noise due to the
statistical fluctuations will be affected by the frequency response of the
averager. These questions are beyond the scope of this paper and have
been the subject of a publication by the authors®.

2.3. Ceneration of Stochastic Series with Specified Pulse-Rate
Probability .

Let be an analog variable *x, normalized inthe positive interval (0, +1),
a random analog noisel)/, and let be a random pulse-train Sz defined
in the following way:

1 W (t*)ex(t*)
S, (t%) =
z(t*) 0 otherwise

The instantaneous probability of Sz will be
Sz = Prob (5z)=Prob (¥&*x)= B, (*x) (5)

where By is the cumulative probability function of the noisew
Equation (5), impliesthe instantaneous nature of the probabilty density
function of# at the sampling instants t*, that is to say, the value of
# at one sampling instant does not affect at all the value at the next.

3% Prlv)=v (6)

then S%z= 2x, and hence, the random-pulse train is a true stochastic
representation of the variable. Ec. (6) requires a uniform probability
density function,

Blvk= 12

Gaussian noise, in spite of ite apparently easier obtention is not to be
recommended for this purpose owing to the non-linearity of its cpf. An
acceptable linearity would be only between 0.25 to 0.75 and an '"ex~
tended" linearity could be put into consideration for values ranging
from 0.16 to 0.8k.

An schematic diagram explaining the above process is shown in Fig.
6. A similar method can be used for digital to stochastic conversion
in which the coaverter compares both axgua) values of variable and
noise at the clock intervals.

2.4. Sampled Digitzl or Analog Noise with Rectangwlar Ingtantaneous
Protability Density Function.

In the preceding paragraph the need of digital or>analog random noise
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of rectangular instantaneous probability density function has been
established:

P’-a (v)=1

A qualified random noise of the above characteristics in digital form
can be obtained from several (one per binary digit) statistically
independent clocked random binary-pulse-trains ¢ (BPT). The analog
random noise, in sampled form, can be obtained by a digital to
analog conversion. See Fig. 7. The several statistically independent
random BPTs can be approximately generated from a single random
BPT, using a multiple output multiplexing network to decorrelate them.

Pseudo random BPTs can be used instead of random binary noise .
The advantage is that it can be easily generated by the well known
technique of maximum length sequences through the use of shift
registers with modulo-two addition feedback paths® The periodic nature
of the pseudo random sequences can be taken to advantage in some
computing process to reduce the dispersion of the results.

2.5 The Sign Transmigsion in the Stochastic Codification

Several schemes have been proposed to deal with the problem of sign
transmission. Among them:

a) Coding the module of the variable in a normal way and transmiting
the sign on a separate binary channel.

b) Coding the sign as negative or positive pulses in the stochastic train.

c) Positive values are coded in the 0.5 to 1 probability range and
negative values in the 0 to 0.5 range, so that *x= Prob (%) - 0.5.

d) Coding the variable as the difference between the probability of two
stochastic channels, minuhend and sustrahend:

Sx = 3x - 3x=Prob (3x)-Prob (x)

If the two channels are non coincident i.e. no  pulses occur
simultaneously in both channels, they will be called "exclusive" and
represented as follows: :

emX and X

Coding schemes a) and b) usually result in unnecessary complexity
for some operators. The method c) is very simple but reduces the
dynamic range of the coded variables. The coding method under d)
besides the sign transmission, has several advantages that will be
discussed later. Also, according to this scheme and in order to have
the uniqueness in the encoding process it is convenient to set down
the following extra requirements.
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.’:;= 0 for positive variable
"";= 0 for negative variable

2.6, Random Floating Point Stochastic Codification

The classical stochastic codification has the disadvantage thatthe range
of the computer variable is limited to values smaller than one. The
implications of this fact may be extremely troublesome when the scaling
of nonlinear problems is required, because the stochastic trains tend
to vanish as they proceed through some logical operators. To circunvent
this problem and in order to increase the dynamic range of the variables,
the authors propose a generalized stochastic codification whereby the
concept of mathematical expectation is introduced through the wuse of
weighted probabilites.

In Paragraph 2.1 the stochastic codification was defined as:

sy = Prob[‘y] 5 | y]sl
the proposed generalized codification establishes:

X = “X=Math Exp [""5] )
in which X is an unscaled variable and "X is the bichannel signal:

[ m;lm_q- “E
where “sx(t*) is a binary random pulse train associated t6 a sampled
multilevel (digital or analog) information channel wx (t*) which, at each
sampling instant t*, weights the probability “x of the binary valued
train  “x. .

Taking at the encoding stage,

sor 0 e
w (t*) logb[———x(t,)

with

%<|x(t~)

a "floating-point" stochacstic codification, of base b, is obtained.

- | (el

The mathematical expectation of Eq. (7) cannot be found directly.
Apgzain, an statistical estimation of that value is required:
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X Esum[MExp ["Z]}*— Av b ""x]

This coding scheme, compatible with the substractive method of sign
transmission, does not impair the inherent simplicity of the stochastic
logic operators, and dramatically simplifies the scaling.

3. STOCHASTIC OPERATORS

A brief survey of the main types of operators will follow including,
in particular, the implementation of the generalized (random floating
point) stochastic codification with logical elements. It will be noticed
that a wide use is made of linear forms with exclusive (non inclusive)
stochastic coeficients, due to the fact that the additions are performed
by a single OR gate.

3.1. Addition and Substraction

In normal stochastic codification addition can be performed with the
methods shown in the self-explanatory logic diagrams of Figs. 8 and
9. The first one does not require the use of auxiliary random-pulse
noise while the last needs two exclusive 0.5 stochastic constants.Both
operators are shown for bipolar variables.

In generalized stochastic codification the basic scheme of Fig. 9 suggests
the random floating point adder shown in Fig. 10. The operation can
be easily explained. The output of the adder is:

o=l YK ow R %Y

which means

ws,, = S ws sfp ws
ng ﬁ‘mé + _;5-.,,.X
ui=ik-35 *t K<Es
wr =3k, wx + K. wy

where k=1- k (complementary random pulse trains). The estimation
of this output is:

Est [z]= AV[:,:, z] & Av[;.; z]=
- ) - AV 2]

and substituting from Eq. (8),
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»‘. wsl)-]

5= es

Bst[z] avpld w r 3k w) | (g.mxs ik oy -k -

rearranging and accounting for the exclusivity of the complementar;
constants,

Est(z AV[ik. pemx]- av[a. Btwx)
- AV[;E . B‘“.;:x]- AV [fs P x]

(35)-3 mafix] 3 Bafi] - £ safzv-

m

1
z
o 1 w,s ws
m Est | "X |+ Est|™ Y
so that the operation performed is:
1
S = T 3
=% +¥)

The substraction is obtained with this adder by simply interchanging
the minuhend and substrahend binary channels.

3.2. Product and Quotient

The logic diagram for performing the product is shown in Fig. 11.
The output is
Sl i ] 'y

The symbol @ meaning:

WS, = WSy WS + ws ws
&= Z o gmd esX s

WS, = WS ws ws w,s
2 N 0K 0

Wz = We t Wy

from which it can be deduced, in a similar way as for the addition,
that the performed operation is

el - A

The quotient needs the previous invertion of the divisor obtained i.e.
by means of an inverse function generator.

3.3. Integration and Derivation

The operation
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5z =[‘xdt or e J"”th

can be easily performed by means of a bidirectional counter (with
weighted inputs in the case of the random floating pecint codification)
followed by a digital to stochastic converter if necessary. The operation

o [rafrad e

depends on the obtention of the derivative.

E st Derivative

The substraction between two channels, the variable "X and the
delayed variable "X, , gives: -

s it bl

dt

A being the known time delay between the two channels, Eq. (9)
generates a generalized stochastic signal proportional to the derivative.

Higher Order Derivatives

The use of a set of delayed sequences of the variable

b A PR " Xna

can produce, by iterative substractions, the set of approximations:

A d ‘“xJ,A’ d’["~‘ x] e d"lvxl

2 dt L dt? _n dt"

-

3.4. Function Generation g

For function generation in stochastic computation a very stimulating
method, peculiar to this technology, is envisaged. If at the stochastic
converting stage the cumulative probability function of the sampled

random noise is not linear, as indicated in Eq. (6) butis an arbitrary
monotone increasing function

P';.' (v)=1£ (v)

-

then, the encoded variable in Eq. (5) would be the stochastic
representation of the function f (x),
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sz = B; (x) =1(x)

This kind of functional noises can be used in the generalized stochastic
encoding process if provision is made of auxiliary logic manipulation
of the sign and of the weighting train m.’

3.5. Readout

The readout is the value retrieval of stochastically coded variables by
means of the averaging process. The implementation of some of the
averager transfer functions described in Paragraph 2.2. can be made
by three basically distinct methods: a) simulating the transfer function
by means of stochastic operators in feedback loops, b) rectangular
approximations implementation by delayed weighted sequences, and
counters or operational amplifiers, or ¢) with delay lines or shift
registers driving the weighted inputs of analog or digital adders. The
method b), using counters, is not to be recommended when the
functional noises are not periodic and pseudorandom, as it canlead
to integration errors. Further research is being carried on concern-
ing these subjects.

4. FUNCTIONAL RANDOM NOISES

The logic or analog manipulation of multilevel noisesA# can produce
functional noises #. The logic manipulation method described in the
Appendix generates a set of functional noises with the following cu-
mulative probability functions:

PT(V)=V2, A o TR v'.

Linear forms of these noises, with exclusive stochastic coefficients
that verify,

isr

E:ki =1

iz} )
w,S

constitute the '"generalized functional module" [T] of any Taylor

series-expandable function , which together with the binary stochastic

trains that take account of the sign and weight of the output variable
implement the generalized functicnal noises in digital or analog form.

Analog multilevel functional noises can also be obtained implementing
‘I = 5 [:/V], f(v) = increasing monotone

with conventional analog function-generators. Again the sign and weight
in the general case, must be taken care of with auxiliary binary
signals. y

The great advantage of the functional noise method, is that given F ,
any number of functions of independent variables can be simultaneously
obtained from it.
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5. CONCLUDING REMARKS

The stochastic pulse rate technology is particularly attractive for on-
line applications. Besides its use as differential analyzer, the fact that
interconnection parameters may be very easily stored and changed
through pulse gating, and that complex parallel computing arrays be
feasible at moderafe prices (for medium accuracies), greatly extend
its field of applications. Matrix operation, algebraic equations, ({finite
differences, adaptive structures and even pattern recognition, are just
a few of the subjects where either its success has already been proved
or for which its potentialities are presently being investigated.

APPENDIX
Let be A , ... A

’, r statistically independent sampled multilevel noises
with g{(v) =1, These noises are inputs to a multilevel gate that , at
each sampling interval t*, selects the highestly valued. The pdf of the

output noise will be:
pw(v) = Prob (v< Figv+dv) =

= Prob (ve{g v+dv,Mg v+dv,... . Mg vHdy) + ...
+ Prob (Agv+dv,Asv+dv, ... v<l‘<v+dv)

= Prob (v<¢1f‘v+dv) Prob (#<sv+dv) ... Prob (Wev+dv) + ...
... +Prob (.4(<v+dv) Prob (M<v+dv) ... Prob (V<u/sv+dv) =
=1.dv.v. v O [ T v Wiss: ave s Voell odrpis sk vf°tdv

and the cumulative probability function:

v v
By (v) =‘/o-p,ﬁ (uw)du =Lr.u"‘.du = [y = vt
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KOPPEKTHOCTD, PEI'YAAPUSAINAA B IPUH MUH 0 CIOXHOCTH
B CTATHCTIYRCKO/ IMHAMUKE CHCTEM ABTOMATUYECKOTO YNIPABIEHMS

CozozoBkEKoB B.B., leHckuf#t B.I.

CoszaHMe ONTUMANBHO# CHCTEMH aBTOMATHYECKOr'O JUDPABAGHHA, B
COABMUECTBE CIyuaeB, COCTOMT M3 AByX 3TANOB.

Ha nepBoM 3Tame OCymeCTBAAETCA MATOMATHYEeCKHE CHETE3 CHCTe-
MH, CBOZAmWMiCA OOHYHO K DEemOHHD HEKOTOpO# BapHamHMOHHOH# Ssazavu.

Ha BTOpOM 3Tane ocymecTBARETCA (USHUECKAR peaaMsal#s Nnoxy-
YeHHOT'O DemeEns.

Kaxzu#t us 3TuX 9Tanos cnaaax C PAAOM CleHPUYECKHX tpmoc-
Teil.

lyces fyuxmmomax J(X) , npexcrmmulk cofofi KpETepHE ka-
YeCTBA CUCTEMH yNpaBiAeHHA, 384aH HA HOKOTOPOM KIacCe OnepaTopoB

X . Hcnoxssys Te ENR MHHE NPHSHAKE CYMECTBOBAHMS SKCTDPOMYMOB

(QYHKIMOHANOB, YaCTO NOAYYADT B KAYECTBE YCAOBHS ONTHMAABHOCTH
HEKOTOpoe (yHKOUOHANBHOE YP&BHOEHE BHA2

Ax -y, (I)
KOTOPOMY ZOIZSH JAOBASTBODATH HCKOMHf OmepaTop X .
B uacTROCTH, pemeHHe 337aYH ONTHMM3SNHH B KAACCO NOAXMHOME-

aNbHHX q:mxupon: 3

Fly m] Jk (tT)y(t-T)dT + sz(t, T, TY(-T)(t-T,)dTdT,

by +JJk (t, 42 )y(t 4) H ")d(— dT (2)

TpeGynmeli onpezeNeHAs {YHEXIEOHANA F[lj 7),t-TsT <t]
00eCeuNBANLET0 MUHEMYM CPEAHEr0 3HAUCHHS na;para MexXAy Npeos-
pasosamueM F [ ¥ zezaemuu curmazom  X(t) :

' WERE |
3 {Fj=mfat-Fly@, 4T <2 <t]}.,,,~m : (3)
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NDUBOZET K CHCTEME HHTErpaJbHHX yPABHERWH

RARE |
& LJKUEJ@%&@wﬂﬂWﬁMﬂjq= T
= l;g (t’91’9J) . js 3 e
R CARTE AR L) B

E yepe3 R. 0603HAYGHH MHOTOMEDHHE UMITYIBCHHE NMEPEXOZHHE (PyHK=-
. ‘
3Ty CHCTeMy ypaBHeHH#l KDAaTKO MOXHO 3amUCcaTh B BHAE

[ k=l (6)
rme R uw [ oneuents

xy OJUGMEETH rurp0epToBa NPOCTPAaHCTEA.

Bo MHOrEX ‘cayyasx TOYHOe pemeEue ypaBHEHUA (I) HEBO3MOEHO
¥ MO3TOMYy NPUXOZUTCH HCOONB30BATH YUCJAEHHHE NPOLEAYPH OTHCKAHUA
OpUCIUXSHHOT'O DPOMEHHRSH.

KpoMe Toro 4acTo UCXOZHHE AaHHHE AAA pemeHMs ypaBHeHus (I)
387anTCA C HEKOTopoit omMOKOit.

Bce 3TO NpHMBOZAMT K HEOOXOZMMOCTH pemeHMs NpPOOJEeMH yCTohyu-
BOCTH pemeHMA ypaBHEHMA (I) OTHOCHTENBHO YUCJEHHHX NMPOLEAYD X
OMHOOK MCXOZHHX Z8HHHX.

Creneds ycroitumBocTu ypaBHeHUs (I) OTHOCHTENHHO Bapuamuit
IpaBo#t YacTM onmpezenfdeTCH MOAyJAEeM HENPEepPHBHOCTH OOpaTHOr'O OTO-

e Q)(X,X)=Supﬂ(l.l,) npu X, € X,f(Ax, Ax )8 (D
rze {yBkuuS _p (1,1,) onpenenseT MeTPUKY B Kjacce . A
OueBHZHO, YTO BO3MOEHAA OmMOKA ONpPEZENCHUS ONTHUMANBHOI'O
onepaTopa pacTeT C pacmEpeHHEM KIacca, Ha KOTOPOM UMETCH ONTH-
ManbHHE omepaTop, T.6. HMEET MeCTO CHIeAyhiee HepaBEHCTBO:

D(8X,)sd(EX,), XX, (8)

B cayuae HEKODPEKTHOCTH ypaBHeHUs (I), pemeHUe CTAHOBHUTCA HEYC-
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TOWYMBHM OTHOCUTENBHO OMMOOK 33ZaHMA HMCXOZHHX ASHNHX ¥ LO3TOKY
CHHTE3 ONTHMANBHOK CHUCTEMH CTAHOBUTCSH NDPUHLIMAOMSABHC Hepaspemu-
MO}t 3agaveii. Ho zage B cayvyae KOPPEKTHHX 3azad, ME YacTO CTal~-
KUBaeMCH C Ype3BHYaiiHO#t CAORHOCTHD YMCJIEHHHX NPONELyp. 9TC 00—
CTOATEABCTBO NPUBOAMT NPHU HMCHOAB30BAHWM AJAA pacueToB IBM k yBe-
JUYECHUD MAWWHHOT'O BPEMGHM W NMAaMATH, neodxonuuux 8 DOXyueHUs
pemesHs C 3aZaHHOE TOYHOCTED.

llonyueEHOe pemeHHe, YTCOH €r'0 MOXHO OHJO (UBUYECKH peanH-
30BaTh, OOHYHO NPUXOZUTCH TEM MIM MHHM CHOCOOOM aNIPOKCHUMUDPO-
BaTh. KenaEde yMEHBWHTH NOTEPH B KAUeCTBe yNPABIEHUA U3-3a OT=-
KJIOBEEMA OT ONTHMANBHOTO DEmEeEAs 3acCTaBfaeT yBeAMUMBATH TOU-
HOCTH €r0 SNNPOKCHMANMM M DACHHUPHATH KISCC ONepaTopoB, HA KOTO-
DOM MMETCH BKCTpEMyM JyHKUMOEHaZA J (X) , YTO NDUBOZHMT K
YXyZALEHUD TEXHONOTHYECKMX M IKCNIyaTANHOHHHX CBOCTB CHCTEMH
yupaBuesus (pocT CTOMMOCTH, YMEHBNEHWE HAZEXHOCTH U T.H.).

LeiicTBUTeNBHO, ONYyCTH ANA KAXAOTO omepaTopa X € X on-
pexeneHa QyHERUHSA Ce () - MMHEMABZBHO HEOOXOZMMAHA . GCTOMMOCTH
NpPaKTHYECKO# peanusanuu CHCTeMN YNpaBIEGHHA, ONEpaTop KOTOpo#
annpoKCcUMEpyeT X ¢ TOYHOCTSD € . HeTpyZHO BUAETH, UTO €CIH

e o X,

\ max C (I) <max C (1’.)

9
xEX, €% ®)
Aganoruynoe nepaBeHcTBo cnpanennnno Ana anoo# QyEKIEE \a (x) ,

ABnfApmelica Mepoif o0beuMa BHUMCIUTENBHEON PacOTH, .HEOOXOZMMOR Zus
onmpeZelleRus onepaTropa &L ¢ TOYHOCTER £ ¢
max V (x) < max ¢ () (IO)
x€ X, x€X,
Nycrs zas xaxgoro X € X erene.ueua Gynruma g (x) -

MaKCHXZABREO ZOCTHEMMAA BEDOATHOCTH 0€30TKAa3HO# paGoTH B TeUeHHe
HEKOTOPOTO (MUKCUPOBAHHOI'O NMPOMEEYTKA BPEMEHU CUCTEMH yUpaBIEHH:,
onepaTop koTopoll anmpoxcumupyeT X C TOUHOCTED £ .
Torza Tax®e OYEBHZHEO, YTO, OCIH 1(1 c )(z s TO
min T (X) > min 1 (X)
xeX, x€X, :
Ha3oBeM onmepaToOpoM annyiUpOBaHWA ( = omnepaTop, COOTBETCTBYDEHi

CIyuan OTCYICTBUS CHCTEMH ynpannennﬁ. Ina oneparopa aREYINpOBa~-
gus © ecrecrsemo momommrs C, (8)-0, V (8)=0 H

(IIj
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Te (x)=1 , Nycrs umeeTcs cemsiicTBO K1accoB 1 , BHOUEE
JUOPSZOYSHHOE MO BKIADYGHHD M TAKOG, YTO

nx -8
Xem .

C yuerToxM nepaxeacra ouenlzxo. YTO XeIaTeABHO HCEKATH ONepaTop CH-
CTOMH yUpPABAGHNSA, NpHEaZNexamull HamooAee YSKOMYy ER&CCY CeMelicT-.
Ba. Ho cyxeHEHe Kilacca NDHBOZHT K YXYAWOHMD KpHTOpHS KadecTsa.llo-
Eyuapmeecs NPOTHBODOUME MOxXeT OHTH paspemeB0, eCaH cHopMyampo-

BaTh NOCTAHOBKY 38jau¥ CHHTE38 CHCTOM yNIDABIGHHUA CIAEAYDHEM 0Opa-
30M; e : ,
IOycTs sazaH AONyCTHMHZ yPOBEHh KAUECTBA CHCTEMH YIDaBASEMS

q . .IpefyeTcs Cpefu BCEX ONEPaToOpPOB, OCZazZapuUX 3aZAHHHM ypOB-
H6M EayecTBa, EaliTH omepaTop,. NpHHANIEXAmMY MUHMMANBHOMY KNACCY,
OTHOCHTONBHO HOKOTODOro CeMeiicTBa, NMDH KOTOPOM SajaHHW] ypOBeHB

KA4YectBa ACCTHEEM. :

OpeanoxerBO# noctanonxe 88Z8a4YM CHHTO33 MOXHO NDHZATH donee
EOMISKTEYD (OPMyIHDOBKY. :

JlelicTBATEABHO, PacCMATDHBAA ZBA omepaTopa X ,, L,  TaREX
wo X X, eX, 2 Ko & Ry , BUAEM, ¥TO
OnpexcueHNe n peaxnsanla omepaTopa X, C 3ajaHHO# TOYHOCTHD
Oyzer Goxee cIOmHOH 3azaueil, YeM ONpeZ6NeHMO K Deanusanus omepa-
Topa X, cC TO#f X6 TOYHOCTEN.

B OOOIBOTOIBII ¢ 2TUM OyzeM HA3HBATH onepatrop X, Ooxee
CIOXENM, 4eM omepaTop %, , €CAM BeT HEKAKOH nn@opxannn, KpoMe
Tolt, uTo

reX, ,%eX, u XX,
CemeficT®0 XX2CCOB M. B 3TOM CIyuae HI'DAET DOAD MKAXH CIAOX-.
BOCTH B MHOXeCTBe, ABIANNEMCH 00B6HHEHHEM BCEX KIACCOB CeMeilcTBa.
Teneps sazava CHHTE3a CHUCTEM YNpDABAEHHA MOXET ONTH CdopMyau-
pOB&HA B BEAS CIEXYDNEro NDHHIMANE, KOTODH# MOXHO Ea3BaTh NDHHIU-
HOM MEREMAIBEOH CROEEOCTH:
CpexHE BCeXx oneparopon, o0rxagzapmEeEZX
38XaHEHEM yYypOBHGOM XKavuec?Tsa, HeoOxo-
AHMo »pédpaTis ONepaTop MEHHEMANXDEHECOIH
CAOXEQCTHE OTHOCHMTEXZBHEO 3ajgaBHgigoil
BEKaXIH.
Ha paZYy ¢ NpUHOIMIOM MUEUMANBHON CIAOXHOCTH MOXHO NOAH30BATH-
2 TAYRA MUDNUITUNOM OPNYHTYARHNR amomHEANTU: woTanwit AODMVIMDVATOS
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CIeAyRUHEM O0Opa30M:

A1A (EECHPOBAHHOIrO KIacca HS3
3afaHEHoO# mMEaXIH CIOXHOCTH HaftTsr
onepa®op, OOGCecneurBavnmuaffi 3KcTpe-
MalnlprpHOE B3HAaYEeHHEe YyPOBHA KagyecTsa.

Jas TOro, 4YTOOH NPUENMNOM MHHAMANBHON CIOEHOCTM MOXHO OH-
10 NMOXB30BATHCH, HEOOXOZMMO ZaTh METOAH KOECTPYMPOBAHHA HKAIH
CIOXHOCTH.

[lycTer 3azaH HEeKOTODHil HeNnpepHBHH{t QyHKRIUOHAL C.lI) ’
uMennu aGCONOTHHIA MUHAMYM Ha OnepaTope AHHYIUPOBAHEA; TOI'Z8
OZIHO-TIapaMeTpPUUECKOe CeMEHCTBO Ki8CCOB X,‘ -fl\fr(l}s’t}
OyzeT 001azaTh CBOMCTBAMM BHmE ONPEAENEHHOrO CeMelicTBAa KI&CCCE

m .

B 5TOM cay4Yae CYXEHHD KIacC8 COOTBETCTBYET MUHAMH3ALAA
fyExumosaza O () .

lipUMeHeHHe NDUHLANA MUEUMANBHOY CIOEHOCTH NPHBOIAT X 38IS-
ye Ha YCAOBHHE SKCTpPEMyM: HaUTH MUHNMyM G (X) npm yemosy~

(1J CL . Pemenue 3TOii 8ajaud¥, KAK H3BECTHO, CBOZETCHA ¥
MURHMASAnHK QYHROWOHaJA BHZA

16w ),

rae A\ - MHOEMTens JarpasTa.
Ipyrofi MeTOZ NMOCTPOEHUA HKANH CIOXHOCTH BAKMOUAEICA B CIEZYDHEM.
NycTh iMeeTCH BO3PACcTALUAd CHCTeMa KOHEUHO-MEDHHX KI&CCOB

X, cXc..cXe..c

Tne unzexc 0003HAvaeT Da3MEpHOCTH Kiuacca.

JTa CuCTeMa KIACCOB MOFST CAYEUTH mKaJOf CIOXHOCTH M NpHMEHEHHS
NpHHLANOB CJOKHOCTY B 3TOM CiAV4ae CBOZMTCA K 3KCTPEMAJBHHM 38—

avyal znA QYHKUMA MEOTUX nepeuenaux. [locTpoeHUe TaKO# WRANH
CIOXROCTY BO3MOEHO, HBIIDHMED,' ZNA HIAcca X » Muepmero 0askc
Ly, L,,... X ,.... B aTou cIyuae KOHEUHOMEDHHM KACCOM
)( " GELST YHORECTBO BCEBOSMOYHEHX JUHEHHEX KOMOMHauufi ¥3 Gasmc-
X

Bogmouru TAKEe IPYIUe METOZH NOCTPOEHUS WEAJH CIOXHOCTH.
llockonsky, ®cofue TOBODPHE, CUCTEMA KIACCOB, o0pasypmas EES—
Iy CJORHOCTY, Hc&AMHCTESHHA, TO ANA KARAOK KOHKPETHOH MOCTAHOER-
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KH 3ajayd CHHTE3a HeOOXOZUMO CTPOHTH NKANY CIAOXHOCTH, YUUTHBAD-
Oyp conenuduKy ZAaHHOU 3azaum M BO3MOXHOCTH (QU3MUECKOR peanusanunu
CHUCTEeMH,
[IpaMeHeHEe MPUHLMNIOB CAOKHEOCTE Leaeco00pasHO He TOJBKO IO-
TOMY, 4TO NOJAyUaeMHe CHCTEeMH 00JaZanT JYUmAMU TeEXHOJIOTUYEC KUMU
U 3KCNIyaTanUOHHHMN CBOHcTBaMM, HO TaKxe ¥ NOTOMYy, 4TO HOJAydYa-
eMHEe HeoOXOZMMHE NDU3HAKH CylleCTBOBAHMA 3KCTpeMyMoB Buza (I),
OpM COOTBETCTBYDMEM BHOODE MKAJH CIOERHOCTM, SABIANTCA KOPPEKT-
HHMU 3azavaMd B cuucue A.H.TuxoHoBa. JIf KOPPEKTHOCTH NPU3HAKOB
CcymecTBOBAHMA DRCTPeMyMoB BHza (I) ZOCTAaTOUHO, YTOOH KIACCH
Xt = II.\G x) ¢t OHNM KOMNAKTHH M omepaTop 3Jiimepa zns
dynrouoHana G (X) OHn BHONHE HENpPEPHBHHM . B aToM cay-
vae QyEknmoEan G (X) OyzeT peryasapusupyDmUM YHKUUOEAJIOM AN
ypaBHerus BHZa (I). HekoppekTHOCT® ypaBHeHU#t Buaa (I) He ABaAeT-
CcH TEOPeTHYECKO# BO3MOXHOCTHR C KOTOPO# MOXHO NPaKTHUECKU HE
CUATaTHCHA. BOXBEMHCTBO 3aziau CTATUCTHUECKOH ZAMHAMMKM, CBOAANEX=
CH K JNMHE!HHM ypaBHEHHAM NEPBOrO POZA ABIANTCH HOKOPPEKTHHMH.
JIefiCTBRTENBHO, CUHTE3 CUCTEMH ONTUMANBHON NO MUHUMYMY CpPEZKBaz-
paTuuecKoff omuOKH CBOZUTCS K ONPOASICHMN MUHMMyMA KBaZpaTHUYHOTO
PyErRIHMOHANa BUAA
J (¥) = (Al,l)'?(l,g), (12)
rze A - NOJNOEMTENbHH{I caMOHanpAXeHHH# NHHeHRHHE onepaTop;
(X,Y) - cuMBozm crazspHOro npousBexeHMs 3AEMEHTOB X M Yy .
Kag u3BeCTHO, YTOOH 31eMeHT I o00eCHeuWBa) MUHUMYM (QyHKIMOHAZA
J (X) » HEOOXozUMO M ZOCTATOUHO, 4TOOH X  yZOBAETBOPAN AuHeft-
HOMy ypaBHeHMD Buza (I). .
Pemenue ypaBrHeHMs (I) MOmHO 3amucaTh B BUZe MHTerpana
CTunpTheca, MCIONE3YyA CHEKTpPalNbHOE DA3JOEEHUE CAMOCONDPAXEHHOTO
omeparopa A 2 :

I:J ;‘— d EXH, ' (13)

rIe El - pasmoOXeHHMe EAMHANH, COOTBETCTByDmEll CaMOCONpPARGHHOMY
onepaTopy.
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Pemernne CYNecTByeT B TOM H TOLBKO B TOM CIyuAe, €CIE

1 .
Pl BN T (14)
B cayuae, eCaM HyIb €CTH NMpeAeNbHAS TOUKA CIEKTPA OHmepato-
pa s To uETerpan (I4) MOXeT OHTH PacCXOASNMEMCH, B 3aBHCHMOCTH
OT pacnpezielleHENs CNEKTpPaJbHO! MepH ( E g IJ . OTO 03HayaeT,
yTO ypaBHeHHe (I) MOXeT HE MMeTH pemeHus c ROHEYHO# HOPMOii,
Takas cuTyagus BOSHUKAeT, HalpUMED, BO. BCEX CAyYaAfX CHHTE-
8a JUHE[HHX (QUABTPOB, KO8 ONTUMANLEAS HMIYIHCHAS NEPEXOAHAS
GyEKONA COZEPEUT B CBOEM COCTAaBe 6 o @yuxhnn H ee NpOM3BOZ~
HHEe, He UHTEerpupyeMHe B. KBazpaTe. Hax H3BeCTHO Taxde QUIBTPH {u-
3MYECKHM NnepeannsyeMd, [IycTh 3NeMEHT y 33788 ¢ HEKoTOopof#f omml-
xoit  h » TOT'ZA,B CUIy aAAUTUBHOCTHM OOPaTHOTO ONepaTopa,KBaf-
paT HODMH OMUOKU pemeﬂna BHDa3UTCH CIEZYDEMM OODA3OM:

“5““ Jj“zd _(Ek*,\,h) . (15)

OTcloza BUZHO, YTO xsanpam HOPMH OWMOKE MOEET OHTH KAKHM YTOZHO
B 3aBUCUMOCTHM OT paclnpezeleHHS CHEKTpaNbHON MepH E\h,h) s

Kax M3BeCTHO, MaTeMAaTHYECKAs 3a7aua HASHBAGTCH KODPPERTHOH,
eCaM pemeHMe 3TO} 3azaull CymecTBYeT, 6WHCTBEHHO M HENPEDHBHO 3a-
BUCHT OT BApHMAIAM HMCXOZHHX ZSHHHX. B 9TOM CMHCIE 3aZayl CTaTHCTH-
YeCKOit AMHAMUKM, CBOZAUUECH N ypaBHEHHD (I) - HEKOPPEKTHH.

s npUMeHeHUs NPUHOUIOB CIOXHOCTH YHKIMOHAN CIOXHOCTH
MOXHO 3azZaBaTth, HalpHMep, B BHZE

G (x) =(Bx ,Bz), - (16)

rae B ~ HEKOTOpHi#t MoJOXMTEeARHH# H HenpepHBHHiY omepaTop.

B yacTHOM Clyuyae, ecnu b - @ZMHWYHH{ omepaTop

G (@)= (X,3)= | x|\’ - KBazpaT HODMH SIEMEHTa x.

[IpuMeHeHMe NPUHOMNA MUHAMAABHOZ CIOXHOCTH B JTOM CIydae NpH-
BOZUT K clezxypmell BapuanHOHHOH 3azave.

HaliTu MMHHMAJZBHOS 3Baqeane (QyHKIMOHAZNA & Ul)‘ (1»1)
npe yenommx | ()= (A%2)- 2 (2,y)= q . DmeMenT, zaNmAi
€e pemeHHWEe, YZOBJIETBOPAST CIEAyDmEMy yPaBHEHHD BTOPOTO poza:

T+ (17
B 3T0M ciIyuae NprHMeHERMe NpHUENUNA MUHUMANBHOH# CIORHOCTM SKBM-
BaJEHTHO cJlaloifi peryaspusanuéd B cuHcae A.H.Tmxomosa. Ecau B -
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AudPepeRLMaNBERR OnepaTop, TO NPUMEHEHHe MPHUHIMUIOB CIOXHOCTH
. DKBUBAJEHTHO CHUABHOH peryaspusanuid.

HcnoXp3ys CHeKTpaibHOe PAa3NOXEHHE OmepaTopa A s MOXHO
NOCTPOMTH WKANY CIOXHOCTH CI MM 00pas3oM

o X*'{x\‘r”ti}\‘dEu“}’
rze < o2
Tgrza 0 X, € Xy, yeemx tvl,

MOXHO MOKAa3aTH, YTO DEWEEHe BapUANHORHOM aazxaqn VUEUMUABAIUE
pysxnmonaza (7) Ea Rmacce @etca cuexybme#t gopuynon

t
HOBENEXINE

[lokaxeM, 4TO R [ ] maa'rca perynapnanpymmu aATOPHATMOM B
cuucae A.H Tnxonona.
Jlefic TBET eIBHO

-2l ]Adtﬂ Hdﬁk(xj*h)“

1
uj L4t q\\+\\j L qe hlls[] L]+ L Wl

Orcoza cnenyer zns deoro €20 cymec'rnym TaKue (Y(E}n t(€),
uT0 ecaH ‘h\\(J[E) vmo Jlx-T\<E .

B cayyae ZHUCKPETHOT'O CNEKTPA PErynfApU3MpyLUU# aArOpPUTM 3K=-
BHBAJGHTEH ONPEZEeIEeHHMN DEemeHHsA B BUZE JNuUHeiiHON# KOMOMHALUM CO0-
CTBEHHHX 2J6MGHTOB, COOCTBEHHHE YHMCJIS KOTOPHX OOXble z .

[loxaxeM Teneps, uTo peryaspusaumsa no A.H.TUXOHOBYy sKBUBAIEHE-
Ha MpPUMEHEHUD NMDPUHIMUIOB CIOXKHOCTH.

MeToz peryaspusauuM, NPUMEHUTENHHO K yDaBHEHUN (I), CBOZUT~
CA K DEeleEdD ypaBHEHUSA
| B +Ax -1,

Tze 5 - onepaTop ditmepa HeKOTOpPOro (YHKIUOHANA G(l) y Ha= .
3HBAEMOT'0 PEryAApU3MDPYOLEM GYHKLHUOHAIIOM, \ - napamerp peryaspu-
3anuu, BHOMpaeMHi B 3aBUCUMOCTHM OT HOPMH NOTPEMHOCTHE MCXOZHHX

ZIGHHHX. JlIerko BHZeTh, 4TO ypaBHeHde (I8) moayuaeTcs NMpU MUHAMABA-

KK @yHmuOHaﬂa
AG () +] (%) . (19)
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: MunEMEzanup yExnuoEaza (I9) MOZEO DECCMATPNBATE KAK 38-
AUy MMEEMESSIHN cmmuoma (5 (x) npx sazamEoM mavemEN §yHk-
nmoEaxa J (X) . -

PaccMoTpuM MmOxecTso. . X '{&\5(3—) $t} . MmENMNBAL;
gysxugoraza (> (X) sxBHBAZeHTEE CymeHND MEOSCTBA 4 B TOM

' CMHCXNE, YTO Aud

*l <tl A.t‘g Atz

0TcDZa CHeAyeT, YTO DEryAAPHSANMS BAOYOT MMNNMNSALED CAOX-
HOCTH. PacCMOTDHM HOCKONBKO NPHEMEDOB NPEMGHOEES NPMENMIOB CEOZ-
BocTH. [ycTs Ha BXOZ AMEeHHOH CHCTeME yupaBNeEES nopamu:>’) yn-
paumee noszeﬁcnne. COCTOANee WS SAZAHEOTO AEAENTNUECKN CHI-
Hana g t) u cranmomapmoro cxywastmoro cursaza mit) ¢ myze-
BHM CDGJEHM SHAUEHNeM N KoppemsuMommol gymxumet R _ (. T) ,
a raxse momexa N(t) ¢ xoppemsmmommoft gymmmmes R_ (t < 3 e
CucTeMs XONXHA HAMAYYmMNM OCDa30OM BOCHDPOHSBOZETH ynpan-ﬂ CHr-
HaX ylt)-q(’t) + m () ® nozasasrs momexy N(t) . B xa-
YecTBe KDETEDHS EAUECTBA CHCTOMS ynpanonu IpEMeN GYHRUHOBSX

JE +FE (20)

T.8. CYMMY KBaZpaToB naamecmi onﬁn E‘i ¥ Cpepmexsaxpa-
THYECKOH OmHOKH 6« C HexoTOpHM BECOM.

[ipuMersas HeCHOZHHE NPecOPa30BAHHA, JEFKO ROAYTETH nnpuo-
HAe J uepes. mmymnyn HepexoAEyD (YHKIHD MCKOMOR CECTeMH B
CHSAyDUGM BEZG:

J= q\t) + t R 54 7,} citt;q('“ +fn (tR (t")]k(t"‘)
] j [q(01q 0 +p' R, (L8] 4R, t, 9)]}k(t,9) dede.

MuEuME3MpYS 970 Bupaxende ormocwrerzme Kk (t;T) . momywms, wro
‘HEOOXOAEMO® W AOCTATOYHOE YCHOBHS MMHMMyME | CBOZNTCE K T0-

Ky, 200N gysxuma K (t.T) mum'-aopm KBTETDANBHOMY ypaBHE-
e}

J 3&*% +L (tw o T8+ R (T ,@)]}me)da @2)
=q) g(10) + !u u; Km(t;‘:‘f) Y t 77 .
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970 napaMeTpUyecKoe HUHTErpalbHOE ypaBHeHUe ®peAronbMa NMEpBOTO
poza. PemeHme TAaKOro ypaBHGRHS MOZeT COZepEaThr & - QyHKUEM
¥ BH3WBATh MO3TOMY CYmMeCTBEHHHE TDYAHOCTH IDK NDPAKTUIECKO# pe-
anu3alul.,

Iyc?s @yHKOUOHAXN J  uomer NPUHAMATH B KAXZHil MOMSHT Bpe-
MEHM 3aJaHHOE AONYCTHUMOE 3HAYEHHE

J=8§+}lzeix=q,(t), (23)‘
B kKagecTBe Qynxnnonana CIOXHOCTH MpUMeM caezyDmuiis
G=| "Re(t,T)de. (24)

B 3ToM cxyyae ueodxonnnoe M ZIOCTATOYHOE YCIOBEE ANSA k(tT)
OyZeT HMETh BUA NapaMeTPUYECKOI'O MHTErPaNbBHOTO ypaBHeHud dpez-
rousMa BTODOTO, pon a:

Ak(L1)+ [ {g(8)g(x) +A*(t) LR (n,8)+ Rn(1,8) ]} k (t,0)d0 =
=g(t) (o) +J (t)Rm(tT), t>x. -

Tax KaK nmpasag 4acTh 3TOr0 YpaBHEHHA NpeACTaBAAeT co0Ol orpanu-
yeHEYD QyHEOUD, TO U pemeRMe OyZeT HEOOXOZUMO COZEPEATECA E
ENacce OTpaHWYeHHHX (yHKOU#A, T.e. He OyzeT cozepsaTs & - QyHE-

LHit.
B cayuae,ecau OH QyHKUHOHAN CIOXKHOCTY OHJN METEIpazoM OT KBaA-

paTa HEKOTOPOTO nn@@epennuansaoro onepamopa BUZA:

G= j [Zu k(¢ a)]%de, (26)
MH TMOXYyYUNH OH znmerpo-nn@@epeaunansnoe YpaBHEHUE, DelmeHUe KOTO-
poro uMeno OH OTrpaHMUYEHHEYD NPOM3BOZHYD NO KpailHeii Mepe IO nopsi-
ka N .,

Takuu o0pa3oM MH BUZUM, YTO BHOOPOM (yHKUMOHAZA CJOZHOCTU
MOXHO YNpPaBIATH ZAHPHepeHLUANBHHMK CBOUCTBAMU MMIYABCHOH NMepexoz-
HOt QyHKuHH,

3T0 00CTOATENBCTBO CTaHOBETcﬁ Ype3BHYA}HO BaxHHM NpU ONpeze-
JEeHUM CTDPYKTYPH CHCTeMH. JeificTBUTENBHO, NPEANOJIOEMAM, UTO INOASA HM=
OynbCHAA NmepexoAHasd (QyHKuuUA k(t,ﬁ) » NpUHAZNExauafd K HEKOTOpo-
My KIaccy, MoxeT OHTH aNIpPOKCHUMAPOBAHA CO CKONb YTOZHON TOUHOCTHD

cyMMaMu BEZA z
(19=2 G (t) Yilo). o



65

Kak M3BECTH03 » B 3TOM CAyvYae AMHAMAUECKAS CHCTEMa MOXET OHTH

peanns30BaHa B BHAe ™M  3BEHBEB NEPBOTO MOPAAKA, NDUUEM ZUF-
(eperLUMaNbHEOE YPABHEHUME KAXNOTO 3BEHA UMEeT BUL:

Di(pt)r(t)=M;(pt)n(t), i=4,...n. (28)

JugdepeRnuanbHHe OnepaTopH D P/{) 'y Mi(P,t) onpezensnIcH

U3 BHpaxeHMit:
r(t) . 1 d¥i(t)
DipAlr ()=l L (1),

YL (0)=M; (p%) iy

rue M. ( T) - omeparTop, compaEeHHft Ml( p,{) 5
lum NONYYEHNS MaKCUMANBEO NPOCTHX CTPYKTYP €CTECTBEHHO HC—
KaTh Cpei MHOXeCTBa cyuu nopsAzKa M  Takue, KOTOPHE ZA8NT Hah-

ayumee NpUCTUEEHME: 2 m{ "k t )~ Pm 1 ‘r)" (30)

Kax Manecrno4cnopocrs ycuzaxna Em(k) nemuxox sasucur or zmbpe-
peniuansix cBoficTs k(1,T) u Tewm Bmme, wem Bume nopszoE AE@Pe-
PEHIUaNBHOCTH

B cnyvuae CTanMOHAPHHX CHI'HAJOB ONpezeleHUe NuHe#EOH cTamuo-
HapHOit cHCTeMH, ONTHUMANBHHM 00pa30M IpecOpasypme# 3azaEmHil cur—
HaJg B XRelaeMuii ¢ (YHKOUOHAIAMKM CJIOXHOCTH B BHZE METErpaics OT
KBazpaTa MMIYABCHON NepexozHO# (QYHKLUM M €€ NPOUSBOZHHX 4JIPABOAHT
K CHUHTE3Yy CHCTeM C MUHUMANBHOH mojoco# mponyckauus. B pa6oTe mo-
Ka3aHo, 4YTO YeM MeHble Noxoca nponycnanuﬂ, TeM npoume fUsM4YeCKaf
peanu3annd CUCTEMH,

B ‘xauecTBe APYroro NpuMepa HCNONB30BAHUS NPAHUUIOB CAOEHOC—
TH,0CHOBAHHOM HA BTODOM, YKA38HHOM BHIE,METOZE NOCTPOCHUA MKAAH

(29)

CJIOXHOCTH, pPacCMOTPUM 3azauy CHUHTEe3a HeAuHe{HOTO ZHUCKpPeTHOro fuas

pa C KOHEUHOH NMaMATho, HAMJIY4YmMM O0OpasoM MpeoOpasynmero SaZaHEHH

cTanuoHapHuit cayualtHuit cCUrHar B xenaeMuit, Tak®e CTauMOHAPHHHA. Pe-

LeHMe 3TOff 3azauM B oOueM BHAE HEWSBECTHO M BDHZ AU MOXeT OHTH
NONYYEHO. '

PaccMOTDUM WKANy CHOxHOCTH UL = { Fm} rae fp
KIGCC BCEBO3MOXHHX MOZMHOMOB BHZA

T
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n-i

th{-;z h“ac“oc{- - Z % ’13{ Xpeig Lo

Oét tm-

(31)

Kak HeTpyZHO yOemuTHCH, TaKad CHCTeMa ZelicTBUTENBHO ABAACTICH
LKANO# CHOXHOCTM M, B CUNYy TOro, UTO JApOasf HENpPepHBHAH (YHKIHUA
MOXeT OHTH CKONB YIOZHO TOYHO aNNpPOKCHUMAPOBAHA NONHMHOMOM BUZA
(3I) zmocTaTOYHO BHCOKO#t CTENEeHH, 3aMHEaHNE 00bEZWHEHUHE KIACCOB
\ij COZEepENT KNacC HeOpEepHBHHX (QyHKuuit. OuapTpH BEza (3I)

HasHBawT fHABTpamMu Koamoroposa-I'adopa

B COOTBETCTBHM C NPUHUHMNAMU CIORHOCTH, CHHTE3 HEIUHEHHOTO .
QuaBTpa CBOAMTCH K pPemeHMD BAaPHANMOHHOI 3azaud Ha KJIacce an -
Kag Jerko BHZeTh 3Ta 3azava SKBUBAJEGHTHA 337846 ONpezeNeHHA Npo-
SKOMU CIydYailHO# BEeAMUYMHH !Jt Ha NOZNPOCTPAHCTBO 00pa30BaHHOE
BCEBO3MOXHHMYU JMHEHHHMA KOMOMEALMAMY CAYYA{HHX BEIMUUH

X g, Xpeiy LieigrsLpep Xy o+ Lpeim -
PemeHMe 3To#f 3azayM AaeTCH pEmNEHUEM CUCTEMH HODMANBHHX ypaBHEHMUi
METOZa HAaMMEHBNUX KBaZpaTOB OTHOCUTENBHO BECOBHX KO3®IULMEHTOB
hlz htnlzt e h', im

OzHaKo TaKo#f NyTh ONpEeAeleHUA ﬂennneﬁnoﬁ CHCTOMH BCE eme
CBfi3aH C DPAZOM TDPYZAHOCTei. :

[lepBaf TPYZHOCTH 3ARKANYEETCA B OHCTPOM POCTe UKUCAA NOZJIEXA-
LAX ONpeZeseHUN BECOBHX KO3QPUNUEHTOB C POCTOM CTENEeHH NMOJIUHOMU-
ansHoro ¢umsTpa M u mamaTs N . HeTpyAHO MOZCUMTATH, YTO
3T0 umcao0 OyZET pPaBHO

n(n+l) (n+k {)

N= Z |
- (2)

ECTeCcTBEHHO, 4TO Ooxbmoit 005eM BeCOBHX KO3G(ULMEHTOB NpeXHABIA-
€T NOBHIEHHHE TPeOOBaHUA K 00BEMy 3aNOMUHAKmEro yCTpolicTBa H
OHCTpPOZejicTBAN AUCKPeTHOro (QunpTpa.

Kpome TOro, C pOCTOM YHUCJA BECOBHX KO3OOUUMEHTOB OHCTPO
pacTeT 00beM BHUUCIMTENBHO# paGOTH, HEOOXOZUMOW ZAA X ONpezeie-
HUA,

BTopas TPYZHOCTH 33KINUAETCHA B TOM, YTO MHOTHE METOZH ONl-
peneneHns BECOBHX KO3@@UIMEHTOB CTAHOBATCH HEYCTOWUMBHME OTHOCH-
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TEeNBHO OWMMOOK NPUOJMECHHHX BHUHUCACHHIH.
Tax, HampmMep, ONpezelncHUe BeCOBHX KOoaduiMeHTOB MO MeTOZy HOp-
MaNbHHX YPaBHEHMI NMPUBOZUT K NIOXO0 OOYCAOBICHHHM CUCTEMAM JNRHEH-
HHX anre0pauyeCKUX ypaBHEHHi, NpPUYEM C POCTOM NOPAAKE CHCTEMH
O0YCAOBIEEHOCTD YXYANAETCH.

B cuny orpanuvyeEHO#f TOUHOCTM NPUOAMESHHHX BHUMCIACHUM ,MH
NoJayyaeu NPAKTUYECKHA HEKOPPEKTHYD 384a9y.

Taxuu o0pasou, ecTeCTBeHHO#t Mepoii CIOEREOCTHM (unbTpa Kommo-
roposa-T'adopa ABIAETCH UYHCIO ONpPEfelfieMHX BECOBHX KO3(HULUEHTOSB.

B COOTBETCTBUM C NPUHLANAMM CIAOXHOCTH, HEOOXOAHEMO B NpPOCT-
paHCcTBe, 0GDA30BAHHOM BCEBO3MOZHHMY IMECHHHME KOMGHMHALHMAME CIy-
yafiHHX BeJIWYHUH

s S T i,x{-iz'"vmt-i ‘x,_h...x B imnanm NOANPOCTPAHCTBO

MUHMMAIBHOY pPa3MEpHOCTM, ZAJAS KOTOPOr'O YZOBIAETBOPAETCH SafaHHHIH
YDPOBEHb OWMOKM WMJIM, NPU 3azanHO# pasMepHOCTH, HaliTum mozmpocTpaH-
CTBO, ZJNA KOTOPOT'O OmUOKA MHHEMMajbHA .HaxoxeHHe TAKUX MOANDPOCT=-
PAHCTB MOXHO OCYyWLeCTBUTH, NPHUMeHAH mepedop..OzEaxo Takoft myrs CBf-
3aH ¢ GONBIMM OGBHEMOM BHUMCIAHTEIBHOH paGOTH.

JIua MUEAMM3AOUK CIHOEKHOCTE (uapTpoB BAa (3I) MOXHO BOCHOIB-
30BaTHCHA TEOPETUKO-UYVCIOBHMHM METOZAMM NPHOIMESHHOTO 8HAJH3a '/,

JleiicTBUTENBHO, BO MHOTMX CIydYaax 3ajaHnu#t AMCkpeTHHE cayual
cursan oct 1 XenaeMuit ZMCEKpeTHHH cayvualEui#li cHUrman y{. MOTYT-
OHTH CBASAHH C HEKOTODHMHM HENPEDHBHHMHA CHUI'HAZaMK m({) ' g({)
9T0 OyzeT, HanpuMep, B TOM CIyuyae, ecau i M Yy nmoxmyuenH E3
CcayyajiHHX HENPEepHBHHX CHI'HAJNOB :r.(t) 4 y(t) KBaHTOBaHHEM.

Ecau 3T0 He Tak, TO BCErja MOXHO C NOMONBO MHTEPHONANMM HO-
CTPOUTH CHUI'HANH ac(t) u y (t) s VMeDLMe B ZAUCEPETHHO MOMEHTH
BpeMeH: T Ke¢ 3HAYEeHUA, YTO M PAcCCMATDUBAOMHE AUCKPETHHE CHI'HAIH.

Bes orpanuueHus OOWHOCTH MH MOXEM CUUTaTH, YTO ( h-f)A={ /

rze A - mATepBan KBaHTOBAHMA CIyYAlHOTO HENPEPHBHOTO CHTHAIA,
NOPOXZaNWEro AUCKDPETHHH# cHIrHAX. :
PaccuOTDHM OZHO M3 CIATAEMHX CTeNeEM O B (3I)
Lgoi, Laeiy - Li-is
B cuny CZenaHHOTO 3aMEYaHUA 3TO ClaraeMoe MOEHO pacCMaTpH-
BaTh KAaK BHAUEHWE CAyUYaliHOTO NONA, 3aZAHHOTO HA GAMHMUHOM & -
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MEpHOM THnepryde, B TOYKe M=(AL,Ai2,~--/ Ais) .

Cauo nmome OyzeT UMETH BHJ

[(4,0,0m)=2(t-1,)... e (t-5) | (33)
Ecau HenpepuBEH{t CHTHaR m({) nMeeT HENPEepPHBHYD B CPEZHEM IpOu3—
BOZHYD nopsAzra o , TO MOXHO ZOKasaTh, YTO CayuaiiHoe moxe (33)
MOXeT OHTBH annpouc'uuuponano CleAyoLAM BHDPAREHUEH s
2(t-1,)- 2(t-13) = Z:c( -a,k(modn))...2e(t-0sk(modn)) B, (1, %,)+R, ... (34)
rze BK(‘I,, ‘l’,) - HeroTopHe Gasuchue @yHruuu ,Q,....05 —
ONTHMAJIBHHE KO3(Q{MUIMEHTH, BHOUPAEMHE COIJIACHO s pmodn -
03EayaeT OCTATOK OT ZEICHHA p HA N .un R OlLleHUBAETCA Cle-
AYOEAM HEDAaBEHCTBOM ___

9 {n n
RO<Crai (35)
[locxONBKY 3HAUEHMe MOJNA B ANOOH TOUKe MOXET OHTH NPEeZCTaBIAEHO B
BUze (34), TO TeM CaMHM OHO MOXET OHTH NPEACTABIEHO U B TOUKAX C

KOOpAMHATAMK BHAIA ‘ {
“Fﬁlal"z=ﬁ:rlz»--,‘fs=—-n-, is.

Ho aTo o3HayaeT, uTO awOOE NpOU3BEAEHUE 5-ﬁ CTENeHA MORST OHTH
BHDAEeHO NDMONMESHHO KaK IMHe#Has KomOuHanua N npoussegenult 3-
CTENEH! BHZA ‘
A frt.a K(modn)x{-azx(modn)"'mi-q K(modn} s

4 9 (36)

TO-eCTh n_‘
mi-t, Ly “ig ;8 (H' z‘-s)mt a,x(modn)" m{ asx(mcdn) +R. (27)

Gopmyna (37) NOKASHBaET, UTO NPOM3BEACHAM, OTAKYHHE OT NpOUSBELEE~
HUi BHga (36), ABAANTCH "AUmMHEME", TAK K8K MOTYT OHTE NpUOAUXSH-
HO NoAydeHH u3 (37) _

Taxum o0pa3oM ONTHMANBHHM MOZNPOCTPAHCTBOM Pa3NeEpPHOCTH
0yzeT NOANPOCTPAHCTBO, OOpa30BAHHOE BCEBO3MOKHHMMU JUHEHHHUN KOMOU-
HaguAMU CUCTOMH CAyYaliHNX BEJHYUE

e a,x(modn)L-0,x(modn)-- fft-a k(modn)..-XLy-a,k(modn) |
NuHuME CrOBaMu, CUHTE3 HeIUHEHHOTO zmcxpemoro funpTpa OKa3anoCh
BO3MOZHHM CBebTE K DEUEHUAD Bapmaunonuoﬁ 3anaun

M{y{ m{;t-(n{“t’- }mtn i
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n-{ n-{

Ha Klacce QMETPOB Bujaa Zh x* -K Zh x{_a K(modn)xi.o K(modn)

n-{

m
o e
i g %;_;.h th-o{x(modn) t-amK(modn) (39

InA oneHKM 30PeKTUBHOCTH MUEMMUSALKM CIOKHOCTH MOEHO NDPUBEC—
TU CIeZyouyp TAOAMNY YUC]a BECOBHX KO3(QIUiMEHTOB MOJHOrO JMABTPa
Koamoroposa-I'aGopa (N) ¥ MUHEMU3MDOBAHHOTO (QumpTpa N ) pH
ANMEE NAMATH GUIBTDA =1{0.

m I 2 3 4Bt g 6
N IO 65 285  I000 3002 8007
Ny IO 20 30 4 50 60

Y

lIpoBezicHHHE UHCAEHHHE DacuyeTH MOKA38JM, YTO HECMOTpPHA HA Cy-
fleC TBEHHYD MUHHMNUBANUD CIORHOCTH NMOTEpPM XaueCcTBa BOCMPOUSBEZEHKHS
X¥EeJaeMoro CHI'HANA COCTaBAANT AOAM MpOLEHTa. [lpuueM yBenudueHue
CcIOXHOCTH QuabTpa BHAA (39) He NPUBOZUT K CYNMECTBEHHOMY yAydmeEHUD
KayecTBa BOCIDOH3BEZEHUA RENAEMOI'0 CUI'HANA, & BO MHOTHMX CAyYanx
NPUBOAUNT K YXYZAWLEHMO KayecTBA K3-38 yXyZAWNEHUA 00YCIOBIEHHOCTH CU-
CTEMH HODMAJBHHX YPaBHEHHii.

B 3aKipueHue cirezyeT OTMETHTH.

Pa3BuTue TeopuM ONTHUMANBHOI'O yNpaBISHUA ZO HACTOAWLETO BpEMe-
HM B OCHOBHOM, B HajipaBJeBMA pa3paCoTK¥ MATeMaTUYECKOIr'o annapars
ANA peueRMs TeX MIM MEHX 387au CMHTE32, B OCHOBHOM, 03 yueTa He-
00XOBMOCTH NOCHenyLuel peanuzanuu, 063 yueTa CHOXHOCTH 8ATOPUTHCE
ONpezeNeHUs ONTHMANBHNX CHCTEM,

Ho mo cymecTBy 3T ZBe CTODOHH NpOLECCA CUHTE38 HE OTZSUHMH,
YTC OCOOEHHO HArNAZHO NPOABISETCH B CAMOHACTPAUBADIUXCH CHCTEMAX.

lloaToMy B HacTofmee Bpeus OOXBNYD AKTYaAbHOCTH NPUOGDPETAnT
ACCHEZ0BAEYA MO N3MEHEHUD TDaZMLZOHHON MOCTAHOBKM 33784 CHHTE3a
ONTHMAJBHEEHX CUCTEM C LeXbD yueTa BONPOCOB CACKHOCTH KAK aJATOPHUT-—
MOB ONTHMM3ALMA TaK W (UBHUYECKON peanMsalud NOCAETHHX.
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COMPUTATION OF OPTIMUM CONTROL FOR A
ROBOT IN A PARTIALLY UNKNOWN
ENVIRONMENT
W. G. Keckler and R. E, Larson

Stanford Research Institute
Menlo Park, California, U.S.A.

1 INTRODUCT ION

The optimization of systems in which stochastic effects are present has been
studied extensively by a number of researchers.':?2»2:%:8:8 Ap extremely general
formulation of these problems has been called by Meier® the combined optimum con-
trol and estimations problem; a solution to this problem has been formulated using
6,7,8

dynamic programming. Even though several theoretical papers have been written

on this subject, there have been very few examples worked out for any cases but the
linear gaussian problem.® *°

This paper first describes a dynamic programming approach that was proposed
for the problem of optimally controlling a robot, equipped with sensors, that is
operating in an unknown environment.* A methodology is presented for formulating a
class of stochastic control problems in which there are informational variables
that specify the degree of knowledge about the physical state of the system as well
as the physical variables of the type encountered in most control applications.
These problems are present in a number of areas; the robot example discussed here
is related to the general problem of unmanned exploration of a hostile, inacces-
sible environment , while another formulation of this type has been developed for

mission reliability problems.11

The detailed calculations required to implement
this approach are also described. Dynamic programming is shown to be feasible for
handling system equations, performance criteria, and constraints that simultaneous-
ly involve physical variables and informational variables. Another aim of this
paper is to demonstrate the relationship of a number of concepts from system theory
to the combined optimum control and estimation problem; among the concepts dis-
cussed are dual control*2® and value of information.® %
In the robot problem, computational complexity incregses exponentially with

the number of physical and informational state variables. Thus, many problems of

F 5
A robot project is under current study at SRI, "Application of Intelligent
Automata to Reconnaissance,'" Contract AF 30(602)-4147, SRI Project 5953.
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interest are too unwieldy to solve rigorously on present-day computers. In order
yo attack these problems, a heuristic method based on the optimization algorithm
has been devised. It is thus possible in this paper to analyze the relation
between the heuristic methods and optimization approaches for a concrete example.
The results of heuristic methods are also compared with the performance of humans
in some representative cases,

The remainder of the paper is organized as follows: Section II defines the
mission of the robot and develops a state-space formulation for the problem of con-
trolling it. Section III describes a dynamic programming solution method and
presents results for some 1{1ustrat1ve examples. The computational difficulties
of this algorithm are also discussed. Section IV describes a heuristic solution
method with greatly reduced computational requirements. The performance of the
heuristic method is evaluated in terms of both the optimum performance and that
obtained by a group of control theorists given the same information. Section V
evaluates the potential of both optimization techniques and heuristic methods for

solving practical problems involving stochastic effects.
II = PROBLEM STATEMENT AND FORMULATION

The problem discussed in this paper can be stated as follows: A robot is at-
tempting to perform a specified task in an unknown environment. As part of this
task, it must travel to a particular spatial location, called the goal. There are
a number of barriers that the robot cannot traverse; the presence or absence of
these barriers is not known a priori, but their potentiai locations are all known.
The robot has a sensor system that can detect the presence or absence of these
barriers; however, there is a cost associated with using these sensors. The prob-
lem is to devise a policy for the robot that will find that path to the goal that
minimizes the sum of the cost of using the sensor system and a cost that reflects
the length of the path.

This problem can be formulated as an optimum-control problem in which the
minimum-distance requirement and the sensor cost are joined in a common-cost cri-
terion. Minimization of this critefion requires that state and control variables
bé defined that completely represent the situation and options of the robot.
Complete specification of the state variables requires not only that the location
of the robot in its environment be specified, but -also that the state of knowledge

about the barrier configuration at each position be considered. Control options
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include both movements to a number of adjacent unblocked areas and use of the
sensing equipment to determine the presence or absence of barriers at more distant
sites. Since additional knowledge can prevent wasteful moves, the expected bene-
fit of observing must be considered each time that a control decision is made.

The control decision is a function of present location in the environment and of
the present state of knowledge of barrier locationms.

A simple problem that illustrates the features of this formulation is shown
pictorially in Fig. 1. In this example, an automaton is attempting to find its
way through the environment shown in Fig. 1 to a goal located at the upper left-
hand square, which has coordinates (x1 =1, x2 =1). As shown in Fig. 2, the
automaton can move one square either up, down, left, or right.

There are two squares on which it is possible that barriers are present;
= 3). The automaton is not allowed to

namely (x1 =1, x, =2) and (x1 = 2. x

2 2
pass through these barriers. Initially, the automaton does not know if these bar-
y =N

= 3) with probability 0.5. The

riers are present; instead, it knows that there is a barrier in (x1 =1, x
with probability 0.4 and a barrier in (x1 = 2, x,
robot can always '"see' one move ahead--i.e,, if it is within one move of a barrier
location, it can find out if the barrier is there or not. For a certain price,
which is expressed as a specified fraction of a move (.3 moves), the automaton can
make an observation of all squares that are two moves away (see Fig. 2). The
objective is to find the policy for the automaton that reaches the goal square

(x1 =1, x_, = 1) from any initial square while minimizing the expected value of

2
the sum of moves and penalties for making observations.

This problem can most easily be put into the desired framework by defining the
complete state description of the system (information state) to be four-dimensional

vector x,

M

1
Lo zz ) (¢))
3
s—X4
where
X, = horizontal coordinate in Fig. 1
x, = vertical coordinate in Fig. 1
x3 = state of knowledge about barrier at (x1 =1, x2 = 2)
x, = state of knowledge about barrier at (x1 = 2, x, = 3).
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The first two variables are quantized to the values

x1 =1, 2, 3

x2=1,2,3,4 . (2)
The latter two variables are quite different from the usual state variables as-
sociated with dynamic systems. Each variable can take on three different values

as follows

3
x, = P, A, Q H (3)

where
P = barrier is known to be present

A barrier is known to be absent

Q = absence or presence of barrier is not known.

The control vector, u, has three components. They are

b
us=u, y (4)
Y3
where *
u1 = negative change in x1
u2 = positive change in xz*
uy = decision to make an observation.
The variable u3 takes on two values
u, =L, N (5)
where
L = an observation is made
N = no observation is made.

The set of admissible controls is thus

y— —

i 1 0 0 0
U= o, (o}, 1|, |-1], {0 = (6)
N N N N

corresponding to move right, move left, move up, move down, and make an observa-

tion. The first two system equations can be written as

*
For historical reasons, the convention was adopted that a positive move was up
and to the right in Fig. 1, while the direction of position x, and x2 was as

shown there.
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x, (k1) =x; (k) + u,(k)
x, (ktl) = xz(k) - uy (¥ ¢

The uncertainty about the barriers is taken into account by defining a ran-

dom forcing function vector w with two components,

)t
Y2
'1 = pr e or ab of barrier at (x1 =1, x2 = 2)
w2 = presence or absence of barrier at (x1 =2, x2 =3) .
These variables can take on the values
w., =B, R
W, = B,R -, (9)

where
B = barrier is present
R

barrier is absent .

This vector affects only the state variables X3 and x4. In writing the

system equations for these two variables, it is useful to define two auxiliary
variables, m1 and m2. The variable ml takes on the value 1, if the control is

such that the presence cr absence of the barrier at (x, = 1, x_ = 2) will be de-

termined; m1 = 0 otherwise. The variable m, is 1 1f the cﬁntrol will determine
the presence or absence of the barrier at (x1 = 2, x2 = 3); m2 = 0 otherwise.

For u3 e N ml is equal to 1, if the move chosen causes thernext square to
be within one move of the barrier at (x1 =1 X, = 2). For ug = L, m, is equal
to 1, if the barrier at (x1 =1, X, = 2) is within two moves of the present square.
Otherwise, m1 = 0. Similar conditions can be written for mz. .

The system equation for Xz can thus be written in the form

x3(k+1) = fs[xa(k)’ ua(k), ml(k), wl(k)] , (10)

where f3 is defined by Table 1, and where

p(w, =B) = 0.4
p(w, = R) = 0.6
p(w2 =B) = 0.5
p(w, = R) = 0.5
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Table 1: Next Value of xg

for Automaton

The equation for

values of this variable

i
Xy s

x, (1) u, () m, (9 w, () x, (1)
P - - - P
A - - - A
Q N 0 = Q
Q N 1 B P
Q N 1 R A
Q L 0 Q
Q L 1 B P
Q L 1 A
- = value of x3(k+l) 1is the same for all

x, (k1) = f4[x4~(k), u, (8, m, (K, Wz“‘)] ;

where f is specified by a table similar to that in Table 1,

4

(12)

The performance criterion, which is to be minimized, is the sum of moves and

penalties for observations.

where 4[x(k), u(k)]

Jd =

@

T 2z, u]

k=0

is specified as in Table 2.

that the penalty for an observation is 0.3 moves.

This criterion can be written as

Table 2: Value of 4[x(k), u(k)] for Automaton
x, (1) x, (K) u, () LUx9, uo] |
1 1 - 0 !
1 #1 N 1.0 !
1 1 L 0.3 f
#1 1 N 1.0 l
#1 1 L 0.3 ‘
#1 #1 N 1.0 i
#1 #1 L 0.3 i

(13)

In this table, it is assumed
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The constraints are that the set of admissible controls and the set of admis-
sible states are as defined above. Also, if a barrier is present, a move to that
square is forbidden. The extension of this formulation to a larger problem is
straightforward, and the optimum solution for the general case is presented in the

next section.
III SOLUTION AND RESULTS FOR THE COMPLETE-STATE REPRESENTATION

The problem formulation of the preceding section satisfies the conditions for
use of the technique "approximation in policy space.'?’'% Two of these conditions
are that the system equationsand constraints have no explicit dependence on time
and that the performance criterion be the sum of time-invariant terms over an
infinite number of stages. Another condition is that there exist a state and con-
trol that have a single-stage cost of zero. Finally, there must exist a finite-
length path from this state to any other state that is unblocked with probability
1.0. If the latter condition is not met, the expected cost of reaching the goal is
infinite, and it is necessary to use the technique "iteration in policy space.'®

Because of the stochastic nature of this problem, the particular version of
approximation in policy space described below is used. A proof that this method
converges to the optimum solution can be obtained by using the results shown in
Ref. 14,
a2 In order to start the procedure, an initial guess of the optimal policy,

0

! (x), is made. One such control policy that is easy to compute is to pick the

control that is optimal if all barriers are present, the worst possible situation.

1@

The corresponding minimum cost function, (5), is found by solving a deter-

ministic minimum-path-length problem. Formally, this function is obtained from

solving
1@ < alx, 8P @1+ 19 {2lx, 1P, 1}, )

where f represents the system equation vector defined in Egqs. (7), (10), and

*
(12), and where w corresponds to w, =B, w2 = B, A particularly efficient

1
I(0)

method for solving this equation is to note that (x) = 0 for all states cor-

responding to physical location at the goal, and then to compute outward from this
square . ;

When I(o)

a(l
(x) has been found for all x, a new policy g( )(5) is found by
solving
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@ =nn (oG, w + B {1P02z, w, w1} . as)
u W
Since w 1is not allowed to be a stochastic variable, it is necessary to take the
expected value of I(o) in Eq. (15). The policy 2(1)(5) is the value of u
for which the minimum in Eq. (15) is attained. However, I'(x) 1is not I(l)(f),
the minimum cost corresponding to policy E(I)(E), because I(o) appears inside
the braces. The function I(l)(x) is found from :
I(l)(:_:) = ¢lx, ﬁ(l)(g)] +E {I(n[g (5, 3(1)(5), !7 ]} . (16)
3 /

This equation can be solved iteratively as in Ref. 14,
In general, a new policy Q(J+1)(5) is formed from knowledge of I(J)(E),
using
I’(x) = min E,(g, u +E {I(J)[g(g, u, 1)]}] . an
u w

(3+1)

The corresponding minimum cost function I (x), is found by solving

19 - lx, a9 @1+ {9 [2lx, a9V @, w1 ]} 18)
w

As already indicated, convergence to the true optimum can be proved for this case.

When this method is applied to the problem described in the preceding section,
the results shown in Table 3 are obtained. Several interesting effects can be ob-
served in Table 3, The first is Feldbaum's dual control effect;'? this effect is
said to occur whenever the optimal control is used to gain more information about
the system instead of optimizing the performance directly. The effect is illus-
trated in this example by the optimal controls of looking instead of moving toward
the goal. By imposing a penalty for the observation, the system is able to make a
decision whether t6 gather more information or to continue moving on the basis of
the information gathered so far. This occurs at (xl, X, Xg, x4) = (1, 4, Q, P)
97 %31 x4) =, 4,Q, Q.

Another effect that can be observed is Howard's value of information.'® This

2
and (xl, x

effect is related to the cost that §hou1d be paid in order to gain information.
Again, this is illustrated here in the decision of whether or not to make an ob-
servation; if the cost of 0.3 moves does not pay for the increase in performance,
then the observation should not be made. At the two points where the observation

is made, it is interesting to note the optimal control and minimum cost for the
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Table 3: Solution to Automaton Problem

Present State Optimal Control Minimum Cost
x x2 x5 X, u, u2 “3 1
1 1 - - - - - 0
2 1 - - -1 0 N 1
3 1 - - -1 0 N 2
1 2 - - 0 1 N 1
2 2 - - 0 1 N 2
3 2 - - 0 1 N 3
1 3 A - (1] 1 N 2
1 3 P A 1 0 N 4
1% 3 P P 0 -1 N 8
2 Sy o= - 0 1 N 3
3 3 - - (1] 1 N 4
1 4 A - (1] 1 N 3
1 4 P A 0 1 N 5
1 4 P P 1 0 N 7
1 4 P Q 1 0 N 6
1 4 Q A 0 1 N 3.8
1 4 Q P 0 0 L 4.9
1 4 Q Q 0 0 L 4.5
2 4 - A 0 1 N 4
2 4 A P -1 0 N 4
2 4 P P 1 0 N 6
i 2 4 Q P -1 (1] N 5.9
t 3 4 - - 0 1 N 5
| T

- = optimal control and minimum cost are the same for all values of this variable

Table 4: Comparison of Optimal Control and Minimum Cost
With and Without the Observation Control

Minimum Cost Minimum Cost Optimal Control
x1 x2 Xg X, With Without With No Observation
Observation Observation uy u2 u3
1 4 Q P 4.9 5.4 0 1 N
1 4 Q Q 4.5 4.6 0 1 N

case where the decision to observe is not allowed. It is seen from Table 4 that

at (xl, X,0 Xg, x4) = (1, 4, Q, P), the net profit of making the observation is
0.5 moves, while at (xl, x2, X3, x4) = (1, 4, Q, Q), the net profit is 0.1 moves.
The technique described above has been implemented in a computer program, and

other larger examples have been solved. One of these is the one shown in Fig. 3.
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There are four squares on which barriers are possible; the presence of each onge
has a probability of .7. The price of a look two moves ahead is still .3. The
state vector of this system has six state variables -- the two position coor-
dinates and four information variables. Since this problem has 1620 possible
states, the complete solution cannot be presented here. However, in only 29 of
these situations is the look option chosen when it is available. The improvement
resulting from the use of this option at a cost of .3 moves ranges from .3 to 1.2
moves. When the a priori probability of the presence of each barrier is re-
duced to .5, 25 situations require looks, and the maximum saving is .8 moves.
When the barrier probability is reduced to .3, the number of look situations
declines to 12, but the maximum gain is again 1.2. A discussion of the reasons
for the situations is interesting, but not central to the theme of this paper.
Though the complete state description does lead to optimal solutions, the
procedure does have one very serious shortcoming: the number of states that must

be considered builds up very rapidly with the number of potential barriers --

N=n_ -n -3° (19)

where
N - total number of states
n_- number of barriers

n °n - number of states which are used to represent the
1 2 environment

Thus, a problem which requires a 10 x 10 grid to represent the environment
and includes 20 barriers requires 1.9 x 108 storage locations. Although inform-
ation states which do not affect the control (e.g. all but one of the states at
a location one move from the goal) clearly are unnecessary, elimination of these
will not reduce the problem to manageable ﬁroportions. The next section des-
cribes a formulation that can yield control policies based on fewer computations
than the procedure described in this section.

IV REDUCED-STATE SPACE FORUMLATION

The problem stated in Sec. II does not require that the control policy for
all possible states be computed. If the problem is attacked in the context of
the particular example the robot is facing, considerable savings in computer

time are obtained. The solution is initiated with the robot located at a par-
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ticﬁlar position in the environment and equipped with a specific a priori know-
ledge about the barrier configuration it must overcome. This includes knowledge
of the possible locations of barriers and the probability of each one being
present. The information about the barriers is not formalized as state variables,
but instead is used as parameters for the decision-making process. The state of
the system is represented by only the quantized position coordinates, x1 and xz.
The control vector has the same five options given in Eq. (6), and the state
equations are given by Eq. (7). If the control option "Look" is chosen, or if
a move yields additional information about the barrier configuration, the control
policy is revised to include the new information. The performance criterion con-
tinues to be the sum of moves and penalties for observations.

The computation procedure is much like that in Sec. III. The initial cost

(©) 0)

estimate J (x) is obtained from control policy u (x), which assumes that all

(1)

barriers are present. Thé first iteration of the control u (x) is found by
solving Eq. (15) at all states. However, only transitions to other accessible
locations are considered when a move option is examined. The look option is
evaluated by determining the value of egch possible barrier configuration and
the probability of this configuration occurring. The control option chosen at
each state is that which tentatively minimizes the cost of reaching the goal.

The resulting value of the cost, J(l)

(x), is associated with this location.
Iterations are repeated in the state space until the process converges. Conver-
gence to a final value is assured in the procedure and occurs in four or five
iterations.

This procedure results in actions on the part of the robot simulation that
appear to be a learning process. When it is positioned at a particular cell in
the environment, it is able to determine its next move through consideration of
the entire barrier and goal configuration. 3f this move increases its knowledge
of the environment, the computational procedure is reapplied to determine if a
better control policy can be found. Thus, as the robot moves through the envir-
onment searching for the shortest path to the goal in a systematic manner, it is
also mapping the environment. If it were again placed in this same environment,
this "experience" would enable it to reach the goal much more quickly than the
first time. g

Since this heuristic is not optimal, it is difficult to determine how

effective it is. However, in one test, the performance of a group of control
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theorists was compared with the performance of the heuristic in the barrier con-
figurations shown in Figs. 4 and 5. The barriers were placed according to the
probabilities shown in these figures. Solutions for six cases based on the
configuration of Fig. 4 were obtained by the heuristic and by four people. In
the resulting 24 comparisons of control theorists with the heuristic, the heuri-
stic performed better 11 times, poorer 7 times, and there were 6 ties. Five
cases based on Fig. 5 were presented to 5 people and to the heuristic. The
heuristic won 16 of the resulting 25 trials, lost 6 and tied 3. Tables 5 and 6
compare the performance of the heuristic with the average performance of the

humans™ in each case.

Table 5

Comparison of Performances by Heuristic
and the Control Theorists on the Configuration of Figure 4

Heuristic Average of 4 Control Theorists

Case

Moves Looks Moves Looks
| 12 2 13.75 .75
2 12 2 13.00 1.25
3 14 2 14.50 .75
4 12 0 12.00 1.00
B 14 0 14.00 0
6 14 2 14.50 2.00

Heuristic's Combined Record: Win 11, Lose 7, Tie 6

Table 6

Comparison of Performances by Heuristic
and the Control Theorists on the Configuration of Figure 5

- '“.A-HW”‘-M*_‘~ﬁeuristic Average of 4 Control Theorists
Case

Moves Looks Moves Looks
1 12 1 13.2 .8
2 22 1 21.6° 1.0
‘ 3 18 2 18.8 1.6
! 4 12 1 18.0 1.4
{ 5 12 2 14.0 .8

Heuristic's Combined Record: Win 16, Lose 6, Tie 3
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The configuration shown in Fig. 5 is considerably more complex than that in
Fig. 4; there are 100 states instead of 64 and the probabilities are no longer
the simple .5 that humans can deal with intuitively. As shown above, the heur-
istic, which considers each configuration in the same systematic manner, scores
better relative to the control theorists as the problems become more complex.
Even though the heuristic is not optimal, it is able to deal with these problems
more successfully than can humans.

V CONCLUSION

The paper shows how additional state variables can be defined in a dynamic
programming formulation to include information-gathering considerations in the
decision-making process. An example illustrates the change in control policies
that result from these considerations. Although the complete state description
of the system does provide a good example of the value of information, the num-
ber of possible states increases so fast that solutions are not feasible for
moderate~sized problems.

A heuristic that includes much of the viewpoint of the complete description
has been devised and applied to several grid and barrier configurations. In-
stead of considering all possible barrier configurations, this procedure just
deals with the situation actually facing the robot. As new information is ob-
tained, the solution of the problem is repeated. The performance of the route-
finding heuristic has been compared with the performance of a group of control
theorists, and it has been found to be superior even on moderate-sized problems.
As the problems become larger, this heuristic will be far superior. Procedures
motivated by the same viewpoint could be used to automate many searches now done

by humans.
REFERENCES

1. R. Bellman, Adaptive Control Processes (Princeton, N. J., Princeton
University Press, 1961).

2. H. J. Kushner, "Some Problems and Recent Results in Stochastic Control,"
1965 IEEE Conv. Record.

3. H. J. Kushner, Stochastic Stability and Control, (Academic Press, Inc.)
New York/London, 1967).

4. W. M. Wonham, "Stochastic Problems in Optimal Control," 1963 IEEE National
Conv. Record, Vol. 11 (2), pp. 114-124.




5.

10.

11.

12,

13.

14.

15.

84

M. Aoki, Optimization of Stochastic Systems, (Academic Press, Inc., New
York/London, 1967).

L. Meier, III, "Combined Optimum Control and Estimation," Proc. 3rd
Ann, Allerton Conf. on Circuit and System Theory, (Urbana, Ill., October
1965) pp. 109-120.

R. Sussman, "Optimal Control of Systems with Stochastic Disturbances,"
Electronics Research Lab., University of California, Berkeley, Ser. 63,
No. 20, (November 1963).

M. Aoki, "Optimal Bayesian and Min-Max Controls of a Class of Stochastic
and Adaptive Dynamic Systems,” Preprints, IFAC Tokyo Symp. on Systems
Engrg. for Control System Design (1965), pp. 11-21-11-31.

R. S. Ratner, "Optimum Design of Reliable and Maintainable Systems” (to be
published).

T. L. Gunckel, IT, and G. F. Franklin, "A General Solution for Linear Sampled-
Data Control," Trans. ASME, J. Basis Engr., Ser. D. Vol. 85, pp. 197-201
(March 1963). .

P. D. Joseph and J. T. Tou, "On Linear Control Theory,' Trans. AIEE
(Applications and Industry), Vol. 80, pp. 193-196 (September 1961).

A. A. Feldbaum, "Dual Control Theory--I," Avtom. i Telemekh., Vol. 21,
pp. 1240-1249 (September 1960).

v

R. A. Howard, "Information Value Theory,' IEEE Trans. Systems Science Cyber-
netics, Vol. SSC-2, pp. 22-26 (August 1966).

R. E. Larson, "A Survey of Dynamic Programming Computational Procedures,’
° IEEE Transactions on Automatic Control (Survey Papers), Vol. AC-12, pp.
767-774 (December 1967).

R. A. Howard, "Dynamic Programming and Markov Processes,” (John Wiley & Soms, :
Inc., New York, 1960).




85

G = GOAL SQUARE
2 Ky : POSSIBLE BARRIER LOCATION

TA-T742531-5
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S = START

G = GOAL
TA-742531-9

Fig. 5 Second Environment Presented to Control Theorists.
Probability of a barrier on a shaded square equals

the number in the square.
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STATISTICAL PROBLEMS OF INFORMATION
FLOW IN LARGE-SCALE CONTROL SYSTEMS

by

Juliusz Lech EKulikowski
Instytut Automatyki PAN, Warszawa, Poland

1. Introduction

The theory of large-scale control systems is becoming a new
rapidly expanding branche of the general control theory.An ex-
tended informational set securing the system,its normal opera-
tion and optimization of its operations rank among the most
important features of a large-scale control system { Ler-
ner 10). It seems desirable to consider a complex of technical
means for obtaining, storing, transmitting and processing in-
formation in a large-scale control system as a functionally
distinguished sub-system referred to as the information sys-
tem. An information system is usually subordinate to the pur-
pose of action of the corresponding over-system, and its oper-
ations should be evaluated from +the viewpoint of general cri-
teria of effectiveness. However, in practice, it is convenient
to consider the information system as a self-governing one,
having its own purpose and the criteria of effectiveness for-
mulated in the specific language of the information theory.The
development of the information systems theory as a branch of
science situated between the large-scale control systems theo-
ry and the information theory is a logical consequence of this
fact. : '

The development of rational methods of choosing an organi-
zation for the information system designed, which wolud be
suifable for reaching the purposes of the over-system, is one
of the basic practical problems of the information system the-
ory. Optimization of such systems is a task which may be solv-
ed approximatively, step by step only, since the information
systems are highly composite, and usually include sets of uni-
versal and special electronic computers, autonomous memory
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units, data transmission lines, commutators and a considerable
number of auxiliary devices. The effectiveness of such an op-
timization method depends to great extent on the ability of
estimating the loss or even gain which can be reached through

such or other reorganization of the system. A theoretical ana-
lysis of the system as well as its numerical model realized

by a computer or observation of a real object can be accepted
as a basis of such an estimation.The order in which the meth-
ods have been named corresponds to the increasing costs in-
volved, but, simultaneously, to the concreteness of the re-
sults they afford. Since the projecting of an informational
system is itself an economical problem, it is necessary to de-
velop uniformly all the methods mentioned above: theoretical,
numerical and experimental. This paper deals with +the <first
group of methods only. An attempt is made +to propose a metha-
matical tool suitable for describing the statistic - dynamical
properties of information and its value <flowing +through the

systen.

2. General Problems

(a) Information system organization.There are many concepts
of interpreting the system organization.Hence the information
system theory is considered here to be a branch of science,and
the organization of the informational system is interpreted
here in a narrower but more concrete sense.It is considered to
consist of three components:

- a generalized graph (di-multi-graph) describing the spa-
tial structure of the system;

- an algebraic structure describing the functional struc-
ture of the system;

- a class qf operational rules governing the information
processihg and transmission as a function of time.

The choice of an optimum system organization thus becomes a
strictly mathematical problem. However, the actual state of
applied mathematics including operational research permits par-
tial optimization of selected system parameters onlyj;the opti-
mization procedure is a kind of iterative solution of a multi-
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-variable functional problem. If the other factors of the sys-
tem are fixed, the spatial location of the information-process-
ing points (the nodes of the di-multi-graph) and the channel
capacities of the transmission-lines (the weights correspond-
ing to the directed borders of the di-multi-graph) may,for in-
stance, be optimized; the linear programming methods includ-
ing some modifications of the transport-algorithm may be used
here (Ford, Fulkerson 2). The optimization of functional
structure and of the operational rules are considerably less
homogeneous problems from the mathematical point of view. The
problems become more complicated if the spatial and functional
structures and the operational rules are subordinate to some
additional requirements of the system reliability. However, it
does not seem necessary to consider a structural redundance of
the system as a fourth factor of its organization, because re-
liability must be taken into account and optimized together
with other factors.

The functional structure and the operational rules of the
system will be considered in a more detailed form after some
new definitions are introduced.

(b) The information value. In order to subordinate the in-
formation system criteria of effectiveness to those governing
the over-control system, a measure of the information value
will be introduced. This value was first defined by Kharke-
vitsh > , Bongard 1 and others authors. The definition given
here is based on the present author s concept published in an
earlier paper

A basic element of the information process, as it will be
considered in the informations systems theory, is the part dis
tinguished for its spatial, temporary and contents features,
and called the message. Unlike the general theory of informa-
tion, the micro-structure of messages, their subdivision into
phrases, words, symbols, etc. will not be considered here. It
will be supposed that every operation performed on a message:
its generation in a source, storage in the memory unit, trans-
mition to another point, processing the information it brings
and so on, implies some costs on the one hand, and some gain
due to the increase of the control effectiveness index r of
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the over-system the message belongs to on the other. The value
‘vz of the information contained by the massage ¢ can then be
measured by finding the difference between  the statistical
means of this index calculated before and after receiving the

message:
def

Y <7 i (f){r} . Q)

The control effectiveness index r (the net gain, for ex-
ample) should be taken assuming a fixed algorithm of action of
the over-system in both complete and uncomplete information
situations. The symbol (g) denotes a statistical averaging
over the random variable r , and sometimes may be considered
to be the conditional random variable; the condition 1is then
indicated behind a stroke.

If it is assumed that the index r equals 1 when a fixed
aim is reached, and equals O other wise, it may be proved that
the above defined information value is a logarithm of the one
defined by Kharkevitsh4§ . It follows that the definition
given here is more general. However, it is based on the assump-
tion that the messages are random events and the corresponding
gains reached by the system are measurable in the probabil-
istic sense.

Now, let us suppose that several operations are to be per-
formed by the information system on the messages, as for ex-
amples :

(1) the meésage is to be obtained from an information
source §4 = a4 (Eo)s

(ii) the message §1 is to be stored in a memory unit up
to a fixed moment of time ¢, = a5 (£4)»

(iii) some data §3 necessary for further processing are
to be selected {3 = a3 (£2)» .

(iv) the data £z are to be transmitted to another point

of the system £, = &, (§5),

(v) the message §4 is to be delivered to the over-system
gs = 3-5 (§4) ’
where the input ¢, and the output §5 will not be con-
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sidered in the context of the information system. Every one
of the operations named above involves a certain amount of
costs. On the other hand, the gain is realized only after the
final operation as is performed. Optimizing such a series of
operations would be possible in a total sense only, with the
well known disadvantages from the point of view of calcula-
tions. This difficulty can be reduced if the value of informa-
tion is distributed over the sequence of functionally related
operations in some arbitrary manner, as for example:

messages: o €4 o §3 a 4 5
operations: > a, —> 8y > 85 > a, - as
gain: - = - - T
costs: c1 02 c3 c4 c5
forthcoming $

costss 01 02 03 04 05
values: r—C1 r_cz r-c3 r—C4 r~05 T
where:

def 2
ci = E ca ') i = 1| seey 5 0
J=1i

Although the information value has been defined in a gener-
al form, it cannot be calculated without some further assump-
tions; this ressembles the situation connected with defining
the value of a product component when only the final product
brings a real income.

The assumption of additivity of information values:
Vel g = v +V§u ' (2)

(where the n denotes a logical alternative of the message) is
also desirable for simplifying the considerations.This assump-
tion puts some restrictions to the distinction of messages
which should be independent both in logical and in statistical
sense, but it is usually true if the information system serves
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a large number of independent clients, as is the case with
post-office communication systems, information storage and re-
trieval systems, open data-processing systems and so on. How-
ever, it is untrue in stronglyhcentraliZed control systems,
where the information carried by the messages concerns func-
tionally dependent objects. In such a case the assumption of
additivity of information values cannot be justified but by
simplicity reasons.

Whatever may be the restrictions, the mathematical methods
make it possible to generalize the results, namely, it is pos-
sible to define the information value both additive and com-
parable in a generalized sense.This is possible supposing that
the information value is an element of a partially ordered
linear space (Kulikowski /) .

Let X be a linear system with the operations of adding its
elements and multiplying its elements by real numbers defined
on it and satisfying the well known conditions of the commuta-
tivity, associativity, etec. '

Let 6 be a null-element of X , then for every x

0+x=06 , (3

the multiplication of x by the real number O being inter-
preted in the sense of the linear system X . Let us suppose
that a property of generalized "positiveness" of some elements
of X exists :
x &0, (4)

which satisfies the following conditions (Kantorovitsh,Vulich,
Pinsker4 ): :
(i) x +~ 0 excludes x= 0 3
(ii) if x &~ O and y &~ 0 then x+ y & O ,the adding
of elements being interpreted in the linear system X sense;
(iii) for every x & X there exists an element y& O such
that y &x , it is y+ (-1) * x& 0 3
(iv) if x & O and a> 0, a being a given real number,
then a * x & 0 3
(v) for every up-limited subset {x}c: X there exists a
strong upper-vtound sup {x} .
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A set X which satisfies the above-given conditions will be
called a EK-space (a partially ordered linear space of Kanto-
rovitsh). If the "positiveness" x + 0 is suitably defined ,
the real-axis, the complex-variable plane,any euclidean space,
the space of real or complex matrices of given dimensions, the
space of scalar or vector random variables,the space of scalar
or vector stochastic processes and so on, may be considered to
be some particular cases of the K-space. Since the only con-
dition a well-defined "value" should satisfy is its possibili-
ty to be added, multiplied by real numbers, and, at least in
particular cases, to be compared, it becomes possible to give
the information value idea a considerably wide sense.

It becomes therefore possible to apply the theory consider-
ed to the multi-aims control systems. It is also possible to
consider the information value V¢ asa pair (rg » S ) con-
taining a net gain Ty and a cost ¢¢ corresponding to a mes-
sage { , instead of considering their difference T¢g- Cf on-
ly, as it was done above. In this case the information system
can be optimized in both absolute and relative gain senses.let
us remark that, as it has been recently shown by Tshernikov L
the well-known linear programming techniqué can be applied in
the partially ordered linear spaces.

(c) The functional structure and operational rules.Any mes-
sage that occurs in the information system carries some "prop-
er" information concerning the over-system as well as some
"auxiliary" information concerning: (1) the statistical meas-
ure of the "proper" information contained by the message, (2)
its value, (3) its actual address in the spatial structure,(4)
the codes of operations that are to be performed, etc. These
data are in some sense more important from the information sys-
tem management point of view than the "proper" information it-
self. Thus, & message f{ shall be considered as a pair (ig,mg)
consisting of some "proper" information (data) it , and some
"meta~information" mg , the latter being the basic informa—
tion used in the information system control. Consequently, the
general information f .owing a large-scale control system can
be imagined as shown in Fig. 1. This makes it possible to ana-
lyse the information systems as self-govering ones, as it was
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already mentioned above.

Let Z denote a set of all the possible meta-informations
concerning the messages occurring in the system, and 1let 7=
stand for a set of all the possible finite series formed by
different elements picked out of the set Z . The functional
structure of an information system can be in general defined
as a class ¥ of all the admissible functional mappings of Z—
into Z® itself. In order to simplify the considerations it
will be assumed that Z is a countable set,and hence the cor-
responding information system will also be called a countable
one.Further considerations will be restricted to the countable
information systems only.

The problem of planning the tasks in information = systems
and of their operational management has been given general
consideration in several papers, e.g. in the paper ~. However,
the problem requires further investigations. The main results
published deal with some simplified information systems,as for
example transmission networks or central data processing sys-
tems. However, the theory of information systems is interested
in the general methods of systems organization optimization,in-
cluding information systems of the most gemeral class. Operat-
ional rules, for example, should be taken such that an optimal
decision concerning the sequence of data processing, the time
intervals for every operation, the technical means (computers,
memory units, etc.) will be, in general, chosen so as to maxi-
mize the total value of the information processed by the sys-
tem during a long time-interval. It is almost impossible to
get a strong-optimum solution of this problem, except for some
particular cases . On the other hand, if " an algorithm of
information processing and the spatial and functional struc-
tures of the system are fixed, several variants of the sets of
operational rules can usually be proposed and their effective-
ness can be compared. Such a comparison needs a suitable math-
ematical tool. The latter can be based on +the mathematical
theory of queues, suitable modified, as has been shown below.
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3. _The Markov Processes Describing Information Flow
in the Systems

(a) Basic assumptions. In the theory of queues a crowd of
"eclients" arriving to a serving system is considered under
the following preassumptions’:

(1) the probability of a number Ak of clients arriving
in the time-interval (t, t + At) depends on the amount At
only, and does not depend on the time + itself (the arrivals
stationnarity condition);

(2) the probability in (1) does not depend on the number k
of clients just waiting in the system (the independence of ar-
rivals condition)j

(3) the probability PAt{ Ak > 1} of more than one client
arriving in the time-interval (t, t + At) satisfies the con-
dition

0. 5
At =0 A%

Under these preassumptions the flow of clients gets the
form of Poisson. However, when information systems are consid-
ered it is desirable to make some further assumptions, since
the phenomena are considerably more complicated, the messages
flow, their informations interact and their values increase.
The information measure (no matter how defined) and its value
are components of a stochastic vector process with,in general,
an uncountable set of states. In fact,it should be considered
as a K-space. The realizations of the process suffer jumping
changes at random time-instants corresponding either to new
messages entering the information system or to some informa-
tional operation ending. The process of interest is thus a gen-
eral kind of the Kolmogorov-Feller stochastic process.However,
the analysis of the probabilistic properties of such a class
of processes leads to the systems of integro-differential equa-
tions, a numerical solution of which usually cannot be obtain-
ed in a simple form9 . This difficulty can be overcome if
an approximate description of the information system is permis-
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sible. This can be obtained if the set of states is quantized.
However, the meaning of the states of such a process will be
different to that used in the theory of queues.

Let us suppose, for example, that in a given information
processing point (i.p.p.) of a system messages having the fol-
lowing meta-informational properties may occur: (1) messages
needing a "great", a "mean" or a "little" number of logic and
arithmetic operations to be performed, {2) messages which oc-
cupy a "great", a "mean" or a "little" number of cells if stor-
ed in the memory units, (3) messages of a "common™ or a "con-
siderable" value or importance for the over-system. This gives
a total of 18 meta-~informational classes of messages in  the
system considered. In order to describe a current state of this
i.pep. it suffices to say that a number k1 of the first-
-class messages, a number k2 cf the second-class, and so on,
are present at a giv:n time-~instant,and that a message belong-
ing to class s 1is being processed actually. If the informat-
ion system contains N i.7.p.-s, the total number M of meta-
~informational classes should be multiplied by N . Unfortu-
nately, this is a very hard restriction put on the theoretical
analysis of the highly composed systems.

The following additional assumptions will now be made.

(4) A discrete vector process is considered:

(K_'(t), §(t)) = (K»](t): ceey &(t)a soey Ku(t)’ Sq(t)’ eoey
cons By(t)y owey By(t)), (e)

wheres

-~ the component Km(t) is a scalar process taking values
of a countable set {0, 1, 2, 3, +++} » which indicates the
nunber of messages of the m-th meta-informational class;

-~ the component Sn(t) is a scalar process taking values
of & (M + 1)=~element set [p, M] s Which indicates to what
mebe~iuformational class belongs the message actually process—
ed in the pn-th i.p.p.

{5) The new nessages coming from the over-system for pro-
ceseing belong to one of the M mete~informational classes.

The arrivels form a multidimensional Poisson process with
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statistically independent components:

(5 At “n -B At

Brg( Bkqy woes Ak =[] gy » A%> 0, (7)
m=1

where the coefficients @ 5 > O characterize the intensities
of arrivals of the given class messages.

(6) The operational rules governing the information system
are given by a deterministic vectur-function ¢ with the com~
ponents

s,= ¢,(®, nel1, 7, (8)

where 5 = (845 +eey Sg) &nd k =_(k1, sesy ky) are the real-
izations of the vector processes S(t) and K(t),respectively.
The function-component P describes what class message is
going to be processed next in the n-th i.p.p. providing the
so called priority rules in the system.

(7) The jumps of value of the processes K(t), S(t) sre of
two types:

- spontaneous, and

- stimulated.

The spontaneous changes occur in one of the components.....
kn.(t), where

@-nE+1<a<al, neln, v, 9
(these components will be gathered into a sub-vector E(n)(t)
connected with the n-th i.p.p.), if the message comes to the
p-th i.p.p. from the over-system or if the n-th i.p.p. starts
with another operation the former being ended. It will be sup-
posed that the spontaneous changes occuring in different
i.p.p.-s are statistically independent.

The stimuleted change 1is an :immediate consequence of a
spontaneous change of a component functionally related with
the given one. Let us suppose that component of the vector
'E(n>(t) has been chanzed spontaneously because of the coming
of a new message into the n-th i.p.p. Thus, a stimulated jump
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of the sn(t) component will be induced according to the prio-
rity rules. On the other hand, if the component sn(t) is

changed spontaneously as described above,the stimulated changes
of a component of the vector E'n (t) as well as those of some
component of the vectors k (%) will occur, v being any in-
dex of a i.p.p. functionally dependent on the n-th one, that
is satisfying the equation

v=¥(@, n e[, ¥], (10a)

where ¥ describes the functional structure of the system. It
follows that to perform any operation in the system it is mnec-
essary to carry out some other operations. However, at +this
level of abstraction, the sequences of logically related infor-
mational operations performed in the system are considered but
as statistically averaged. ' 3

The slight difference between the spontaneous and stimulated
changes can be reflected by supposing a right-continuity of the
spontaneously changing realizations, and a left-continuity of
the realizations changing by stimulation, as illustrated in Fig.
2. However, in probabilistic analysis of the processes both
types of jumps must be taken into account together, which ena-
bles us to consider the process on the left-closed right-opened
time intervals only.

(8) Let {v} denote a set of indices vV satisfying rela-
tion (10a) for a given n , and {v} - a set of indices sat-
isfying a reciprocal relation

=¥(v), vefrn. (10b)

The corresponding sets of i.p.p.-s will ©be called the input
and output areas of the n-th i.p.p., the latter not being in-
cluded in its input and output areas. ;

Let Q(-)(E(v)’ g(v)’iev)’ Eév); Ezng, Eén)) denote a con-
ditional probability distribution (peds) of stimulated states
in the i.p.p. belonging to {7V s supposing that the states
proceding the jump wer? k(vl’ s(v>, k(n)’ s( n) °
Let 2e (k(n)' Sy k(n)’ Spy I be a conditional p.d. of the
n-th i.p.p. states after receiving a message of the m-th class
from the over-system.
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Let A (k(n)’ 8, (n)’ s( )) be a conditional p.d. of the
n-th i.p.p. states after a spontaneous change caused by the
ending of an operation. The following condition should be sat-
isfied according to the priority rules governing the n-th i.
DeDe?

fx }”n(icnr *alKmy? 500 @ = (8, [k(nys o W =1,
n (11a)

L Ap(E gy 8o|ECnys 80ny) = Ap(sy|Er 08 = 1, (190)
ey |

for Sy = (pn(l_:(n)) only, and = O otherwise.

(9) In order to derive the basic equation,a conditional p.
d. qn(k( ) sn|k(n), Ch k(v), s(v)) of the stateg' k( 2)? ®n
1mmed.iately after a jump of any type, the states k(n)’ sn ’
(v)' s(v), Vv € {v}n before it given, is necessary. Since
four typical situations are possible: the spontaneous Jjump in
the pn-th i.p.p. or stimulated jump caused by a spontaneous
one in the input area {v}; on the one hand, and the arrival
of a new message from the over-system or the ending of some in-
formation processing inside the system on the other hand, the

conditional p.d. shall consist of four parts:

qn(i(n), snlién), 8.9 E(’V), 8,) * At =
= An(i(n)’ snli('n)’ sp)e ¥plsy) « Ot +

n

: ,,ez{i} Oy 2alKays 5t Koyr 5"
Zpﬂ»f 'yv(sv)] « At + O(A%) , ; (12)
{P}v

where: {p}v denotes a set of indices corresponding to the meta

-informational classes of the messages belonging to the v-th

i.p.pe-s, and yv(s,;) is the intensity coefficient of opera-

tions taking place in the v -th i.p.p.

(b) The basic equation of information system.Let P(k, 83 t)
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denote_a p.d. of the instaneous states of the oprocesses
K(t), S(t). A set of differential equations describing the a-
bove mentioned p.d. as a basic characteristic of the informat-
ion system behaviour, shall be derived. Iet the distribution
P at a time-instant t + At be considered as a function of
its value at a time instant + :

P(E, 5; t+ At) =Pk, 55 %) + [ | [1- By At + O(At)]x
(n,m)
x[1- ap(e) + Ate0CA®)] + 2.2 ) . BCE', B5b)x
n {v}; {k',s'}
x[qn(i(n)’ snli('n)’ 2 EEV)’ Bl k. BEY O(At)] 2 (13)
If we substitute the expression (12) into (13), open the
parantheses, take the therm P(k, 8; t) over to the left side,

divide both sides of the equation by, At and pass to the
limit at At — O , we obtain the result: '

‘_;; P(k, 83 t) = -P(k, 83 t) [Zm',]%m + Zn:a’n(s;)] +

+ Z Z Z:,_‘ P(E’, E';‘ t)'qn(i(n)’Sn|i('n)’sr'1’EEV)’s\:)’
o {v}, {¥"53 ‘ (1)

which should be completed by the requirement
Z P(k, 53 t) =1 for every t € [O,eo)(']q,a)

{E,3}

4, Final Remarks

Despite its complicated form it can be remarked +that  the
basic equation (14) is equivalent to the matrix equations of
the general form

d ~ ~ ~ & s

— P(t) = * < BGE 15

e ( Q () , (15)
where P(t) 1is a column-vector of the probabilities P(E,E;t),

k, 5 € {E, E} (in general, of a countable set of components),
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and 3 - a corresponding infinite square-matrix of the con-
stant coefficients depending on the properties of the informa-
tion system, as is evident from the equation (1#). A possibil-
ity of getting a numerical solution depends on the form of the
particular matrix E : which seems unreal if +the system is
very large and very compact, that is if the input and output
areas of every i.p.p. cover the whole system.However,the depth
of the functional relations is usually .limited if 'systems with
hierarchical structures are considered.
A formal solution of equation (15) is a matrix function

Bo) =F, e =B > LFw-t), (160
p=0 9!
where ~ ~
P,= P(t)tgto (16b)

is the initial state. The practical sense of this formal solu-

tion consists in that it is possible to get some approximate

numerical solu’ ‘ons, if necessary. On the other hand, the gen-

eral form (14) or (15) makes it possible to get some asympto-

tical geheral results. We are usually interested in estinating

the system behaviour at infinity, t —» oo . Putting (d/dt)P(t)
=0 in (15), where D isa null-vector, we obtain

-7 =0. (17)
Since we are interested in the non-trivial solutions of
this set of linear equations only, the requirement

Det Q@ = O (17a)

follows immediately. The latter can be regarded as & necessary
condition of the information system’s probabilistic as aptotic
stapility. ;

Another problem arises if a soluticn of the basic eguation
(14) is known, and it may be formulated as follows:iwbat infoxr-

mation concerniug the continuous random variables L, V, de-
scribing the information measure spd value, can be extracted

from the solution given in a discrete form.
Let {I} X {V} denote an uncountable set of all possible
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information measures and values: the set {I} is a non-nega-
tive half real axis, and {V} is a "non-negative™ cone of a
E-space. Let a partition of {I} X {V} into M  measurable
non-overlapping cells W1, W2, ceey WM be given in the form
of a conditional p.d.f. u(kli, v). Let use consider a random
vector-variable:

K, -2 |
LRy TR T+ eee t > Endi, ", (18)
K a0 1 =0 M

where: (I, V).atM denotes the conditional vector variable (I,V)
supposing its value belongs to the cell Wm, and K1, seny KM
are discrete random variables described by the p.d. P(k, s).

The p.d. sought for can be obtained in the form of a densi-
ty function by applying the Bayes formula

(i, v) * uCkli, v)

i, |E = — o
w(i, vik) P(E) ’ (19)
where
P(k) =Z_ B(k, ) , (192)
{s}

p(i, v) 1is a p.d.f. of the random variables I, V,which is
given a priori on the basis of observations of the input mes-
sages coming from the over-system. The solution of the basic
equation (14) given, the original continuous variables Eig Vi
can be reconstructed on the basis of their quantized represen-
tations.
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