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A GENERAL METHOD FOR THE DESIGN OF LINEAR
AND NONLINEAR CONTROL SYSTEMS

P.M. Frank, Universitit Karlsruhe, Germany

1. Introduction.

Conventional design of feedback control significantly concentra<
tes on a few prototypes of easily realizable controllers, the pa-
rameters of which have to be adjusted in such a way that optimal
results within the predetermined limits may be obtained. The mo-
dern practice of direct computer aprlication in control loops,
however, makes it possible to realize even the most complicated
controller structures. Consequently, the restriction on the con-
ventional controllers can fall away and the request for optimal
control structure becomes of real practical importance. From this
poinggview,the essential two questions are:
i.) Which is the best possible control of a given plant,
at all, i.e. what are the inevitable control errors?
ii.) Which is the simplest way to find out such a controller
as to come nearest to the ultimate physical limitations?

A lot of mathematical expence and many complicated studies of sta-
bility are necessary to answer these questions on the basis of the
single control loop, because the problem of manipulating the plant
has to be solved concerted with the stabilization problem of the
closed loop in one single unit, the controller.

This paper deals with a new concept of feedback control, by which
the manipulating problem and the problem of stabilization can be
solved geparately. This concept makes it possible to determine the
inevitable control error and conclusively leads to optimal reali-
zable controllers for linear plants as well as for nonlinear ones
without particular mathematical expence. In order to find suitabile
technical solutions, approximations with regard to the special tech-
nical circumstances will be necessary.
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2. Specification of the Design Method.

2.1 Basic Control Concept.

Fig.1a shows the block diagram of the control loop, on which the
design method is based, for linear conditions. A dynamic plant mo-
del S' is connected in parallel with the disturbed plant (transfer
function S(s)). If no disturbances enter S' and if S' simulates the
plant perfectly (S' = S), the output signal of S' represents the
nanipulated response xy of the plant. By substracting this signal

from the controlled variable x, the signal x_, is compensated and

y
only the disturbed response z is left over. From -z and the refe-
rence input w the manipulated signal y is generated by means of
the two units N, resp. N_. In the following we will call them ma-

nipulating systems.

Since xy has no longerany influence upon the input of Nz’ the clo-
sed-loop system (fig.la) can be replaced by an open-loop system
as shown in fig. 1b.1 The controlled variable in the frequency do-

main becomes
X(8) = N (8)S(s)W(s) + [1 - N,(8)S(s)] 2(s). (1)

If no noise is superposed on the reference variable w, it follows
from equ.(1) that, in order to obtain ideal control (x ¥ w), the
transfer functions Nz(s) and N'(s) must exactly equal 1/S(s). Ge-
nerally, 1/S(s) is not realizable and must, therefore, be approxi-
mated sufficiently. It is important now that the quality of this
approximation has no influence on the stability of the closed loop.

By a simple block diagram transformation, the feedback arrangement
considered can be converted into the classical single control loop
as shown in fig. 1c. The corresponding feedback controller consists
of the manipulating systems N, and Nz, the latter being fed back

positively by a model of the plant. If N, = N, = N, the equivalent

z
controller transfer function becomes
N(s)
R(8) = —mmmm . (2)
1-N(8)S(s)

Note that for the performance of ideal control, i.e. for
H(s) - 1/S(8), equ.(2) yields R(s)-*-R_/Si(a) with R+ . This
is the same result as in the case of single feedback control loop.



From the control configuration outlined above, a simple controller
design can be developed. Let us assume for the first that the dy-
namics of the plant are known and constant in time and that the
plant is stable. Poles of arbitrary order may, however, occur in
the origin of the s-plane. Unstable plants should be stabilized
first by an auxiliary feedback loop which later on can be combined
with the controller. The essential steps in controller design are

now:

i.) Simulation of the plant
ii.) Approximation of the inverse plant model 1/S by the two
manipulating systems N, and N,. (Spoken more generally:
Performance of an optimal open-loop control of the plant).

This method of design has an important advantage over the direct
method based on the single control loop: That part of the control-
ler, which is responsible for the stability of the closed loop,

is known from the very beginning. The problem left over is a pure
open-loop problem which can be solved without regarding the sta-
bilization problem. Besides this, since now w as well as z are
available separately, the control loop can be simultaneously opti-
mized both for reference inputs w and disturbances z even if the
characters of z and w are different.

2.2 Evaluation of the Inevitable Control Errors.

For the determination of N'(s) and Nz(s) we have to note that both
the reference input w(t) and the dominant disturbance z(t), which
has to be compensated, are usually superposed by additional small
disturbances ul(t) resp. zl(t). From the practical point of view
it is convenient to require that in the ideal case no reaction to
wi(t) and zl(t) is startet in the controller. w,(t) resp. zi(t)
may, for example, be noise of small intensity being present in any
physical system.

If the plant is simulated exactly, we get for the controlled vari-
able in the frequency domain:

X = Ns[w+ w] +[1- st][z + 2,]
The ?ontrol error must now be defined as

X' = y -X + 2

1°



So we have

x, = [1-N3]v-nNsw - [1-N8]z + N 52, | (3)
~ ~~ - ~ ~— S
Xyr Xwz

On the other hand, the errors of manipulation caused by nonideal
realization of N' and Nz are

1 1
B [§ =S Nv]" - NWys E, = [§ i N;]Z = By W)
Combining equation (3).and (4), we find
X, p(8) = S(8)E (s); X z(8) = S(s)E (s). (5)

Ir Nw(a) and Nz(s) are determined in such a way, that any preccri-
bed performance criteria '

Q{x,p(t )}

NEWE)

are minimized (see next paragraph), the resulting control error
can be explained as to be the inevitable error. Thus, the inevitab-

Q{en(tr=a0)}

Q {e ()% s(t)}

le error can be calculated immediately from equ.(3).

2.3 Determination of N'(s) and Nz(a) for Continuously Acting Control.

Actually, the disturbances wi(t) and zi(t) are to be filtered out
as well as possible by N'(a) resp. Nz(s) according to a certain
performance criterion Q' resp. Qz‘ In respect to w(t) ad z(t),
however, N'(s) and Nl(s) has to approximate optimally 1/S(s) (pro-
blem of optimal filtering). In any case, the optimal manipulating
system must be physically realizable. Therefore, the impuls re-
sponses n'(t)-Fnd nz(t) must disappear for t < O. The Fouriertrans-
formability gn(t)ldt(aa is often requested as a further condition.

As a basis for the determination of N'(a) may serve the block dia-
gram shown in fig.2. This block diagram results from a change of
the sequence of N and S in frig. 1b. Nz(s) may be calculated just
in a similar way; therefore we concentrate in the following on

the determination of Nw(s).
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The above problem is well known and solutions exist for many ap-
plications. For stationary statistical inputs w(t) and stationary
statisg%cal disturbances vi(t) and minimizing the mean square
error X p, the WIENER-HOPF-equation yields the following frequen-
cy characteristic1’2

N'(jw) =

w)S(-
1 - {"Vw( )s( .iw)}. (6

Vi (Jw) Y (w)

u

\y;(jaﬂ and TP;(jd) are those terms of the power spectral density
1Fuu00) whose roots occur only in the upper, resp. lower jw-plane.
These terms can be found out by factorizing the power spectral
density, VY, (W) = "F;(Jw)- '\#’;(jw). where VY, (W) = S(jw)S(-jw)V¥, ()
and WYVV(Q) is the power spectral density of the complete input

signal v(t) = w(t) + vl(t).

1pv'00) is the cross-power spectral density between the input
v(t) and the desired outputw(t).

RO { } symbolizes the operator of realizability. Its application
demands: transform the term in parantheses by means of the two-
gsided £:1-transfonm and afterwards transform the result back
again by means of the right-sided.ﬁ-transform. It is convenient
to develop the term in parantheses into partial fractions and to
omit those terms, whose poles occur in the lower jw-half-plane.

al al
If the reference signal w(t) is an aEeriodic‘deterministh one
and the disturbance wi(t) is of stationary statistical nature, -
the other conditions being the same as above - LEE finds =

2 2
Ny(§ ) = —3— o { MU SCge ) T
WYGw V()

al
W(jw) is the amplitude spectrum of the detenminist&@ input com-
ponent w(t)

V@ = Vi Y Gw - sts(-gen Wy, @ + Glwesei ]
where qy'l'l(“” is the power spectral density of w,(t) and ¢

is a constant.

For determination of Nz(juo, we have to replace w(t) by z(t)
and-vl(t) by zi(t) in equ.(6) and (7). By this means it is pos-
sible, e.g., to optimize the control loop for step characteristics
of the reference input w(t) as well as for statistical distur-



bances z(t) simultaneously.

We can also ignore '1(t) and zi(t) for the first. Then we have
instead of equ.(6)

Y (jw)
N, (jw) = — RO{ i } (8)
VY () S(jw)
and instead of equ.(7)
+
N Gw) = =i po{ LU}, (9)
U” (jw) S (jw)

where U’(ju) contains roots only in the upper jw-half-plane, and

can be found out by factorizing |U(ja»l2 =z |S(jw)|2lH(jw)|2. Since, .
usually, the degree of nominator of N'(jw) exceeds that of the de-
nominator, realigzation’'poles have to be provided additionally. By
choise of suitable locations of that poles, additional performance
criteria, for example time.:damain criteria, can be minimiied.

Naturally, any other performance criterion can be applied to instead
of tne mean square error. The arrangement conaidered above can also
be used for the design of time optimal control systems. In this case,
N' resp. Nz symbolize digital systems which generate the optimal

step series for manipulation of the plant. We will not enter into

this problemn.

2.4 Realization.

The feedback configuration considered may serve as a first step for
finding out the optimal structure of the controller. There are three
possible modes of realization:

i.) Continuously acting control (CC)
ii.) Direct digital control (DDC)
iii.) Hybrid control (HC)

It is an essential disadvantage of the direct realigation of the
controller according to fig. 1b, that the manipulated signals ge-
nerated in Nz resp. N' are not supervised. Mistakes as, e.g., cau-
sed by parameter variations of N' resp. Nz’ can yield steady sta-
te control errors. For CC and DDC, this effect can be avoided by
determining the resulting controller transfer function and reali-
zing it as a unity according to the single feedback device. Fre-
quently, simplifications of the technical realization can be
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achieved by such an operation. As for plants with distributed pa-
raneters, however, it seems that the transcendental terms of R(s)
must be approximated by rational terms.

The direct application of the feedback configuration (fig.1b)
using a plant model, is signalized by considerable clearness. Be-
sides this, it allows a new mode of controller realization, which
we call hybrid control: The plant model is realized in an analog
way, the manipulating systems are realized discretely, e.g. by
means of a digital computer (fig.3). The only purpose of the com-
puter is to perform optimal open loop control. Its algorithm gets
therefore, rather simplified compared with its use in DDC. Even
more important is, that in case of failure of the computer, the
control loop can never get instable.

In many practical cases, either the reference variable is zero
(constant-value control) or the disturbance variable and the refe-
rence variable have the same character. Then only one manipulating
system N is required, which has to be designed with reference to
w-z.(see equ.(2)). For the following, this simplification is as-
sumed. The results can be transfered without difficulty to the
more general problem N'(a) £ Nz(s).

3. Applications to some linear Plants.

3-1 Plants with Rational Transfer Punctions with Minimal Phase.

At first, let us consider plants with transfer functions of the
type
m
a ta,s+...+a s
)
sP(b +byset . s+b 5")

S(s) = (10)
where m, n, p 2 o and integer and m £ p + n. Moreover, no poles

and gzeros may occur in the right half of the s-plane. The physi-
cally realizable solution for N(s) follows from equ.(8) as

N(s) = 1/S(s). Substituting this into equ.(3), yields x, = O,

i.e. no inevitable control error appears in this case.

In respect to the technical realigability, additional realiza-
tion poles must be provided in N(s). Let us, generally, put up
the following expression for the technically realigable appro-
ximation of N(s8):
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Np(s) = —8)_ | (11)
S(s)-V(s)

where U(8) and V(8) are polynomials in 8, whose difference of or-

der must at least equalize the resulting order m-p-n of the plant.
By substitution into equ.(2) follows the controller transfer func-
tion

R(8) = —— grsi—- (12)
S(s) i} sf-i

The control error is

x,(s) = [1 - {831 wes) - [1 - 237 z¢e. (13)

A8 can be improved, U(s)/V(s) represents the transfer function of
the closed loop. The resulting order of U(s)/V(s) is prescribed

by S(8). The only problem still to be solved is to find aconvenient
expression U/V with the above mentioned limitation, so that a cer-
tain performance criterion will be satisfied. In practice, prepa-

red catalogs can be used.3’h

If optimal control for disturbances as well as for reference in-
puts is desired (fig.ic), U/V refering to W(s) in equ.(13) must
be different from U/V refering to Z(s).

If p> o and disturbances are to be compensated, which enter the
control loop at the input of the plant, V(8) becomes 1+c13+...+cqs
with q =n + p - m. U(s) must now be a polynomial of the order p,
whose first (p+1) terms equal those of V(s8). It can be improved
that the disturbance response diappears for t-sao.

q

3.2 Plants with Nonminimum Phase.

Let us now consider plants with transfer functions of the type
S(s) = Sl(s)'A(s), where

represents a minimum phase term and
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zt -1y c, s’

v
8

A(8) =

Sy

V=0

an all-pass term. The physically realizable approximation of
1/S(8) follows from equ.(8) as

N(B) = S—%T A;l(s), (12‘)

where Ak (s) symbolizes the best physically realizable approxi-
mation of 1/A(s). Since Ak (8) # 1/A(s8), an inevitable control

error appears:

X (8) = [1-a. (s)a(e)]u(s) - [1-a.1(s)A(s)]2(s). (15)
A technically realizable approximation of N(s) is
Al (s)
N!_(s) = Wm - (16)

In the simplest case, V(s) symbolizes a polynomial in s, whose
order equals the difference of the orders of A;l(s) and Sl(s).
More generally, V(s) is a rational fraction. The transfer func-
tion of the controller becomes

Al (s)
‘ ) v(s)- AL s)a(s)

R(s) = (17)
Equ.(17) represents the optimal linear controller structuretech-
nically realizable and equ.(15) the corresponding inevitable con-
trol error. If, in the case of step inputs, ISE is the perfor-
mance criterion, then Ail(s) = 1. For plants with pure all-pass
character (S (8) = 1) we then find V(s) = 1. The transfer func-
tions of controlleré'pure all-pass plants up to the order 4 are
the following:

All-pass A(s) Controller R(s)

c -8 c
] 1 o1

004'8 E + 2— —8- (PI)

c _-c. 8482 i
-c.8+8 c
o 1 1 o1 !

e + = ¢ s (PID)

c°+c13+§? 2 201 8 Zc1



2_g3
- <+ -
co 015 CZS 8

1
+ + (PIS)
c°+c134c252+s3 27 3 z(az+c1)

(18)

[ [ [

3 (-2 - —13 - 2)s
C =C,.,847..48 [ [ [ [
0™%1 1, 1 g “icH 1

Sopia -8 1ol 542 42 23 = (PIDS)

c°+c130...+3u 3 1 8¢ + —

3

For all-passes of higher order, additional S-terms(undamped os-
zillating systems) appear in the controller transfer function.

3.3 Plants with Distributed Parameters.

Let us first consider plants whose transfer function consists
of a dead-time and a rational minimum phase component:

-T.8 a_+a,s+...+ 8"
S(s) = S,(s)e © ; 8,(s) = 22 “n — . (19)
b°+blsf...4bns

The physically realizable approximation of 1/S(s) is

A 1
N(8) = §;T§7 NT(B)n (20)

where NT(a) means the optimal, physically realizable approxima-
tion of
+T .8
& B

The unavoidable control error becomes

-T.8 -T.8
X, (8)= [1-Ng(sde © Ju(s) - [1-Np(sde © Jz(s).  (21)

By inserting realization poles, we get for the controller trans-
fer function
Nn(s)
.1 S
R(8) -W——_T—t—s . (22)
V(s)-NT(a)e
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The controller consists of the manipulating system NT/(SIV)’
which is positively fed back ough the plant model S; the order
of the polynomial V(8) results from the difference between the
orders of HT(B) and Sl(s). By finding out suitable coefficients
of V(s8) the control loop can be optimiged. Since the control loop
is extremely sensitive to dead-time variationa,it is convenient
to consider such variations by the determination of V(s): The
smaller the bandwidth of V(s) is chosen, the less sensitive is
the control loop against parameter variations. More in detail
this design method is treated in another publication.5

As for plants with distributed lag, whose transfer functions
are of the type
-(Ts'

S(8) = Sl(s)e
(81(3) as above), this method succeeds as well, but the mathema-
tical expense in-creases on account of the bad {-transformability of
e-fT?. Additionally, the technical realigzation becomes more ex-
pensive, because even the controller contains distributed lag.

In this case, the hybrid arrangement of the controller seems to
be advantageous.

4. Application to Nonlinear Plants.

4.1 Basic Control Concept and Design Technique.

The method described may be even more advantageous idcase of non-
linear plants. Here the stabiligation by means of plant simula-
tion yields a remarkable simplification of the controller design.

Fig.4 shows the block diagram of the control loop for nonlinear
plants, when the disturbances gz(t) enter the control loop at the
output of the plant. Let us assume that the plant can be repre-
sented by a nonlinear characteristic NL and a linear transfer
function S(s). The essential steps of design are:
i.) Simulation of the plant in the positive feedback
path of the controller (for purpose of stabiliza-
tion of the control loop and extracting the distur-
bed response).
ii.) cascade compensation of the plant (for the purpose
of optimal control).
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\

According to ii.) a manipulating system must be found which com-
pletes the dynamics of the whole cascade to a transfer function 1.
‘'The system to be determined may consist of a linear component N(s)

and a nonlinear characteristic NL .

As in the linear case, the transfer function N(s) can be found |
by an approximation of 1/S(s).

Additionally, a realizable nonlinearity NL® is to be determined, \
which has to accomplish the following condition (see fig.5):
the ideal case, it is desired that the cascade of NL*® and NL is J
a linear system with the transfer function 1. If NL symbolizes a 1
statical characteristic, NL* represents the inversq’characteristic
of NL.

In many cases, this postulation is physically realizable, as e.g.
for quadratic characteristics etc. There are, however, a lot

of characteristics, whose inverse characteristic is not realizable
exactly, as e.g. those, whose slope is zero within finite regions
(saturation, dead zone etc.). The more general formulation of

the problem is, therefore, to find out that realizable nonlineari-
ty NL* , which minimizes a given perronmance'crite:ion Q{x'}(see
fig.5b). NL® is not any longer restricted to be a statical charac-

teristic.

4.2 An Example of Application.

To demonstrate this method, let us considerthe design of a conti-
nuously acting controller for a first order plant with saturation
on the following terms: When the reference input is a step function
W G(t), the control error x, may go to zero (with a tolerance of

9w1th-1n the shortest tlme possible TA (time-optimal continuous
control).

Fig.6 shows the arrangement of the control loop. At first, the plant
has to be simulated in the positive feedback path of the czontroller.
The linear component of the manipulating system is a phase lead sy-
stem (1 + Tls) with a realizing pole at 1/T. The value of 'C/T1
should be taken as great as possible.

The nonlinear component NL* can be found by the following conside-
ration: If there is no saturation or if NL can be perfectly com-
pensated, the optimal shape of the manipulated variable y1(=y°)
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is an impuls function with the amplitude onllz (see fig.T7a).
The resulting step response of the control loop (see fig.Tb, cur-
ve 1) is an exponential function with the time constant C. By the
effect of saturation,the term of y,, exceeding the limitations
Yme is cut off. Consequently, the step response is retarded as

shown in fig. Tb, curve 2.

The inverse characteristic of saturation is on principle not re-
alizable. The best what can be done in view of a short transient
time, is to retain the manipulated signal at the limitation n
for a longer time. The extension time Té = TB must be nearly pro-
portional to the intensity of the overshoot. Fig.8 shows a cir-

cuit for realizing this.6

The corresponding step response of the closed loop is shown in
fig.7b, curve 3. x follows the time-optimal curve with the time
constant T1 by Té. At the point Té, y4 steps back to the shape
of Ve and x rollows,thererore,curve 1. Fig.9 shows the corres-
pording analog circuit of the controller.

The transient times T,/T, (without use of NL¥ as well as for

use of NL%) are plotted in fig.10 for T = 0,1 Tt as a function
of the tolerance J¢{. Parameter is W,/Y¥p,- When the steps of w(t)
and the tolerances £ are small, considerable diminutions of TA
can be obtained by use of NL*. The curve in broken lines repre-
sents the linear border line, where the amplitude of the impuls
just touches the limitations Ym* In the region above the border
line, the control loop effects like a discrete time optimal con-
trol and in the lower region like a linear control.

In this way we obtain a'nearly time optimal continuous control,

which, in practice, does not differ considerably from the ideal
time optimal control, but which actuates linear in the case of
small inputs. This is a real advantage, since no oszillations
around the rest position appear.
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Pig.9 Analog diagram of the controller



25 25 \
\ Ia
 ; \\\\\ K Tzo!\ \
‘ ‘\\ NN
\\\&\\T,; ; \ N \ Vi
NN RN
\'\\ P ~'\\
| \\\QG \ \\~0'8\
AR ehoeris
I S B A =
00 10 20 30 40 50 00 10 20 30 .40 50
1€1%6 I€1%

Pig.10 Relative transient time TA/TI as a function of the de-
sired tolerance / £/ for different step inputs LS

and T 20,1T,

a) without NL™
b) by use of NLY

14



22

AN ALGEBRAIC METHOD FOR FOLLOW-UP
SYSTEMS® COMPENSATION

by Klaus W. PleBmann
Technical College Aachen, German Federal Republic

Te Introduction

Optimum design of sequential systems has been dealt
with by different suggestions published in professional
literature1’2'3. Moreover, cascades have been specifieda’5
wnich improve the dynamic behaviour if the simple cascade
control loop does not deliver the required results because
of the structure of the path. There are also to be mentioned
those suggestion56’7 which make it possible to determine
compensating elements from the function of the input signal,
tne given line path and the admissible output signal through
1 quadratic criterion,

Our further discussion shall be based on Figure 1,
where w stands only for discontinuovs changes., Furthermore,
#(p) is linear. ITAE criterion ’

@®
f/W-x/ t., dt —-e=min (&D)
o}

and statements

4
v = W 2
and
;‘5:5223_91, (3)

pake possible the numerical determination of standard
polynominals according to equation (2) and standard
functions according to equation (3) for numerator and
denominator polynominals of different order 8’9. The re-
sult are standardised functions which are listed in tables
1 and 2. These functions may be transferred to any given
time range by means of a suitably selected factor. The
following shows how to transform sequential systems to the
form of equations (2) and (3), respectively, by means of
compensating elements.
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2. Transformation into Standard Polynomial Form

2.1 First Method

A sequential system according to Figure 2 is given
with specified frequency responses FS1 and Fsz. x/w is
being transformed into the form of standard polynomial
according to equation (2) by inserting a compensating
element K as shown in Figure 3.

We have
x = Fgq Fg, (w=x) (4)
x, =Fg K (w-xq) + X (5)
and from this
1 =
E =(Fgq Fgp (N-1) - 1) e (&)

If we base the transformation on equation (3), we

obtain
Faq Fo, (Q-P)
K.—.<81 S2 -1 ; (7)
- S1

Our further studies can be based on equation (6) without
restricting the generality since the therefrom resulting
relations may in the same way be applied to equation (7).

If K is

E(p) = ,%{-g} (8)

it follows directly for the realisation:

order ZK(p) = order NK(p)

This restriction for the selection of N(p) which has
not yet been discussed is of great importance. We shall give
you the statements on this using a simple example in the
following:

We have

Cr
Fs1* g2 = T OO (9)

and
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N-1 = 4P + «ecee + an_1pn'1 + anpn (10)

and, thus, we obtain from equation (6) by the simplifying
assumption

iy 4, 1
¥s1 = T+ pT

for the compensating element

C (aﬂp PLRIE . o
. R
= =( P (1+pT)m;1 -1> e

Cplagt «ee + D% = (14pD)™
) (1+pT) "2

Finalliy we get for n=m

= o CRa1-1+(cRa2-(m-1)T)p+...+(cRam_1_($:;)Tm-2)Pm-2 +

(1 + pD)02

. (cR_Tm-1)pm—1 %

oy applying the binominal theorem.

The above-mentioned realisation condition is valid
iT we conclude
m-1 _
cg - n =0 (12)
If we take line paths according to equation (9),
e get

l. Order ZK(p) Order NK(p)
2. Order N(p) = Order Fg,(p) « Fg,(p)

Order N(P) - 2

3, Order ZK(p)

The realisation condition is to be tested corresponding-
ly and a set of secondary conditions is to be derived'(as in
t1is case according to equation (12)) if the compensating
method discussed so far is to be used, but where the fre-
quency response of the line paths is different.
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On the basis of the given frequency response of the
line path, the total line path should be divisible into two
paths, it is possible to derive the frequency response of a
compensating element by simple algebraic means, whereby the
frequency response transforms the overall transieat response
of the closed circuit into the form of standard jolynomial.
In most cases there will occur secondary conditi 'ns because
of the realisability of E(p).

If the frequency response is not given, but loci x/w and
x2/w are given according to Figure 4, the derived method may
still be applied, only that the compensating element is
determined graphically. Outgoing from describing equation (&)
for K(p), the locus therefore may be determined point by point.
The starting point must be equation (6), just the same as in
the algebraic method.

We have
X
7 F = Fgqe Fgp
and
xy
v = Fm
and, subsequently,
= AN 1
K = <F(N 1) 1) i? (13)

It must be considered that F and FS1 are given only
point by point. Thus, the construction requires one in-
version, one subtraction and two multiplications. Graphical
multiplication of two complex magnitudes is indicated in
Figure 5,

The known characteristics N(jw) - 1 are taken as
basis, Fs1(ju1) is inverted and, thus, equation (13) can be
constructively processed.

Figure 6 shows the construction for one ; = 1t of K.
The following points are given:
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N (‘”1)‘1 Point on the chosen standard locus

Fq (u;1) - Point on the inverted characteristic Fs1(j\u)

F (wy) Point on locus %

By multiplication of N (qu)—1 with F2 (UJ1) we get
point A (011), then .
and, finally, wanted point K (UJ1) by multiplication of
3 (w,) with F; (wy).

Naturally, with this construction only approximate
values can be found which mainly depend on the accuracy of
the irawing. Another difficulty is due to the fact that
N( jw)-1 must be selected before carrying out the design.
4 close relationship exists between the selection of this
value and the realisability of the compensating element as
has already been described above. It must, furthermore, be
considered that the frequency response required for realisa-
tion must oe determined from the point-by-point acquired
locus of K(jw). Thus, it seems advisable to start with an
aporoximation for K (jw), for instance by assuming

£ GGw) = v, 1+ iway
‘ T+ Iwe, (14)
or
V5
K (jw) = (15)

14 jula2+(jw)2b2

Studies have shown that quite good results can be
cbtained with these approximations, for which three points
each are required in the design, without too much expen-
diture (see Section 3 on this).

2.2 Second Method

‘Ne have mentioned already at the beginning that special
compensating methods for sequential systems have been
suggested, With reference to these method56’7 let us examine
2 system as shown in Figure 7.
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We have, with line segment Fs(p) being known:

1 1
FCTEWESN. ., (16)
and
F =g i

Equation (16) and (17) give

1
letn » o § 18)

Since in real systems the linear loop of the circuit
has only one single point which is stable, this part is
changed into a compensating element K(p).

We have
K = wRoTy- (1
or according to equation (3)
| L e bl (20)
Fg Q-P)

It is out of question that this method can also be
dealt with and evaluated graphically. The r esulting con-
struction may be regarded as a special case of the Iir3t
method. In contrast to the above-mentioned method no
secondary comiitions are required for the realisation of
the element to be constructed according to equation (20).
The order of the standard polynomial or the standard
function is only a function of the order of FS(P).

2.3 Numerical Application

Especially the second method can be applied in
connection with a DDC. Thereby, two items are of importance:

1. Optimum adjustment of the circuit is obtained by
irregular changing of w for x(t) according to
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equation (1). The computer co-operates with a
multitude of circuits, except some special cases.
Therefore, w may be regarded as step function
for each computing cycle with good approximation.

An algorithm can be derived from the describing
equations for K(p) by means of the methods of Z
10), this
algorithm can directly be programmed. In this
conjunction, the algorithm for K(p) may be re-
garded as digital filter.

transformation or special methods

It should also be mentioped that this optimisation
method delivers not only the approximate (by means of
graphical design as above-mentioned) but the optimum guide
action (with the parameters of the line path being known)
#ith regard to the ITAE criterion. :

3.  Example
Let us assume we have the following frequency responses
N '
Fg1=7+3
1

7 -

82 3 p(1+p)3

hen we have

-

A

1 + 0,3047p — 0,6634p° — 0,8513p-
1+ 3p + 3p2 + p3

2,261

aking, tnereby, into account the realisation condition
ad equation (7).

H(p) resulted from line 5 of table 1 on the basis of
1e above-mentioned considerations. x(t) is plotted in
.gure 8. Let us take the loci of the discussed example
:d make the following statement for the compensation

v

K =

1+ a2p + bégz o
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The following pairs of values result from the con-
struction of K - 3 points -

1,9 = § 1,12

1 .
Wq= 0,2 55— ¢ B

0,41 - j 1,76

1
Wy = 0,6 —553 P,

1 .
Wy= 09 5o~ ¢ F3

- 0,19 - j 1,61

and, subsequently,

e 2,31
£, 2
1+ 2,25p + 0,69 p

If K is applied in the sequential system according to
Figure 3, we have a time behaviour of x(t) as plotted in
Figure 9.

4, Summary

Two methods have been described which - on the basis
of standard polynomials or standard functions, make it
possible to determine compensating elements by means of
simple algebraic transformations. Secondary conditions
result from the line segment to be given with regard to
the selection of polynomials or functicis taking, thereby,
into account realisation conditions.

It has, furthermore, been demonstrated that the
suggested methods may also be applied if the loci are
given. In this case it is possible to evaluate the compen-
sating element to be determined by approximation. This has
been proved by experience and means a simplification of the
resulting construction. The results of calculation and con-
struction have been demonstrated by means of a simple example.
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N(p)

1+p

’l+1,497p+p2

142,171p+1,778p +p3

142,645p+3 5 337D°+1,951p+D |

143 5 261D+ 689D 244 , 5D +2,075p " +D”

OO [ FITSTNO] -]

143, 777046 , 8660247, 118D 45, 687D 142, 24p”+°

Table

1 Standard Polynomials

Order

2.1

P(p) = 142,595p
a(p) = 142,98p+p°

3.1 |P(p) = 1+3,512p
Q(p) = 1+4,226p+2,791p%+p>
3.2 |P(p) = 1+1,375p+2,069p°
Q(p) = 1+1,857p+2,733p24D°
4,1 P(p) = 1+4,764p
A(p) = 146,069p+6,892p243 ,425p +p "
4.2 P(p) = 142, 06p+3, 36P
ap) = 1+2'841p+5,268p2+3 238p2+p”
.3 |P(p) = 1+2,075p+2,159p°+1,833p°
Q(p) = 1+2,602p+3,276p°+2,987p +p"
5.1 |P(p) = 1+9,213p e
A(p) = 1410,696p+14, ?36p2+10 273p+3,304p 4D
5.2 |P(p) = 1+1,25p+3,199p°

Q) = 142, 71945, 8180245, 090342, 89p+p7
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Order ®
5.3 [P(p) = 142,462p+2, 313p°+2,926p°

Qp) = 143,337p44, amP?+g 77§8p3+3 339p*+p°
5.4 |P(p) = 1+2,738p+3,505p°+3,339p"+1,186p

Q(p) = 143,36545, 292p2+5 771p3+3 478p*+p”
k.1 |P(p) = 1+46,806p

Qp) = 148,989p+16,975p°+15,609p°+9,905p *+2,992p°+p°
.2 |P(p) = 140 5%P1’39818p

Qp) = 1+2,475p+6,638p +8 ,926p>+7,192p"*+2,949p?+p°
6.3 |P(p) = 141,267p+3,142p°+2,52p°

Q(p) = 1+2,621p+5,861p2+8, 08p3+6 935p*+2,76p”+p°
.4 |P(p) = 142,862p+4,266p°+3,816p-+2,772p

Q(p) = 143,752p+7,144p%+8,513p°+7,634p '+3,692p”+p°
.5 [B(p) = 144,092045,951p7 248, 466D +4 , 469p +p5

Q(p) = 144,521p+7,729p%+11 061p3+8 183p™+4,201p”+p°®

Table 2 Standard Functions
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Figure 1 Sequential System
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Figure 2 Tested Cascade Control Loop
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Figure 3 Sequential System with Compensation
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A SIMPLE PROCEDURE FOR THE SYNTHESIS OF
SAMPLED-DATA CONTROL SYSTEMS BY MEANS
OF THE BODE .-DIAGRAM TECHNIQUE

Wolfgang Latzel
Brown Boveri & Cie
Mannheim
Deutschland

Introduction

The analysis and synthesis of linear sampled-data control
svstems has advanced so far that the main problems can be
considered solved. ¥When representing the sampled-data system
by means of its z-transform one may state on the basis of
certain criteria whether the roots of polynomial Fo(z) are
inside the unit circle.T’2 Considering the time domain a
general calculating scheme is obtained to determine the con-
trol function for a dead beat response at a given controlled
system of class N and a discrete controller of class N.3’4
To reduce theequipment it is advisable to choose class n of
the controller smaller than class N of the controlled system
thereby increasing the calculating operations to determine
the control function.s’6

Jo to now there exists, however, no convenient procedure to
calculate the coefficients of the controller from the re-
presentation of _the controlled.system by means of the Bode
jiagram as this is the case with continuous control systems.

Such a procedure would be of advantagé as its mode of repre-
sent2tion will be based on the description of continuous
systems where the sampling effect will be considered by an
idequate correcting function. In addition, the relation
vetween cutoff frecuencies and gains in the Bode diagram

and the controll:zr coefficients remains clear, whereas it
will be lost in the computational procedures. It will be
shown that with the below mentioned procedure only an
approximate dead beat response will be obtained which does
20t have the high parameter sensitivity caused by a setting .
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according to dead beat response.

Problem

The considered sampled-data systems consist of a controlled
system governed by a differential equation and a sampled-
data controller described by a difference equation.

The sampled-data controller consists of a scanner with zerc-
order holding device followed by a correcting element formed
in a digital computer. After being sampled in the holding
device the continuous deviation xw(t) is converted into
the stepped deviation xh(t). The manipulated variable v{t)
which is also stepped is calculated in the digital computer

and applied to the controlled system.

Between the Laplace transforms Xw(p) and Xw*(p) of the time
functions xw(t) and xw*(t) ahead and behind the scanner with
the sampling time T (distance between two sampling moments)
there is the relation:

X0 =3 Z X (pryx0)  a- (1)

The holding device with the correcting element of class n
(see Fig. 1) has the transfer function:

-pT -pT
Y i 1-e do+d1.e L T F L dn.e
——121- = B —
X*(p) P 1-c,.e i A cp-®

-npT

-npT (2)
The calculation of this correcting element is to be per-
formed directly by means of the Bode diagram. It is acvisable
to start with the transfer function in the basic strip with
k=0. The influence of the suppressed harmonic oscillations

of Eq. (1) will be investigated later. The transfer function

of the complete sampled-data controller in the basic strip
is:

_e~PT -pT -npT
Fpo(p) = (P} 1-e d +d,.e P+ ...+ d .e -

(3)

X,(p) L pT 1-c.,.e"pT = wve =cCp.€

The coefficients Cy» di of the sampled-data controller
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snould be calculated in such a way that with controlled
systems of higher order (N> 2) an approximate dead beat
r2sponse with a correction time of 3 to 4 sampling periods
wiil b2 obtained. It will be shown that the cases n = 1,2,3
are sufficient.

Ihe procedure for the synthesis described below appliés to
any sanpling time T compatible with the stability of the
srstem. The max. value of T permissible for the stability
ani for the desired time response can be determined by means
oI <this oprocedure.

1) The description of the first-order sampled-data controller

nv means of the Bode diagram

For the case n=1 the socalled PD-sampled-data controller is
obtained with the transfer function in the basic strip:

_e~PT -<pT
on(?) - 1-e : do+d1.e T .(4)
pT 1-c1.e-p
In order to find the frequency response pertaining to this
transfer function the known transformation 2_1 = }f% of the

Z-plane is applied to the w-plane. To obtain the same dimen-
sion for the freguencies p and w, it is advisable to express
this transformation as follows:

-

'rl
g

e . % D=0+ jw WwW=u+ jv (5)
1+W3

2
~AfTter this transformation has been applied to the z-depen-
dent nortion the transfer function is:

. A
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with the abbreviations

d_+d
V= 1°_c1 (7)
1
T d d
Ts 7 T, (8)

From the w-dependent portion the following statements on the
coefficients can be derived:

In order to have a rate action it is necessary that Ta2> %
which yields:

i o, d, < 0.

It is necessary that c1<50, should the feedback by cq
result in an improvement as against the case cq = 0.

An explicit form in p which can be used for the direct
description in the Bode diagram, is obtained by the re-
transformation of Eq. (6) for the range of small and high
values of /w/.

On account of Eq. (5) w = p holds for ‘w§‘4:1, and thus
we obtain from Eq. (6):

Py= V' (14p,) (9)

For lea]$>1 we extend Eq. (6) by 1+w§ and transform, at
first, the following term:

it
1 + wE s 1-31
1+c o
1 . _-pT (10)
1+w§ 1-c1 e

After adequate extensions we obtain for the remaining term:

2 (11)

F" wT wTa wT
= W r=—rgs = V. T L —
1 L g D
pT (1+w§) a pT.(1+w§)
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The *erm in brackets is the transfer function of scanner
and hclding device in the basic strip so that Eq. (11) is

FI = V.pl,. [qu(p)] 5 (12)

Since T 2 w, the validity ranges for Eq. (9) and Eq. (12)
ars ch"Waoo-ng sufficiently so as to allow a combining of
~is =we ecuations. With the function according to Eq. (10)

cne finallry obtains

Yy
3
1]
<t
-
+
(o]

Ty)e [Fot®)] 2 - 122 (13)
1-01.e'pT

Thus, we have succeeded in representing the PD-sampled-data
contraller Yy a product of two transfer functions where the
Zirst cne describes the ideal continuous PD-controller and
tns second one the effect of sampling and of the feedback

ine transfer function

I i _pT
?}1 {o@ TcH =‘1 e : 1tc T (14)
- ¢t plr 1+c .e

ars shown in Fig. 2. An increase in ¢ reduces the phase

argie in the range w= 0... Z and results in a growing
incrsase ciose to half the sampling frequency 3 = T At
c = 1 the correcting fuction has a singular point.

-

An improvement of the control action by the feedback variable
c. = -c is to be expected if cy = -0.6...-0.8 is chosen.
Then, the amplitude increase at Pl remains within reasonable
limits, whereas the phase angle is considerably reduced com-
vared with the case ¢y = 0.

Afrer selecting c, we obtain for the coefficients do and

da = ¥al1= 1'). [T_ 5] . (15)

element c,. The frequency responses pertaining to the correct-
L g
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d, = -V.(1-c). [TT&-%] (:€)

The deviations between the frequency response representations
according to Egs. (4) and (13) are below 1 dB in the range
= O..;%. At the ratio Ta/T = 4,3,2,1 and a frequency of

'% the phase error is only 50,60,90,170; at lower frequencies
it is correspondingly lower.

2) Instructions for the adjustment of sampled-data control-

lers to continuous controlled systems

Generally the adjustment of sampled-data controllers to
continuous controlled systems is based on the dead beat re-
sponse where the controlled variable is approaching the value
of the reference input within a given time. A controlled
system of class N requires a sampled-data controller of

class N where the time response has N+1 switch points.

If class n of the sampled-data controller is chosen smaller
than class N of the controlled system, only an approximate
dead beat response has to be expected. The dimensioning of
the coefficients is based on the requirement that the
quadratic deviation integral for t > nT becomes minimum.

For this case extensive calculating operations are required.

For the representation by means of the Bode diagram we ob-
tain relatively simple adjustment conditions provided the

time response pertaining to the approximate dead beat re-

sponse can be given.

Experience has shown that controlled systems of higher clas-
ses can be controlled without overshooting with a time re-
sponse to be composed of three third-order parabolae with
the relation:



e = kE) (17)

During the three sampling timeswith the length Tm/3 the
manipulated variable is constant and assumes the values
(see Fig. 3)

v= 52
I=Vmr ~=¥nr Ip
3y integrating three times, x can be described as a sum of
four third-order parabolae ( with o (t) for the step
function):

G Tad 25 T 28 13 2T
K(D)rg | 0 (-3 D) . o (=Bt g®) . O (- g)

i S A
26103 o (8- (18)
By means of the Laplace transformation we obtain for the
desired transfer function of the closed control loop

{ +¢ 1 .
{to be denoted as Fwopt)'

-pT_/3] 2
= (p) 2 1-e a2
~wopt me;3

This involves the following transfer function of the open
control loop:

(19)

[ 3 -me/3] 2
Foopt(p) =[;T:/4 R b'e_mefjl 3

Its freguency response is shown in Fig. 4

(20)

At low frequencies]Fooptl shows a decrease of 20 dB/decade

for the integral action. The zero-decibel-frequency is

wh1 = %% at a phase margin of £y = 65°. With the frequency
. o

Dol 5 %1 there is g, -180" at a gain margin of ARd

opt =
= —94B.m 5

The gain characteristic |Fo l rises in the range g,
fo) fo) Opt OEt
-1807...-270" at the maximum 1.5 dB over the straight line

dropping with 20 dB/decade. With the frequency Q2= 2% = %g,

there is lFo } =0 at a phase angle g, = -540°. On account

of the perioaggity ot Fwopt harmonic osggflations will also’
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occur in F°opt which are, however, negligible as they are
below 1 per cent.

As example for the dimensioning of the PD sampled-data ccn-
troller the controlled system given in6 is used.

TR e S R T R (21)
(14pT,) (14pT,) (14pT3) (14pT,) . pTg

Fs(p) =
where T1=Zs, T2=1.2$, T3=1s, T4=0.85, T5=1s.

As in Fig. 15 in6 a sampling time of T = 4.5s is chosen.

Fig. 5 shows the arithmetic operation to be performed in a
few steps. After representing the exact gain characteristic
]FS] the selected cutoff-frequency 1/Ta is that frequency

at which 'FS! has dropped by further 3 dB as against the con-
stant drop of 20 dB/decade.

Coefficient c, has been selected so as to result in the
desired gain characteristic. The gain is chosen dependent on
the phase margin and the gain margin.

For a choise of V=0.1; c1=-0.7, Ta=3.1s and T=4.5s we ob-
tain for the controller coefficients:

d

o = 9-20

d

4 = =0.03 G4 «=ir0-7

In Fig. 6 the time response is shown obtained with these
values. The correction time is 18s as against 12s in Fig.
15 in 6, the quadratic deviation integral is only 18 per
cent greater.

As shown by the frequency response F°o in Fig. 4, the
harmonic oscillations in Eq. (1) are nggligible if the time
response can be described by a course as in Fig. 3.
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For the impulse frequency response Fo* (jw) required to
describe the sampled-data control system we have to con-
sider in Eq. (1) the terms with kX = O and k = -1, then we
obtain:

i

F *(j@) = F (jo) + FJ (3(2-0)) (22)

Assuming a frequency response F°opt (jw) according to Eq.
{20) we have at a frequency g a phase angle of -260° and
thus a negative real component. When the sampling time de-

creases in proportion to the increasing sampling frequency
the phase angle-}v° (3 f) increases. No loss of stability will
have to be expected if %5 (Jg) -270 -450 as positive )
real components are belonging thereto. If, however, }b(j?) ;
= -450°...-630° the stability may be endangered if the real )
vomponent of Fo(Jf) becomes too large. In order to avoid
tnis care should be taken that the gain characteristic of
Fo(jW) at high frequencies, especially at‘% will not exceed
the straight line 1/p2§ dropping at 20 dB/decade.

5) The representation of the frequency response of the

second-order sampled-data controller

With n = 2, we obtain from Eq. (3) after applying the trans-
formation of Eq. (5) the following transfer function:

T2
P d°+d1+d2+wT(d°-d2)+(w§) (do-d1+d2)

Fr = h (23)
Ro™DT 1+w§ 1-c1-c2+wT(1+c2)+(w§)? (1+cy-c,)
Case (a) cqtcy= 1 c,> 0, ¢, >0 (24)

In the denominator of the last fraction the constant term
is dropped so that by reducing the fraction by wT for w—=0
term pT is maintained in the denominator and describes an
I-action. Thus, case (a) describes an PID-sampled;aata
controller the transfer function of which is defined by:
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Fpo(P) = V. o i -yl [Fao (@] - g DX (25
Ro pT 1+c,.e i

The PID-sampled-data controller can be described by a pro-
duct of two transfer functions where the first one describes
the ideal, continuous PID controller and the second one the
effect of sampling and of the feedback element Co. The effect
of the feedback element is again given by Fkl as per Fig. ¢
with ¢ = Cp. From Co We obtain Ca according to Eq. (24).

For the coefficients do, dw, d2 we obtain:

e

T +T
d =V (1+c,) —alhl{.a_b.,.l (26)
o} 2 e oT 4
P T
BEr e
d, = -2V(1+4c,) [—2,- - ] 7)
1 2’ | 742 Z'J.
PP T +T 1
1 n
d, = V (14c,) { v e ow - g | (28)
2 27 T2 2T 4

Fig. 7 shows the obtained time response on a fourth-order
controlled system (as Eq. (21), however without I-element):

X 1 .
Fs(P) = TIERT TR, U, TTHT,) (29)

When adjusting the controller first T, is selected equal to
the max. delay time T1 = 2s. As cutoff-frequency 1/Tb that
frequency is chosen at which the gain characteristic

‘FS -_T;EI has dropped by further 3 dB af4against the -con-
stan;? "drop of 20 dB/decade: 1/T=0.48s "

The value required for V results from the phase margin.
Curve a in Fig. 7 corresponds to a phase margin of €5° at
V=0.495 and T=3.3s.

Thus, we find: d, = .01
d, = -0.24 oy & .4
d, = 0.02 ¢, = C.€
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Zurve b corresponds to V=0.53 at a phase margin of 62%) ;
case {b). With certain values of Cq» Cp We obtain a second-
order sampled-data controller with PD2- action permitting to

govern controlled systems with double-integral action4.

From Fg. (23) we obtain for the transfer function of the
PD_- sampled-data controller:

. w?l (1+wT_ ) (1+wT,.)
Fro = ¥+ o ~ > (30)
TR e R PT S ET Te
e i AR
d_+d,+d
Fo o G b i«
vith V = _“—C1-02 (31)

The rate *times Ta’ Tb are defined by adJjustment to the given
contralled system and are set by selecting the di' Depending
om S4s Cy the delay times Tc’ Td have a certain range. The
limit value of the w-dependent term of Eq. (30) for w-—e oo
remains unchanged if instead of the two separate roots Tc
and Td a double root at T° = VTch is chosen. Thus, the
design of the controller is considerably simplified and a
relation between ¢4 and cy obtained:

‘2

cp = —(:%} e < O ¢, <O (32)

sroiler isi:
cy 2
%! 1- -
Foolp) = "f(1+;0Ta)(1+pr) [FHo(p)]/ c—; (33)
1—5 .e

Fig. 2 shows the frequency responses of the correcting trans-
fer function

— (34)

F o (DT ()= [ —
- l1+c.e ~

1-e'pT]3 [ 1+C
T
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which is to be added to tge transfer function of the ideal
PD,- controller (with c=-—%). For the coefficients d_, d,,

d2 we find:
c, 2 i il T_+T
1 a’b a~ b, ]
a = V(1- =) [ + + —] (25)
) o 2 o 4
Cyq -2 T T
1 ab 1 - :
d, = -2v (1- —p) e Z] (36)
€1 2 - T. T_+T
1 a a b 1
d2 =YV (1__2) [T—sz-__.'gT—+I] (37)
Fig. 9 shows the time response on a controlled system
T 1
Fs(p) = (TopT, TT+pT, ) (145150 (15T, ) -5 - 5T (38)

which we find from Eq. (21) by adding one I-element with
T6=108. As with the first example the adjustment yielded
Ta=3.1s, whereas Tb=310s was assumed to be two powers of

ten higher in order to get the maximum possible phase lead
within the rangé of the zero-decibel frequency. With T=4.5s,
we obtained with -E% = 0.5 an admissible proportional gain of
V=2.5.10"> and hence:

d, = 0.372
d, = -0.425 cq = -1
d, = 0.058 c, = =0.25 3

The time response is satisfactory, however not the steady-
state error on account of the very small admissible value
of V. A disturbance gz = 10_3 will result in a deviation
X,~40 per cer=z. i

4) The representation of the third-order sampled-data

controller with integral action

By means of a suitable programming a third-order sampled-
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data controller can be realized with a PIDZ- time response.
From its transfer function

1 _wT
Re pT

V) ()

1+ws

d #d,4d,+d 54— 2 (5d +d,-d -3d )+( "T) (3d -d,-d +3d3)+(—) (d -d +d,-d

1—c1-02-c3+ ﬂz

3)

(}-c1+c2+303) +( -5) (3+o1+c2-}c3) +(-§) (1+c1-c2+c3)

(39)
follows as condition for the integral action:
c teytes = 1 (40)
Hence, the transfer function is written:
g e (1+w¢a)(1+wa)(1+ch) : (41)
Ro i DT

(1+wg-) (14wT4) (14wT )

The numerator polynomial with the di is defined by the ad-
Justment to the controlled system, whereas the denominator
polynomial will be chosen so that a double root at T° =
‘TdTe exists. Hence, we find: '

'

cq = 1 - 2. c3 ¢y > 0 (42).
c, = 2. V'c—B-c3 c; >0, cz>o0 (43)

and for the transfer function:

(14pTy) (14pTy) (1+pT,)
pT

FRO(P)= V.

: [Ho(p)] {H_L'T]

In the correcting function F,(pT,c) it is necessary to have,
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c= v;;-
For the coefficients di we have:
2 [ 3 s TE T T T T T +T +T
=7 (1+ Vc3) - g Gy =228 2,< ble paalsl + 1}
i 2T AT . 8J
(49)
20 [CRUTIT T T.+T T +T T T +T, +T ]
b~ c _ab a LA o DESICE™ S
d,=-3v.(1+ Yecz) .|-= + - e
1 300 g2 6T2 12T 8|
(46)
-3V (1+\[__ T T . TETb+TET§+Tch A Eg+Tb+Tc y 1]
i 72 6T 12T
(47)
T T T T T +T T +T T T +T +T
1' b "ac
--V (1+ ) -—ZTZ +— —g]
(48)

When applied to the controlled system of Eq. (38), Tb=Tc
=500s was selected, whereas T =3.1s. At a sampling time
T=3s and with c3=0.4 we obtained an admissible gain of
V=1.1 .10"> and for the coefficients:

d, = 0.92381

dy = -2.15790 c, = 0.2

d, = 1.55160 c, = 0.64

ds = -0.31749 ¢z = 0.16

with

p - Sotithtds (49)

2
(1+ VC3) ,
there results from the coefficients V= 1.02 .10_5; thus, it

is shown that with the di no further tens places are required.
The time response (Fig. 10) shows a satisfactory result.

For reasons of stability there should only be a very small
effect of the integral action. A variable disturbance z
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will result in a rate error X, Should the disturbance gz
change during the period T by the value 1, there results a

steady-state error with the value X, = V %
z

Summary

The proposed procedure for the synthesis of sampled-data con-
trol systems on the basis of the Bode diagram technique
features a relatively simple and clear calculation of sampled-
data control controllers uses the well-proven method for
continuous systems. It is mainly applied to controlled systems
of the order N > 2 and sampled-data controllers of the order
n £ 3, where it is necessary that n< N.

Controllers with I-action are defined by EEci = 1. The results
obtained with this procedure are shown on controlled systems
of higher orders than three.
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SUBOPTIMAL REGULATION OF SECTIONS OF
HIGHER ORDER, ESPECIALLY TAKING INTO
ACCOUNT ALL-PASS PROPERTIES

W. Becker
Institut fir Regelungstechnik
Aachen/ German Federal Republic

118 Introduction

With the means of control engineering it is to be
attained that the controlled variable of a plant exactly
follows the given command variable, independent of any
pertubing effects whatever. In the region of very many
fields of application, as e.g., in process technology,
in many cases the controlled system is fixed, only an in-
formation on the controlled variable itself can be obtained
and manipulation for regulation is only possible at one
point. In these cases the precise fulfillment of the task
of regulation noted above miscarries due to the following
three points:

a) If there are all-pass elements present (e.g., dead time,
all-pass of the 1st order), an unavoidable regulating area
occurs1’2 which one has to put up with.

b) Arbitrary derivations of the controlled variable cannot
be formed in the regulator as they would be required. In
most of the cases one must be satisfied with the first
derivation, which leads to the employment of the PID-re-
gulator, linearity being prerequisite in the whole operat-
ing range,

¢) The efficiency of the positioning element, e.g., its

Positioning speed, is limited. The optimum regulation in
these Cases, which nowadays is described with the aid of
the maximum principle of Pontrjagin and co-workersB, how-

€Ver again presupposes all derivations of the controlled
‘¥ariable,
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In the Tfollowing, a conception for regulation is
developed, which taxess all three restrictions stated into
account for the case that the command variable changes
suddenly.

In order to come to results which can be employed
in practice, a controlled system is here assumed, which
can be described by (n-2) series connected delay elements
of the 1st order, as well as an all-pass element of the
1st order with the frequency response

1 - pTo
Fa = — 1)
1+ 0T

and a dead-time element. The positioning element should
have integral behaviour, which applies for many practical
cases, at least approximatelyu. Taking the positioning
speed to be restricted, the restriction is assumed to be
symmetrical., A restriction of the positioning stroke can

be disregarded for the time being. This controlled system
including the positioning elements (see Figure 1) possesses
the follcwing frequency response (Tn_1 =) To)

(k3

(1-pr e Pt
F = i = VSC'R (2)
ot 1 E p(1+pT1) (1+pT2)...(1+an_1)

2. Criteria of Optimization

If, in the task set here, one selects the time until
the rated value is attiined as the criterion of optimiza-
tion, then one obtains the so-called optimal time or
rapidity regulation. But this criterion cannot be applied
for a suboptimal regulation, as in these cases the rated
value 1is only exactly attained for t --- . In these cases
the time is stated until drifting into a tolerance barrier.
This, however, does not appear to be convenient, as then
the optimal positioning possibly depends on the value of
tkis »a»rier, and just as with criteria as the quadratic
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regulating area, the ITAE criterium etc., the optimal time
process no longer appears to be the most favourable tran-
sition. As compared to this, the linear regulation area re-

ferred to the command jump % is a convenient criterion of
optimization with the addition that no overshootings may

occure.
0]
L :
b2 f —— dt  (with '}%"T" 2 Oofiralle t)  (3)
[0}

Here this criterion leads to the most rapid aperiodic tran-
sition and contains the optimel time process as an absolute
optimum.

3. Optimal Time Regulation

With the controlled system to (2) as is known one
obtains the optimal time process, if the quantity YR
alternately assumes 13s upper and lower extreme value,
The process consists of n-intervals if n is the degree of
the denominator polynomina13’5’6. That also aprlies for
the here existing dead-time element and the all-pass ele-
ment of the 1st order7. The optimal switching times t, to
tn are only determined by the denominator polynominal and
must, if all time constants are different, satisfy the
following system of equations:

: W
-2t + 2t - e+ oeee L f = -
j 2 n YRmaXcRVS
- 2 o%/T b 20T = L4 e 2 BT 0
* . . . . L] (4')
t,./T 5./ 6 /T
- 26 70Ny 20 4 B=luips §Rotnguaiislizgchy

That means that besides the time constants of the controlled
System, the switching times are only dependent on the ex—
Pression
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W
- =T (5)
! pmaxCr's .

This value wa precisely states the time, after which the
output quantity Y3 of the integrator for the first time
attains the final value,

As- example the course of Yrs I and x at an optimal
transition is depicted in Figure 2 for a section, which
consists of two delay elements,

4, Linear Regulating Area in the Case of Optimal Time
and Suboptimal Process

The linear regulating area can simply be determined
in the following manner: When passing through a delay unit
of the 15t order with the time constant T and -the am-
plification factor 1, the linear regulating area increases
by T, in the case of an all-pass element to (1) by ZTO
and in the case of a dead-time eiement by Tt' Consequent-
ly, the regulating area is composed of the sum of all time
constants, including To and Tt’ and of the linear regulat-
ing area of the input function Y shaded in Figure 2, which
is described by means of the switching times. At n switch-
ing intervals one tnus obtains for the optimal regulating
area

n-1 : {n-1 v
= B ! S o 2 _1yn.2
‘o‘E Iy + Ty -3 | (-1) 2t%y + (<)"]
=0
caused by caused by the (8)
the section input function

In principle the course is depicted in Figure 3,
If one forms the limiting value for 'L'w -0, il.e4,

no limitation is effective, then one obtains

lim - ‘ .
Tuo™ ° =Ty + Ty (7
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Tris represents the unavoidable regulating area, which
ijs caused by the dynamics of the controlled system and
which one must put up with. Here it should also be pointed
out that when the zero occurs in the numerator of (2),
although the optimal course is concluded at the same time
as without this zero, the linear regulation area, however,
is increased by To‘

If one reduces the: n switching intervals to a single
one, i.e. if one only lets the intégrator run up to its
final value, in order to then switch off, then all ty =17w
and one obtains

n-1 +
1
I, = : Ty *Tt"'ﬁtw (8)
¥=0

This straight line with the gradient 0.5 (see Figure 3)
simultaneously represents the asymptote for (6), if wa
strives towards the infinite,

If one combines all time constants of the denominator
polynominal in (2) to a single time constant T, then, if
one substitutes the relations for the switching times,

n-1 1 12 -T/T é
Iu=[ Ty +Tt+§Tw-f— [ln(1+ V1-e )] (9)

W
¥=0
n-1

with T = E Ty
V=

results. It turns out that the linear regulation area (6),
which one obtains for the exact optimal time course, is
always greater than the one specified by (9), which thus
represents a lower bound. This relation is great advantage
for coarse estimates,

For its realization a system with n switching inter-
vals requires n free parameters, i.e., generally (n-1)



derivations of the controlled variable. As normally, howeverw
only the first derivation is available that means that only )
systems with two switching intervals can be built up with
tolerable expenditure. On the basis of the system of
equations (4) it can be shown that the process precisely
takes place with minimal linear regulation area without
overshooting, if both these switching intervals are attuned
to the greatest time constant of the sqction. In this case
the linear regulation area assumes an expression according
to the relation (9), in which T 1is to be replaced by Tpo
the greatest time constant of the system. This relation is
plotted in Figure 3 with the designation IZ‘ The impairment :
in the case of this suboptimal process as against the strict- ;
ly optimal one is expressed by the distance of the curve I g
and I in Figure 3. The difference is the greatést for 7:
and then just amounts to

i

n-1
I = ; Tv—- Tm . (10)
V= '

For increasing values of’t’w the difference comtantly
becomes smaller. The deviations of this suboptimal process
from the strictly optimal one can always then be disregarded,
when the sum of dead time, all-pass time constant and of
the greatest section ‘time constant is very large in relation
to the remaining time constants. Hereby, the difference is
the smaller, the greater W 1is in relation to YRmaxCRvS‘

In every case the deviation can easily be determined by

means of the relations given here. If no digital computer
programme is available for the determination of the switch-
ing times in the case of sections of higher order, then these
can oe determined by means of approximations, or one just
contents oneself with an estimation of the linear regulation
area according to (9).
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5, Realization of the Suboptimal Regulation System

The suboptimal regulation system suggested here starts
from the fact that the part of the controlled system with
the greatest time constant is strictly regulated according
to optimal time, the rest of the section is not taken into
account and is practically connected in series with the
actual regulation circuit. That can be achieved without
engagement in the controlled system by connecting a model
parallel to the controlled system, which with simple means
reproduces the controlled system as well as possible (see
Figure 4). Then the difference u Dbetween the controlled
variable x and the output of the moael is approximately
zero. In this case the optimal time regulator of 2nd order
over the integrator only works together with the first part
‘of the model, a delay element of the 1st order, whose time
constant corresponds with the greatest section time constant.
Thus ¥s carries out the desired adjustment movement with
2 switching intervals. The compensation of the remainder
of the section takes place by means of the second part of
the model, an element with all-pass character and the fre-
quency response

1 - pTRZ(VR2—1)

F= 1)

1 + p‘l‘R2

whose transient function is fully drawn out in Figure 5.

In general, for the determination of the coefficients,
one proceeds in such a manner that the controlled system
without positioning element is approximated by means of two
time constants qu, T82 and delay time Tu. Here attention
must be paid to the fact that the approximation is mainly
favourable for great values of t. Strong deviations in the
initial part of the transient functions do not matter so
muck, as at that time the control deviation is generally
still rather great and thus, at ieast during the greater
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part of the transition, no influencing of the switching éon—u
dition exists. Then Tp, = Tgq 1is to be set for the greater l
of the two equivalent time constants. The rest of the section,
shaded in Figure 5, can be approximated by means of the A
term (11). With the equivalent characteristic values TS2
and Tu

: T/ Ts2
Vy=Vg2Tp =Tgqs Vpy=e » Tpp = Tgp (12)

then results for all characteristic values of the model.

In the present form the system is not very suitable
for practical employment. Under the assumption that com-
pensation is ideal (u=0) and only stepped command signals
occur, the block wiring diagram Figure 4 can be redrawn
into Figure 6. One thus obtains a two-point switch with a
twofold delayed feedback, which, however, is partially
cascaded in non-linear manner. In this case the non-linear
characteristic becomes indepeadent of the characteristic
values of the controlled system. For them the following
equation applies

X, = X = g0 X, 1ln (1+Ix,l) (13)

Hereby, xo can only move in the region from -1 to +1.

The other regulator characteristic values in Figure 5
result from the characteristic values (12) by the inversion
of the block wiring diagram to

1

v = v =T

R A i L mad £

T T /T

i s2

R2 T%‘ 8 » TR = Tgp s

1

e S I

# Y

Rmax' SCRTS1
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As YRmax generally is not variable, 4 free parameters
remain, in order to adapt the regulator to the controlled
system.

The regulator will always be able to enforce the
desired behaviour of the controlled variable, if the
difference between the output value of the controlled
system and that of the model does not influence the
switching intervals too much. This practically only then
no longer applies, when the ratio of Tsa/Tu becomes too
small - the peak of the compensation term in the negative
direction (see Figure 5) then becomes very big - and when

’tw assumes very small values,

Oe Examples
In Figure 7 several command transient functions in a
section with the frequency response

1 - pT°

Py = :
S (lapny) (4pT,) (14DT5) (4p2) N

are depicted. The characteristic values of the regulator
were determined in the manner stated above and set on the
regulator. In the case of an ideal model of the controlled
system, a course should occur for Jg» as it is plotted for
qrw/Tq = 0.3 as a dotted line in Figure 7. The deviation
of the linear regulation area from the one given in Figure 3
by the curve 12 then expresses itself by the difference of
the shaded areas. However, the most important statement of
these curves is that the behaviour of the circuit has
practically become independent of the amplitude of the in-
put signal.

Naturally the reflections carried out here can be
transferred in the same manner to sections without all-passes,
which is of particular significance for practical application,
as sections with all-pass properties do happen to be relatively
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rare. In Figure 8 a section with a large time constant T
and several time constants smaller by the factor 10 were
assumed. The predetermined characteristic values of the
.regulator supply transitional functions, which deviate
from the course in a similar manner as those shown in
Figure 7. By means of an alteration of the characteristic
values by 20 to 50 per cent, by that one recognizes the
small parametric sensitivity of the system, the transitional
functions shown here were obtained. For the section of the i
1st order the process is strictly in the sense of *he optimalfi
time regulation; for the section of the 2nd order the compenéi“
sation is ideal. '

All the examples shown here are representative. Further
examples are discussed ins, where the detailed derivations
are also specified. =

7. Comparison with Linear Regulators

The regulator shown in Figure 6 has very great similari- =
ties with the linear PID regulator, if one counts the inte-
grally operating positioning element as part of the regulator.
If one starts from the linear system, then one recognizes
that in the regulator developed here actually only the
customary feedback of a PID regulator is adapted to the
limited positioning speed by the insertion of a non-linear
characteristic. On the other hand the linear PID regulator
here appears as. limiting case (for"C'w - 0) of this non-
linear regulator, which could be designated as "optimal
time PID regulator". The comparison with the customary li-
near regulators, for which no limitations whatsoever applied,
on a section of the 6th order (T1=T3=T4=T5=T6=O.1 T1) is
shown in Figure 9. One perceives that the behaviour of the
PID regulator is practically attained for small values of
Tw' (In the central region the PID regulator should not
ascend more flatly than the regulator to Figure 6. This is
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caused by a small parasitic time constant in the regulator.)

8, Behaviour in the Case of Interfering Signals

This regulator was derived under the assumption that
only stepped changes of command cccur., However, its field
of applicatio.. is not restricted to such cases. Stould non-
stepped command signals or interIering signals of any type
oocur, then the behaviour of this regulator is analogous
to that of the linear PID regulator. Tnus, for instance,
if the regulating circuit is optimated for cowmmand jumps,
then an excess inert behaviour results in the case of
stepped disturbances at the input of the section (Figure 10),
just as one is also accustomed to in the case of linear re-
gulators. In exactly the same manner as the linear regulators,
one can also . newly optimate this mgulator by adjusting it
more sharply.

9. Regulators with a Switching Interval

The expenditure for the regulator to Figure 6 can no
longer be justified, especially for very large values ofTw.
The optimal regulation area Io is then practically identical
with the regulating area 11 in Figure 3, which one can
attain by means of a switching interval. For such a process
with only one switching interval, the model of the control-
led system (see Figure 4) consists of a proportional element
with the amplification facter VS and the element to (11).
The two-point switch alone already represents the optimal
time regulator of the 1st crder. By means of appropriase
redrawing of the block wiring diagram, the "optimal iime #I
Tregulator" results, which consists of the well-known two-
point regulator with delayed feedback and the series
connected integral positioning element. By means of these
reflections, if the controlled system is aprroximated by
Teans of Tu ané Tg, one attains the following setting values

& BL . & 3 -
=0T The jelzyed feedbacke.
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Of course, for an optimal adjustment these setting
values must still be somewhat varied, as their derivation f
is based on considerations of approximation. However, in
every case, just as do the setting values (14), they furnisl
a process which lies fairly close to the optimum and which_;
is generally somewhat too inert.

10, Summary

The optimal linear regulating area of an optimal timd'ﬁ
process with n switching intervals is determined. It
happens that for many cases a transition, which is only
produced by two switching intervals or only by a single
one, comes very close to the optimal form. Subsequently, r
constructions of regulators are specified which approximate-
ly produce such a process. These regulators are not more ex—
pensive than the linear PI and PID regulators, but they can
replace these everywhere, where the control actiomn is im-
paired by limitations of the positioning speed. As the
technical possibilities of these devices are extensively
utilized, they can on the other hand lead to deliberately :
taking such limitations into account to a very much greater

extent, which will then result in economically more favour—-
able systems. '
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- THE REDUCTION OF DYNAMIC ERRORS BY
MEANS OF DISCONTINUOUS PARAMETER
VARIATION

R. M. Davies, T. H. Lambert, M. J. Joby
Mechanical Engineering Department

University College London

(with subscripts) parameters

Heavyside differential operator, E—:-

error, x-y

constant

forward gain of summing amplifier

order of the derivatives

time

output voltage from parameter switching circuits

input to the system

output from the system

inputs to parameter switching circuits
(e.g. y, e; vy, & etc.)

second stage spool valve displacement

~ Introduction

‘ No real control system can satisfy the ideal requirement

‘ x(t) = y(t) ‘ (1)
~for all values of time t. The purpose of most servomechanisms is to reproduce
~ some control signal with power gain, and power gain inherently introduces time
"delay effectsl. Thus a more realistic criterion of near ideal performance is

x(t) = y(t)

x(t) y(t)
(2)
x(n) (t) -~ y(n) (t)
i ere n 2 1 (3

Fllgge-Lotz and Wunch2 proposed a second order nonlinear system which

functioned basically by varying the output acceleration discontinuously so
as to satisfv the conditions



X y }
Xt = ¥
for a range of control signals. The system had an equation of the form
(aZD2 + aID + ao) y = x
with a = 3; ~ 3, sg (y.e) - a_ , sgn (yé)
a; = 3)) " 3, sgn (72) - a5 sgn (§¢) }

»

The parﬁmeter terms of the right hand side of (6) were constants so that

the parameters a and a, could take on a number of discrete values.
st:udies3 confirmed that certain combinations of parameters produced a system

satisfying (4).

The principle of the system of Flligge-Lotz and Wunch was as follows.
The error was maintained small by varying the output acceleration
discontinuously so that it was alternately larger or smaller than the input
acceleration. When, owing to rapid input changes, this alternating patterm
could no longer be sustained, large errors occurred. Fig. 1 indicates the
changes occurring in the system of equation (5) following a short segment of
the control input. At the points B, C, D, E and F either e or é change »
sign, and between these points the system may be regarded as essentially 1
On the sections AB and DF

whilst on BD

’ ~
The output trends are largely dictated by the variations of the parameters

ao and a;. On the output sections BC and DE the parameters act so as to

prevent excessive overshoot by exercising the maximum corrective action, so

that on BC i
% o1 Tor o3 }
o Sl Wl e

which tends to produce an output acceleration

y > % (1c
Whereas on DE
ao = 3 * 352 * a03 » .
aE B T f Y

so that the output acceleration tends to satisfy the condition o
¢ (12
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On CD and EF the rate of change of error nas changed sign so that the pairs
of terms a, and a3 3y, and a5 are opposed in action. The corrective
action exercised by the parameters is thus, depending on the relative sizes
of parameter terms, either decreased or even reversed. The latter condition
is not usually desirable as it can readily cause divergence between input

and output. A lessening of the correcting action of the parameters tends

to ensure that the succeeding overshoot, when the output crosses the input
again, is minimised. The output paths such as BC and DE may be termed

'overshoot' paths, whilst CD and EF are termed 'approach' paths.
The system is equipped to follow input variations so long as
| * | max < | 9 | max (13)

This paper is concerned with the application of discontinuous
parameter variation techniques to an inertially loaded electrohydraulic
position control system. The advantages and limitations of the technique
in a practical situation are examined. Both analogue computer and hydraulic

rig studies are an integral part of the experimental programme.

s

System Description

The basic layout of the hydraulic position control used is indicated
in Fig. 2. Harmonic response tests were carried out and various parts of
the system were excited with constant amplitude signals. The results of
these tests indicate that the linear open loop tramsfer operator of the
control system is
p S (14)
= 145D(1 + +0023D) 1 + -21D + D2 )| (1 + 52D + D2
[ 603 6032]( 1510 15102

where K is the forward gain of the summing amplifier.
The factors which comprise the denominator of (14) sensibly arise as
follows:
the first is the integrating time constant;
the third is the complex delay associated with the actuator and load
including compressibility and leakage effects;
the fourth is the complex delay associated with the torque motor and moving
parts of the first stage of the valve;
and the second is the delay associated with the rapid response of the hydraulic

second stage o: the valve.
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It was subsequently found necessary to increase the leakage

hydraulic ram artificially. The transfer operator then becomes

o 3 K :
+145D(1 + -00230)[1 + +72D + D2 [1 + +52D + D2

565 5652 1510 15102

These transfer operators were used in the analogue studies which prec

practical tests.

Parameter changing circuits were designed as shown in Fig. 3.
Schmitt trigger and logic circuits provided gating signals for a pair o
six~-diode gatesa. When given the input signals a(t) and 38(t) the ciz
output is

Vout = ka(t) sgn (a.B)
The equipment was suitable for use both with the analogue simulation an
with the hydraulic rig. Full details of the circuits used are to be £t

in reference 5.

erms dependent upon output, error, and their rates of change only,
second order system of reference 2. This limitation was essentially im|
by available transducers, as it can be shown that higher order switched

parameter terms can be used to reduce errors in systems of higher than
orders’G. The approximéle equation of the hydraulic system was thus of
form

-

(ﬁ <t l]y -{[alzsgn(}.'e) ] 313391(9é)]y

+ [a , sen(ye) + a ;sgn(yé)]y} = x

vhere KG(D) = % in equation (14) or (15) as appropriate. The analogue
computer flow diagram for the system is shown in Fig.4, and the block dia
of the variable parameter hydraulic system is Fig.5. For the analogue

studies, one second computer time was scaled as ten seconds real time.
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erimental Procedure

Initial analogue studies were undertaken using the oper loop transfer
ik-rator of equation (14). The procedure for setting up the system was to
,é the variable parameters to zero and apply a low frequency harmonic
input. The parameter terms were then adjusted sequentially in the order

a,,and so on, until a minimum error was obtained. This process

3,20 3120 %3° %13
was repeated at a number of other frequencies untii a suitable set of
b‘raneters was obtained.
It was found that large parameter values, or high forward gain, K,
rise to an oscillation. The frequency of oscillation was about the
e value as the frequency term associated with leakage and compressibility
4'£ects on the actual system. Follow up tests carried out on the hydraulic
ig confirmed the presence in practice of this condition. Analogue results
d indicated that reducing the gain K or the size of the variable parameters,
or increasing the damping factor of the term associated with leakage and
ompressibility effects, suppressed this oscillation. It was decided to
se this latter method to suppress oscillations in the hydraulic control as
appeared to be the least restricting of the possible solutions.

All further analogue and practical work carried out was on the increased
leakage system, equation (15). Setting up the parameters on the practical

system was essentially the same as on the analogue.

_respectively; for the analogue of the system,

' a, = .081

a 3 = .070

a, = .021 ) (18)
a3 = .015

R = 3
“1"d for the hyaraulic system,

a, = <19

agg = .205

a), = .031 (19)
a3 = .013

K = 3

* ® and 7 show analogue computer harmenic and step respense traces.

~
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Figs. 8, 9, 10 and 11 compare the harmonic, step and random responses‘
hydraulic system with and without discontinuous parameter variation.
random input was obtained from a signal generator producing band limi

noise.

Discussion _
The discontinuous parameter system, driven harmonically at 1 Hz,

shows results which are very similar to its simulation results in

Fig. 6. Specifically, the characteristic high frequency oscillations

in the error signal have the same form, and the ratios of their amplituds

to the output amplitude is 4.9 x 10-2 peak to peak in both cases.

even at this frequency, the former has considerable advantages. The p
lag is almost negligible and the flat topping which appears on the propo:
trace and attributable to Coulomb friction in the actuator is overcome.

In Fig. 9, similar comparisons can be made for the higher input <
frequency of 5 Hz. Here the advantages of the discontinuous system,
of the faithful following of the command signal, are even more apparent.
The phase lag is much-smaller and .the amplitude ratio is still very
As the input frequency was gradually increased, the number of parameter
switching occurrences per cycle was reduced, and at 5 Hz there are clea
fewer than at 1 Hz. The trace showing output velocity, y, shows some
saturation, an effect which tends to limit the effectiveness of the pe
improvement at higher frequencies. This effect is unidirectional bec:
unsymmetrical port arrangements in the jack. Delays in switching, which
further discussed below, also contribute to performance deterioration at
higher frequencies.

The step responses shown in Fig. 10 show that a faster rise time is
achieved by the discontinuous system. This is to be expected since the ;
forward path gains are the same, but in the discontinuous system the pres
of amplified parameters in the feedback path increases the loop gain du
the rise, resulting in a larger amplitude valve motion. The fourth trace
shows the valve motion, ¢, and it is noticeable that after the step there
considerable agitation of the valve because of the continuous switching o
parameters. Thus the output, y, shows some deterioration in the preSJ*”f
of a stationary input; and this effect, along with the other characteristi
is evident in the analogue trace for step input, Fig. 7. A modification'i
avoid this effect is suggested in the next section. )
In response to a random input, it is clear that performance of the

discontinuous system is superior to that of the proportional system. EF
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measured peak to peak are reduced by about %, and both amplitude and phase
results indicate more faithful following of the input without the flat
topping which appears in the prooortional results. Here it can be seen
that the frequency of parameter switching is variable, being higher when
the input signal is slowly changing and the accelerations of which the
system is capable considerably exceed those demanded. The low frequency
switching occurs when the input velocity is near zero, and the agitation
is similar to that following a step input. The largest errors occur at
points where the output and its velocity are both near zero; resulting

in less control because the effects of the parameters are in opposition

to one another. This is a result of the particular compromise made in
selecting parameter magnitudes. It could be overcome by using other values

but other penalties would be incurred.

Conclusions

In designing the controller, and obtaining the results reported above,
the effects of switching delay imposed constraints on the active components
of the controller. These effects were overcome and therefore are not
observable in the results above, but can be visualized by reference again
to Fig. 1. Clearly large errors will occur if there is delay in switching
when the error changes sign - for example at D. Similarly, when the output
velocity changes sign, for example at E, a delay will cause the next
crossing of y and x to occur at such an angle that unnecessarily large
deviations of these variables will follow the crossing. This results from
the fact that up to the switching point, E, parameters a, and a y are acting
together to cause large corrective action; but after this point they are
acting in opposition so that the resulting reduced corrective action will
effect a less abrupt crossing at zero error.

These delays of course are always present, but in comparison with the
Tesponse times of the system their magnitudes are important. For this reason,
parameter switching by the use of relays incurs delays which are umacceptable
for the electrohydraulic system, and a controller using solid state components
had to be designed. This controller was initially incorporated in a feedback
loop around the electrohydraulic valve but the speed of response of this unit,
because of the low inertia of its moving parts, showed the controller to be
inadequate. Although there was no deterioration of performance, there was
70 improvement; and a redesign of the controller would be necessary to meet
the higher speed switching requirements.

The overall inertially loaded electrohydraulic system, operated with
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discontinuous parameters by the controller, shows performance superi
its proportional couaterpart with simple feedback for most inputs.
deterioration when the input is stationary (for example, following a i
input) could be eliminated by the introduction of a mode switch for
proportional operation at small errors.

Concluding, it can be said that control by the use of discont
parameters provides a means of improving the performance of higher ord
systems as long as frequencies are such that saturation and switching
do not become excessive. The controller can be considered as an el
unit which can be inserted in the feedback path, and thus in the low p

part of the loop, in order to effect this improvement.
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RECENT, RESEARCH QN EEEFEGCES OF
QUANTIZATION IN AUTOMATIC CONTROLS

Alexander Vielnmann
Technical College Vienna
Austria

1% Introduction, Abstract

The problem of the cuantization of signals in control
systems has already frequently been deal®t with because of
its actuality. Numerous assessments of upper limits for the
extent of the effect of quantization by the authors BzRTRAlN,
GRIEG, JOHENSON, MYZRS, SLAUGETER, WIDROW and others have
been put forward4'5’13 %o 18’32’40’49’53; these and other
known papers presuppose far-reaching differences of useful
signal and qaantization step. In the case of large signals,
reference is almost always made to the statistic craracter
of the random noise of guantization (KORX, T4ABiK, KUD and
others 9’12’25’26’42’43). On the other hand problems are
still open, which in the case of small signals mainly result
from the fact that useful signal and random noise of quantiza-
tion are occasionally to be regarded as correlated8 and there-
fore appropriate extensions of the sxaminations of relay

systems appear to be expedieatqy’Bo.

In the present paper the effects of deterministic
guantization processes above all irn small signals aund in

the region between small ané large signals are examined

first of all (see JURY q7>' The results relate to the spectra
of open transmission systems and in connection with that to
the determination of necessary conditions for natural oscilla-

tions o cleosed multi-stage regulation systems.

The results frow deterministic considerations are
supplemented by resulss of ststistic origin. The suppression
of statistic quantization fracticns of special distribution
density on scanned two-point systems of &igital arrangement
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is also pointed out; for that purpose only a very small
amount of filtering or compensation equipment is required.

2le Suoplement on the Problem of Deterministic Quantization

_ In closed functionings, increased occurrence of re-
gulators or other transmission elements is to be found of
late, which provide deterministically quantizated output
values or others subject to a related signal restriction.
Due to this property of siénal restrictions, the signal
output in closed automatic controls is decisively determined,
if the signal amplitude and the respective stage of quan-
tization lie in a comparable order of magnitude,

Several pdpers have already been written on a similar
- subject, Thus, for instance, BENNETT3 points out the spectral
dispersion of signals from quantizated elementé. In exten-
sion of this,'the paper in hand offers statements on spectra
of signals which result from harmonic input oscillations
with only a few steps of quantization, importance being
above all attached to the continuous dependence of the
spectra on the amplitude of the harmonic input oscillation.
In its essential features this applies for any desired gra-
dation of quantization, thus, for instance, also for regu-
lations of optimal distributions of quantization barriers,

which were examined by LEWIS, MAX, PEATMAN, HERGLER, TOU
and others®r9115128,30,34,35,44

)

In order to now show the central problems, leaving
away unnecessary difficulties, and to work out the necessity
of the calculation process to section 3, only the case of
equidistant quantization with regard to the amplitude of a
harmonic signal.x(wt)of the amplitude A is reported on
(Figure 1). If the spectrum ofJQ&ﬁhs also related to A,
then one obtains amplification factors V& for the dominant
and harmonic waves of the output quantity of quantization,
The value V1 corresponds to the known describing function.

If ¢ is the constant quantization increment Independent
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of the range then, under tke conditions of Figure 1, the
following value results for the amplification or exitation
factor of the i-th harmonic

4 & T ; <
Ve e g cos (i arc sin —4=)_7 (1)

According to Figure 1, i can only accept odd values,
The values n or n + 1 represent those integral multiples
of s Which limit the amplitude value A of the input:

nE = A = (n+1)E€E . (2)

This dependence of the excitation factors Vton the
quotient value 5ﬁand on the ordinal number i 1is shown
by Figure 2. The fact that the curves display sharp re-
sonance-type sections right into the higher harmonics, for
travelling through which only slight changes of the ampli-
tude A of the input are necessary, and the fact that the
resonance maxima only decrease slightly with the rising
ordinal number i and that the existing controlled systems
in many cases exhibit insufficient low-pass characteristics,
all underline the necessity of preparing further accurate
methods of examination for regulations with the transmission
elements mentioned for supplementing estimated methods of
the describing function. '

Although the example of a possibility of quantization
given only represents a special and simple case and numerous
other variants also appear to be quite practical for applica-
tion13’37, various forms of quantizztion, Lowever, have the
essential common characteristics,

3. Multi-stage Deterministic Relay Systems in Self-
contained Regulations

3.1 Multi-stage systems. Natural oscillations

ZYPKIN has specified a widespread process in order to
examine relay systems, such as two—-point regulators and
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three-position cqntrollers in their ready state oscillations >
The process has undergone various extensions, e.ge by
PSCHAUNER *©.,

At this point an algorithm is sketched, which formally
permits an extension of the above calculation to several
optional switching levels, if the 'quantization or a similar
operation takes place in a deterministic manner. To begin
with the algorithm is here introduced without statement
e.8.y Of sufficient conditions or of numerical or graphical
methods of solution. When occasion arises, this is to be
reported on later.

In order to show the nature of the conceptions on which
the algorithm is based, simplifications are still selected
in the first instance, which are then later discarded.

On the premises of uniform and half-wave symmetrical
mode with the fundamental wave angular frequency W and under _ﬁ
the assumption-that the amplitude of x(Wtdlof a regulation i
circuit signal always passes through n switching levels
in the ascending and descending branch (Figure 3), per
half-wave 2n + 1 switching points result. With the speci-
fications of the switching levels #k and the still unknown
switching phases sk the time dependence of Xp(wt)(Figure 3)
can be drawn .up, the condition of quantity to the switching
points being

x(ag) = x; ®g) = g )

In extension of the considerations of ZYPKINSS, the
closing condition of the regulation circuit (at least in
the fraction of quantity11) can be set up to FOURIER-
development of Xz (wt).

The formulae for the FOURIER dissociation of the
pericdic function f(u%t)with pure alternating portion,

b = & jf(wt) sin iwt dwt )

o .
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a; = 2 jf (wt) cos iwt dwt, 65D
[]
and the equation for the combination to form a FOURIER
series, valid for symmetrical half-wgves,

oc
f (wt) = Z L—bi sin iwt + a; cos iwt_/, (6)
i=1,3’5.o y

in this case of application results in

2
a; g n dK+’I
ot 5 e ;
by X 9K sinp LWt dwt. (7
k=0 K

The individual harmonics can be superimposed in the
remaining regulation partG(jw)assumed to be linear. In the
thus resulting summation function the switching times ot
and the corresponding switching levels 9.k are entered in
order to fulfil the closing condition:

®
X q (uLK) = Z i(iw) [bi sin id.K+ a; cos iiK7 + V(iw)

i=1 ,3, .o

b i :
Loy cos ‘O K - a; sin i&KJ} =9x (8

Thereinll(w) andV(w)are the real or imaginary parts of G(jw).
From the arrangement (8), for k from zero to 2n a total
of 2n + 1 equations result for the unknown values W and ¢ 4
to &pn .The value dhgcan be freely preselected as origin of
the time,

The solution of the problem of the arrangement of
necessary conditions for steady state oscillations in a
multi-state relay system is attributed to the solution of
an equation system (8) with transcendental functions,
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whereby for numerical evaluations the solution values happen
to lie within estimable narrow ranges.

Generally, one will only obtain the points of solution
after trying out several values of A or n.

It should be pointed out that the method of solution
is not restricted to quantized signals with constant course
of the signal in the individual periods of time. The method
of solution is only bound to a relatively clearly arranged
calculation of the FOURIER-coefficients ay and bi’ This
applies as soon asxq(utkan be built up as f(wt) in such a
manner that (4) and (5) can be completely integrated, even
in the case of general preselection. Then a system of general -
equations remains in (8) and not by any means a sequence of
integral relations. These prerequisites for integrability are
also fulfilled then if, from the point of view a momentary
observer of the signal, at the points of timeotk the signal
for the subsequent interval &k todg+rcan be predicted. Among
these trains of thoughts the generalizations could be postu-
lated that e.g., the representation of the signal in the
interval ok toduea 18 carried out from gg and the given
equation 9, aﬁ .x(uIt)L.,._.Hereby the threshold of these
processes only seems to be limited by the extent of the
numerical calculations or numerical-graphical determinations.

The aforementioned equations of the general arrange-
ment of non-linear feedback systegins $5ill allow for manifold
extensions, such as expansions of th& transcendental functions
in the vicinity of the switching point, binding of the switch-
ing times %x to a temporal raster, such as generalized sampl-
ing etc.2’33’56’57, control of the ZYPKIN switching direction
conditions, stability of the natural oscillation etc.

The greater the number of switching points per half-
wave, the sooner the accurate determination of the wave shape
becomes superfluous, as the calculation is already very ex-
pensive anyway. '
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3.2 Two-point regulators with sampling

For small signal changes a two-=-point response of the
regulator or of other transmission elements applies for

many cases of application of quantizing systems1’1?.

If the two-point decisions are bound to temporal
stroke rasters, as in the case of digital regulators, then
the ZYPKIN method for relay systems®? can be simply extended
by the following algorithm. According to the phase position
of the sampling times for the own movement of the system,
there will be sampling times with and without two-point
positioning magnitude changeover switching. At all events
sampling here causes decelerated natural oscillations, for
the two-point changeover switching can always first be
carried out in the sampling time following-on a decision.

How the algorithm for the determination of straight-
forward natural oscillations of sampling two-point regdlators
without dead zone would have to run off, is specified in
the following:

In the hodograph of the continuous two-point system55
frequency values are plotted, which correspond to integral
multiples of the sampling period of the sampling process,
namely above all of such values, which lie in the vicinity
of the intersection with the straight-line curve, which runs
parallel to the abscissa at a distance of 3o, the hysteresis
width of the two-point system.

These points would, however, belong to natural oscilla-
tions, which require various values 34 instead of the given
Eofor steady state natural oscillation. For these values
¥,the wave shape of the natural oscillation can be deter-
min2d in the well-known manner.

It is now to be checked whether, if 2o should actual-
ly be on hand, the vibration amplitude 34 could be attained
by means of sampling to a certain phase and supporting with
the corresponding support element. If this should be the
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case, then a natural oscillation is possible at the examined
frequency and phase. There can also be cases, in which one '
does not find suchlike conformity for any value of €, , .
which means that presumably more complicated modes are

present.

The consideration can also be carried out in such a
manner that for the values 2€40ne seeks classes of exterior
excitations, which are able to maintain a forced oscilla- ¥
tion in the case of the actual hysteresis. These classes )
are relacively easy to be found as time-dependent area
units. They specify within which thresholds the exterior i
excitation would have to lie, so that an oscillation is |
also made possible at ?€o.It is then possible to judge,
whether by means of sampling and support an exterior ex-
citation for the satisfaction of the actual switching con-
dition at a€4could be built up from the wave shape belong-
ing to 24, which lies in the aforementioned classes. The
discrimination signal of the sampled and unsampled quantity
is to be regarded as exterior excitation, although it ori-
ginates in the internal signal processing of the regulation.

4, Regulation Circuits with Stochastic Multi-stage
.2uantization Processes

In numerous and frequently cited papers the statistical
influences of the quantization processes are dealt with theo-
retically. The publications rznge from GAUSS-type and similar h
distribution of the signals to be quantized36’38’39’41’53’54’sei
over general arrangements of distribution1o’26’31’32’59 up
to the binary noise occuring as output of relay components
in the case of two-point regulating circuits14’27’29’39’44’45.
These essays are partially also valid for subsequent represen-
tations, in which the practical setting of tasks for the
utilization of a special density of probability distribu-
tion for the increase worth mentioning of the steady state
accuracy of regulations and the reactive effect on the

synthesis of digital regulators are also shown in the dynamic
respect.

n
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In the following the statistical origin of the quanti-
zation error is first of all dealt with in a two-point system
whick as decisive relay element contains a dizital measurin
system with pulse code modulation. In it a pulse train of
comparatively high frequency fy (guidance frequency) is con-
trolled by means of a gate circuit (Figure 4); the latter
periodically carries out the opening for the duration of thre
time interval tM' There is no statistical combination between
the phase of the guidance frequency and the time interval
tM. The phase difference, which originated from two unccr-
related signals, influences, as was showt by Drecise exa-
minations5o, the size of the number originating in the atove

manner and decisively influences the two-point decision
which can be derived from it. The number attained by mezns
of pulse code modulation in the counter can only accept two
integral values R and R - 1 in the steady state condition,
which are ambient to the exact theoretical numerical value
thM 50, i.e, the rounded off value belonging tc thm is

R or R-1.

The probability that R or R - 1 1is attained is
all the greater, the closer the product thM lies to the
boundary values R or R - 1. If the form of the pulse fL
is disregarded, then the following density of probability
distribution results:

p(P) = (£,64R) & (2-Re1) + (g1t~ Re1) € (o-R).  (9)

In this r 1is the statistical variable for the courted
in number and 62r)is the standard Dirac needle function at
the point r = O.

The probability of attaining the adjacent integral
(quantized) value B or = - 1, iz thkus linearly dependent
on the exact value fyty, (Figure 5).

The two-point decision and the on or off switching

commanéd are derived from R or R - 1 in the counter.
Because of the linear connection between the on switching
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command probability and the exact measured value (Figure 5)
or because of the equality of the linear expectation value
and the exact measured value, the exact value can very well
be concluded from the partition function, just as soon as

it is possible to calculate by means of a few quantized me-
asured values., The fact that the partition function exhibits
characteristic maximum values in dependence on the signal
variables also makes it possible, by means of searching
methods, to draw conclusions from the quantized measured
value to the exact value to be measured.

These two trains of thoughts can advantageously be
made use of for control engineering. The proportionality
of frequency of the on switching commands and of the value
thM or of a tM input deviation leads to a control devia-
tion remaining finite. This can be almost nullified by a
positive feedback arrangement with low-gain amplification,
as it is known in principle for deterministic systems
(Figure 6). The searching process in conformity with
Figure 7 also brings about very good results.

The positive feedback arrangement is marked by very
small requirementss1. Only a linear element with first
order delay is necessary. The linearity confirms the theo-
retical assumption on the probability distribution function
and furthermore also proves the validity of the considera-
tions of being able to go over to dynamic conditions in the
steady state condition, e.g., in consequence of working
movement of the two-point regulator.

The positive feedback or the searching process in the
form of a further regulation loop considerably improve the
steady state accuracy, namely to the same extent, in which
their own accuracy lies. The overall accuracy of the cascade
results from the product of the accuracy values of the partial
systems ovasic regulation and positive feedback or searching
process.

The measuring results on digital computers of" the
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non-conventional design just described cited in conjunction
with this and the measured values from digital computers
of the conventional form cited for comparison, show the
essential improvements as regards steady state accuracy,
which can be attained at the same counting frequency (band-
‘width) and frequency of measurement (repetition frequency).

Hereby, it is even possible at the same bandwidth of
the counting elements to reduce the measuring accuracy'of
each individual measurement (by shortening the counter),
in order to increase the frequency of measurementsz, because,
after all, the accuracy can be reconstructed by means of the
measures mentioned. This measure is similar to the theoretical
arrangements for solution of EKATZENELSON'2, VIDAL, KARPLUS*C,
vELTMAN*?, ENOwLES, EDWARDSZC Y 2% gng monroe?.

Consequently, the systems described decisively contribute
to the improvement of the compromise solutions from rapidity
and accuracy of regulations.

The considerations mentioned are not only restricted
to two-point systems, but allow for an equivalent extension
to multi-stage switching systems; proportionally operating
digital computers are to be regarded as such. By means of
the positive feedback or searching processes the proportional
behaviour caused by the quantization instructions can be
increased up to an integral behaviour.

The examinations of two-point systems were emphasized
for the simple reason that, among comparable digital systems,
these possess the highest amplification and that in the
steady state condition even multi-point systems almost always
exhibit two-point behaviour.

In further Figures the quantitative effects of the
positive feedback on a digital two-point regulator are con-
trasted with a regulator of the conventional structure:

In Figure 8 the relative accuracy G of a coarse-staged
digital regulation without an additional measure is compared
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with a positive feedback ioop. Hereby the curves, which

are distinguished by the type of line, apply for different
repetition frequencies., Even if the influence of the latter
_is left out of consideration, the improvement of accuracy
oy 30 to 40 dB is very striking. Hereby, the higher ex-
penditure for instrument technology for the positive feed-
vack amocunt to less than 10 per cent.

In she mean switching rate of the regulator output
siznal, only small deviations witkh a maximum of I3 per
cent result when employing the positive feedback.

Figure 9 zives informatiop for the measured discrete
statistical distribution density of the regulator output
signal for the same form of applicatione.

Hereby, the abscissa determines the integral mul-
tiples of the period of the measuring or repetition fre-
quency, the ordinate shows the measured distribution den-
sity. The curves are valid for the intervals of the on
and off state, as well as for the period of the switching
movement., '

Furtner practical experiments on various controlled
systems, e.g., on drive speed controls have also furnished
proof that by means of positive feedbacks of the form [
described not only the diminuition of the effects of known-
distributed quantization errors is possible, but that
statistical quantities with only estimable distribution can
also be compensated, as, for instance, the periodical and
statistical errors in the employment of speed recorders.

The task aimed at by the employment of positive feed-
back or searching process could also be approached by means
of integrators, which are connected at the putput of the
two-point measuring systems. As compared with systems with
positive feedback, however, the systems with integrators
would operate more unfavourably as regards error balance,
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stability, and starving. Tris has been confirmed by measure-
ments on actual systeas.

o

5. Summa

The strong resonance-like devendeunce of the spectrzl
excitation factors on the signal amplitude if the sigrals
are present only quantized witkh a few stages, shows the re-
quirement for working out a draft of a complete representa-
tion for multi-point systems frem the common process of the
describing function and the well-known ZYPKIN process for
two-point systems.

Taking specific distribution densities and tneir de-
pendence on signals as a basis, extensions worth mention-
ing, but nevertheless inexpensive, can also be specified
for stochastic multi-point systems which have numerous
practical advantages.
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AN OPTIMAL HEATING SYSTEM

Adel H. Eltimsahy Louis F. Kazda
University of Toledo University of Michigan
Toledo, Ohio Ann Arbor, Michigan

U. S. A. Uf S.. ¥A.

I. INTRODUCTION

A review of the research and work which has been done, and is being
done, in the area of gas-fired forced-air controlled comfort heating sys-
tems reveals little documented effort expended to study the heating sys-
tem from a control system point of view. Furthermore, practically no ef-
fort has been expended in trying to optimize these systems using the
techniques of modern control system theory. There are two approaches
available to study this problem.

(a) One approach is to use full scale experiments and utilize a
testing procedure designed to indicate the effect of modification made
on a given system. These experiments are practicable in principle, but
they are exceedingly difficult to realize except under controlled lab-
oratory conditions. In addition, they are very time consuming and pre-,
sent a very lengthy and expensive program. This approach has been used
for many years and has provided many useful results for warm air heating
system designers. It is especially useful when the objective is to in-
vestigate design improvements in particular components of heating systems.

(b) The second approach is to utilize an analytical model to rep-
resent the system. The advantages of the analytical approach are (i)
relative inexpense to perform, (ii) easy to duplicate results, and
(iii) relatively easy to evaluate results. Furthermore, the analyt-
ical approach often provides valuable insight which leads to a more com-
plete understanding of the actual system. It must be emphasized, of
course, that the accuracy of the results obtained utilizing the mathe-
matical model is entirely dependent on the degree to which the model rep-
resents the actual system. In the past few years other researchers have
performed analytical studies on the domestic heating process. However,
these studies were primary limited to open loop, steady-state situa-
tions3s% and were not concerned with the dynamic response of the system.

II. THE MATHEMATICAL MODEL

The fixed portions of the domestic heating system must include
the following basic elements:

1. Domestic Space: The habitable enclosure whose temperature is to be con-
trolled.

2. Room Boundaries: It includes walls, ceiling, and floor.

3. Furnace: The system component which supplies the thermal energy.

4. Air Ducts: The system component which transfers the heated air
throughout the habitable enclosure.

5. Gas Control Valve: The system component which releases combustible

gas to the furnace heat exchanger on signal from the controller unit.

In general all of the above elements affect the dynamic performance
of the system; effects of some of the components, however, are negligi-
ble-".

The above listed components are integrated into a schematic block
diagram indicating their relationship to the overall system. Such a
diagram is shewn in Figure 1.
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An approximate mathematical model for the fixed components of the
system has been established! and is expressed by the following single
vector linear differential equation: :

X =AX + U +m (1)
Ig $ 0 Y] - &g Byg
“where: x = |Ty ,u=1]0 ym= oy > A= lag; ap a4
T, uj 0 az; 0 ajj
Tp avefage temperature of the space to be heated.

Ty = average temperature of the inside surface of the outside wall.
T, = average temperature of the heat exchanger wall.

T¢ = average temperature of the furnace flame.

T, = outside atmospheric temperature.

u3z = b3Tg, my = d2T,

The components ajj of the matrix A, bj, and dp are parameters of
the system.

III. FORMULATION OF THE PERTURBATION MODEL -

In this section a. perturbation model is formulated to represent
the heating system as referred to some equilibrium position. First, as-
sume that the controlled input u and the uncontrolled input m are
such that the system is operating in an equilibrium condition, in other
words x = 0. In this case any disturbance which occurs in the system,
for example an opened door, entering people, additional lighting, etc.,
causes a deviation in x from its nominal or equilibrium value.

To obtain the equilibrium values, set x = 0, therefore:
Axy + ug + m =0 (2)
The zero subscript here refers to the equilibrium vectors. In or-
der to maintain a desirable room temperature which is a component of the
vector x, it is evident that u, the controllable input to the system in
the equilibrium state, takes on some value u,. To determine the value of

u, required, consider Equation (2):

aj1 312 a3 | (Tg, 0 0
521802 2250 Mg dos %o mur 0 1]
a3] 0 aij Te us, 0 ]

By appropriate manipulations this equation becomes:

a2 a13 0 [Tw, a); 0
az a3 O fTeo| == faz1| Tp, —=|m (3)
0 azy 1 u3, as 0

From Equation (3), it can be seen that knowledge of the desired
room temperature TR and the outside temperature expressed by m, deter-
mines the equilibrium values of the controllable veriayle T¢,, and the
various state temperatures. Let x = x5 +6x , X = X5 +8x

. and u = uy, +8u
where 6éx, Su, and §x represent deviations from the nominal values of x,,
u,, and x, respectively, then y = Ay + v (6)
where 6x =y, du =v

This lacter equation is the conventional well-known linear first
order matrix differential equation. The components of the vectors in
this equation represent variations in the state of the system. It is to
be noted that in this case this new perturbation model (6) is valid for
large swings from equilibrium since the model of the original dynamic
« system is linear. <8
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IV. THE OPTIMIZATION CRITERION

The main objective in the optimization of a gas-fired forced-air
heating system is to reduce and penalize room temperature variations due
to disturbances, and is primarily used here to define the optimization
criterion. The square penalizing will discriminate heavily against
occasional large room temperature variations. This philosophy is justi-
fied as long as the type of control used does not have any significant
physical limitatioms. In a gas-fired heating system. for example, phys-
ical limitations are imposed by the heat exchangei5 . It is mainly due
to power limitations. Therefore in order to consider power limitations,
a term in the square error criterion is added that is proportional to
the square of the control signal. Having these two factors in mind, the
optimization criterion for the forced-air heating system can be repre-
sented as follows:

S AL 2
Wy, v =1 [ (4 (6) + v ()] dc <7>
n=1 o
vhere J(y,v) is the error criterion to be minimized, 0 is a dummy time
variable, T is the period over which the minimization takes place, q(o)
and v(g) are defined as:

q,(9) 1 00 y1(0) v16) 3
q(e) =fq5(® = 0 0 0f lys(0) s v(e) = |vo) :
q3(9) 0 0 0 y3(0) va0)

The first term in the integrand of the quadratic criterion (7) rep-
resents the penality on the room temperature variations, and the second
term is introduced for power limitation.

V. THE OPTIMAL CONTROL LAW

The optimization problem at hanc is one of starting from some ini-
tial temperature disturbance Yo: and driving the system y = Ay + v to the
equilibrium state while constraining the original system to perform in
such a way as to minimize the value of the cost functional J(y, v). Here
the perio of optimization is allowed to be very iarge (i.e., T-w),
since the heating system has to be optimized over a long period of time.

The method of dynamic programming applied to this linear time in-
variant heating sgsgem is guaranteed to provide a closed loop or feed-
back control law °;/ for a given set of heating system parameters, which
satisfies the optimization criterion defined in section IV. It does not
pose any difficulties such as instability of the resulting equations which
could result by applying the calculus of variations to a system to be op-
timized over a semi-infinite interval (as T>®)6 , For these reasons,
the method of dynamic programming is thought to be the most suitable meth-
od for the optimization of the heating system under the optimization cri-
terion represented by (7). Bellman's Dynamic programming is basically
an optimization process that proceeds backward in time; that is, the sol-
ution is computed over the last interval of the process and successive
solutions are computed for the remaining intervals of decreasing time un-
til the total solution is obtained for the entire process.

In order to apply the functional equation technique of dynamic
programming, this optimization problem is embedded within the wider pro-
blem of minimizing:

T

2 2 _

}'t [qn (o) + Va (a) dc¢

e
N
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subject to the heating system Equation (6) and the initial condition
y(o) = Yo With t ranging over the interval (0,T). Let the minimum of
this cost functional be: g

% B 2 2
E(y.t) = min [ G5 (9 +vi@)] ao (8
& n=1 t

Invoking the principle of optimality to Equation (8) the functional equa-
tion becomes:
3 t+ e
E(y,t) = min braf
n=l t
where € is an incremental change in the time t. This equation is reduced
to the following expression (by integration and Taylor series expansion):

[q?l (o) + vﬁ (0)] do + E(y+y e, tﬁ}”

3
2 i 3E
E(y,t) = min{ [ lq (@) + v ()] ¢ +E(y,t) + g ynu e+—ep+ A €)
v = 0 = 3y, at
n=1 n=1 n
Simplifying:
3 3
2 2 . 9E E
min ‘)L [q° @) +vS (o + Yl R MRS () == 0
£ 25 qn n nzl a3y, at D

where A" (e)*0 as €~0

Therefore 3 2 2 3 | E 3E
min 1 lqp (@) +v ey + 1 ¥ L 1 =0 (10)

v . n S I By, ot

n=1 n=1 n

The minimizing control signal vector v*(o) is obtained by minimizing
the sum of terms within the brackets of equation 10 with respect to each
signal of the control vector. Minimizing now with respect to v3(o), the
only non zero component.of the vector v(g), ...(keeping in mind the rela-

tion between the vectors q and y), is therefore: 2v=§. + :L =0,
Y3
where vg = optimum control signal. 1
Consequently, the condition for minimum error is: vg SRS gi (11)
iy

In order to determine the optimum signal v§ ,g—z— for minimum error must
be determined first. Substituting Equation (11) and the value of q in
terms of y into the functional Equgtion (10), the condition for minimum
error becomes: y2 A i (L)Z b ? ;n E _a% -0 (12)
1 &4 3y3 o a¥n ]

As seen from Equation (12), the cguuition for minimum error is in a par-
tial differential form. To solve such an equation a power series solu-
tion is assumed, and the coefficients in the series are found by direct
substitution. Y

Since the integrand of the error criterion function is a quadratic
expression and the dynamic system is linear, the minimum error function
E(y,t) is also quadratic and can be written as:

: | 3 3
E(y,£) = k(£) + L kp(®)yg(t) + 1 | ke()yp(£)y(t) (13)
m=1 m=1 k=1
where kpp(t) = knm(t) | and
where k(t), kp(t), kpn(t) are the parameters to be determined from Equa-
tions (12) and (13). By partial differentiation of Equation (13),
(3E(y, t))/(3yn) and @E(y,t))/( 3) are written as follows:

3E t -
ELD k@) + 2 ] kam(E)yg(e) (14)

m=1
and
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3 3 8
BLLE _ o+ 7 Ky Oyg® + [ ] kk(Oya(Oy(®) 15
1 k=1

at
m=
If these partial derivatives are substituted into Equation (12) the con-
dition for minimum error becomes:

2 1 3 2 3 3 3
¥l * 4 [?3 + 2 Z kané] + k' + Z Kyym + Z Z KoY mYk
= m=1 m=l k=1 (16)

1
3 . 3
+ 0 | knVn + 2V ) kané] =0
n=1 m=1

The condition for minimum error expressed by (16) is satisfied for
all finite values of yn(t), assuming the k-parameters are independent of
yn(t), only if each of the coefficients of the constant term, yn(t), and
yn(t)ym(t) in Equation (16) vanishes, where n,m = 1,2,3. Therefore by
equating the coefficients of the constant term, y, and y y each equal to
zero, the following simultaneous first order differentia? gquations in
the k-parameters result.

£1(k, ki, k), ks, ky ko9, k33, K15,k 3,k93) = K,
£2(k,ky,ka,k3,ki]1,kz2,k33,k12,k13,k23) = ki
;3(k:k1:k21k31k111k22:k33)k12)k13;k23) = ké @17)

£10(k,k1,k2,k3,k11,k22,k33,k12,k13,k23) = Kk,
where: f;, f5, .....,f19 are in general nonlinear functions of the k-
parameters, and the primed k's refer to the derivatives of the k-para-
meters with respect to-time.

This method of assuming a solution leads to the reduction of the
problem of solving a partial differential equation to the problem of
solving a set of first order ordinary differential equations. The bound-
ary condition for the k-parameters are deduced directly from the required
boundary condition on the minimum error function. From the expression
for minimum error function for t = T, the boundary condition is

E(y(T),T) = 0 which means that k(T) = k,(T) = knm(T) = (0) (18)

The problem becomes now one of finding the optimum control system
of a one-point boundary value problem. The parameters of the optimum con-
trol system, k(t), kpp(t) where m, n = 1, 2, 3 can be determined from the
set of ten differential Equations (17) with boundary conditions given by
(18). It is to be noted that the number of parameters are ten and the
number of initial conditions expressed by (18) are ten.

The solution of the set of differential Equations (17) as T tends
to ®, must assume steady state. If the k-parameters assume steady state
values, then the differential equations given by (17) reduces to a set of
algebraic equations. Therefore, when the dynamic system is time in-
variant, the error function is quadratic, and the optimization process
is carried over a semi-infinite time interval, the parameters of the op-
timal control law become time-invariant.

Since the heating system is to be optimized over a semi-infinite
time interval for a quadratic optimization criterion, equations (8) through
(15) become

. - 2
E() =min [ [ai(o) + v (9] do (8')
Vien=1 (¢ 1
7 S ME 2
E(y) = m‘i,n{ b [qn(o) - vn(a>] do- E(y + §¢©) o"
n=1 t
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3 3
mind | [l +vi@] + § v &Y= (10")
vV 1n=1 n=1 X
* _ X 23E '
v3 = -3 3 3 (')
2 .1k - '
% 3 =0 (12 )
¥y *% (%;3) El Yan n
3 3 "
EG) =k + Z kmy(t) + 21 kzl koY (£) Yie () (13')
m= =
where k, kp, and kyn Where my, n =1, 2, 3 are fixed constants.
OE [
= 4
v ky + 2 m£l KnnVm(t) . (14')
3E 5'
;s 0 a1s5%)
B
also g;; ="ky + 2 [¥31y1 + k3py, + k33y;] 19)
By substituting (3E)/(3y3) from (19) into (11') gives:
k
3
v3 = -7 - kyyp - kagyp - kygy (20

Therefore it is necessary to getermine the parameters kj, k31, k32, and
k33 to determine the optimum control signal.

Substituting now from Equations (14') and (19) into the condition
for minimum error (12'), and also using the vector matrix differential
equation y = Ay + v, the following is obtained:

5) 3 3
2
yf - %[k% + bky z kp3yg + 4 ( Z k1Y) ]+ Z ( )-: am)b)Egn«g-Z ):k'ny.]= (]
m=1 m=1 n=l m=l s=1

Since equation (21) is satisfied for all values of yn(t), by equating the
constant term in this equation to zero, the following is obtained:

k3 =0 <) (22)
Similarly for the coefficient of yg: -kikg) + 2 “mnk =0 (m=1,2,3)

and since this is true for all finite values of“!mn, therefore

kl=k2=k3=0-2 2 3
For the coefficient of yj: 1 - kj3+4 | ajpk =0 (23)
For the coefficient of yi: 2 n=1
kg3 + 4 ] a3 kyp =0 (24)
. 3 n=l
For the coefficient of yz% -k§3+-4 z a3nk3n =0 (25)
n=1

[
o

3
For the coefficient of y)y,: -kj3k,g+ [ (ajgk, + ap k) = (26)
.

For the coefficient of yjy,: -kjj kyq + L (a) ky, + 83 k 1n ) =0 (27)
n=1

For the coefficient of yjy3: -kp3 k33 + z (azl_l 30 ¥ 335 ko) =0 (28)
. &

Equations (23) to (28) are in general nonlinear algebraic equations
in the parameters k ., m, n =1, 2, 3 and require a digital computer for
solution. In the next section a solution of these parameters for a
particular heating system on the digital computer will be shown.
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! Equation (20) now becomes: vg = - [k31y1 + k32y2V+ k33y3] (29)
The control function vg, derived here is referred to as the optimum con-
trol law.

This optimal control scheme for the variational system may be com-
bined with the equilibrium system developed in Section III to obtain an op-
timal feedback system for the heating process. In block diagram form the
system may be schematically represented as shown in Figure (2). In this
diagram a controller is provided which compares the values of the environ-
mental state and the desired state and commands the appropriate equili-
brium input. It should be noted that the number of feedback loops is
equal to the order of the heating system; it is noted also that the feed-
back signals are measurable state variables.

Thus, an optimal heating system for a defined quadratic cost func-
tion has been developed which has the desirable property of providing
feedback loops to account for distrubances in the system. This optimum
law will be applied to a particular heating system in the next section to
develop an optimum controller. The optimal heating system is then simu-
lated on an analog computer to study its behavior.

VI. EXAMPLE

Consider a domestic forced-air gas-fired heating system defined byl :

20.191 0.0422 0.097 0 0
A =|0.2278 -0.0974 -0.09 ), u=| o T, , m =|0.0184 | T
0.25 0 -0.489 0.239 0 e

The variational vector matrix differential equation as derived in
section III now becomes: ¥y = Ay + v
whereT vl = (vy vy v3) = (0,0,0.2358T¢)
2 i -
and y = (yl’yz’y35 = (6Tg,6T,,6T,) where y) = 8Tg, y, = 6T, y3 = 6T,

The square matrix A determines the system under consideration, and
therefore the k parameters of the system as defined by Equations (23) to
(28) may be _written as follows:

1 -2k31 + 0.388 k31 - 0.764 kll + 0.1688 klz

- k37" 0.388 k3p + 1.112 kjp - 0.3896 ky, =

'k33 e U k33 + k 1 =0
-k31k3p - 0.2884 kyp + 0.0422 kpp + 0.097 k3p + 0.2278 klgj - 0.097 k3; =0
-k31k33 - 0.68 k3; + 0.0422 k3 + 0.097 k3 + 0.25 klﬁ =
-k32k33 + 0.2278 kg; - 0.5864 kgy - 0.097 k33 + 0.25 12 = 0

The University of Michigan Control System Algorithm Program employ-
ing a 7090 digital computer was used to solve for the k-parameters. This
program was basically obtained from IBM, with some modifications added.
The modified program is entitled CSAP and is currently available at the
University of Michigan Computing Center Library. This program appears as
a subroutine on the system disc and may be entered simply by calling CSAP.
Once the program hac been called, it will function exactly as described in
the user's manual.” The solution for this particular system is:
kyp = 1.4649, kyy = }.3273, kgq = 9.2065, kjp = 0.825, k3{ = 0.4467,
kyy = 0.36. The optimal control signal becomes: vy = - 0.4467 y, +
0.36 y, + 0.2065 y,), or 0.239 8T¢ = - (0.4467 6Tp + 0.36 6T, + 0.&065 §%)
Hence, the block diagram of the optimum heating system using this control
law follows as shown in Figure 3. It is to be noted that §Tg, GTR, §T ,
and 6T _ are the variations of temperatures from equilibrium values, and
are deginedvas follows: 6Tg = T - T , 6Tp = Tp - TR ]

o o

6T, = Ty = Tug 5 6T = T - Te’-

=0
0
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* ™, n 5 N
Therefore, to generate v,, the variational signal, it is necessary to
first generate the equilibrium values of the temperatures, Tg,, TRO, Two’
and Teg.

For equilibrium conditions: T = T 0,
thea: Tg = - 1.045 Tg, + 2.05 T 5 T, = O- 23 Ty, + 1.97 Tr_ ,
Ty, = 2.3 Ty, - Te, + 0819 T,

From these latter equations it follows that having Tz , and T, a
set inputs, the equilibrium values Tf,, Te,, and Tbo may be®generated.

Having established the equilibrium values, they may be now combined
with the fixed portion of the heating system and the optimum controller to
provide the optimum control system.

1. First Case: The room temperature Tp is set at 70°F, and the
outside temperature is initially set at 209F. The system is therefore
initially in the equilibtium state of:

(70, 52.9, 115) °F . Tg, = 163.8°F
The out51de temperature T, is then suddenly changed from 20°F to O°F.
For these conditions the room temperature TR, the surface wall tempera-
ture T,,, the heat exchanger wall temperature T, and the control signal
temperature T¢ were recorded. These temperature responses are shown in
Figures 4, 5, 6, and 7 respectively.

From Figure 4, it is evident that the room temperature Ty decreases
gradually from the time the disturbance occurs until the time when the
variation §TR becomes -0.15°F; a total of 16 minutes. After this, it be-
gins to increase at a slower rate back toward its original value. In 40
minutes, the room temperature attains the value of 69.9°F. This is ex-
pected, since the optimization criterion was considered over a semi-in-
finite time interval. The optimum control signal T. as seen in Figure 7
increases gradually from the time of the drop in the outside temperature.
This effect occurs to compensate for the heat loss caused by sudden dis-
turbance. In Figure 5, it is noted that the surface temperature of the
wall initially falls rapidly to 45.37°P, then it gradually begins in-
creasing until it reaches 49°F. Figure 6 indicates the effect of the
disturbance on the heat exchanger temperature T,. This temperature ini-
tially drops to about 109 F because of both the decrease in room tempera-
ture and the decrease in surface wall temperature. It then begins to
gradually increase until it reaches within 2.4°F of its griginal value.
This is caused by the increase in the flame temperature.

2. Second Case: For this case the room temperature is set at 70°F
and the outside temperature is initially at 0°F. The equilibrium values
are: xg = (70, 49, 117) °F, Tfo = 182.8°F. The outside temperature
then rises suddenly to 40°F. Figures 8 to 11 show the state variables
and control signal responses to this disturbance. The room temperature
sesponse is shown in Figure 8. This temperature increases gradually to

0.15°F then falls to 70.05°F. The wall surface temperature shown in
Figure 9 rises as a result of the disturbance and then it decreases until
it reaches 63°F. The heat exchanger temperature also rises by 6°F and
hen will decrease gradually to 110 °F. This result is illustrated in
igure 10. Figure 11 shows the optimal control signal. It is apparent
"at the flame temperature changes gradually to 153. 5°F which 1mgl1es
that the disturbance caused by an outside temperature rise from O°F to
4v”F, decreases the flame temperature by 29.3°F to keep the room tempera-.
4J:e to within 0.1°F of 70°F.
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Comparison: If the conventional heating system is to be compared
with the optimal system, the basis of comparison must be the defined per-
formance criterion. It is true by definition that the optimal system
developed is the best with respect to this criterion; however, interest-
ing points can be made by analyzing the systems in general.

For a conventional heating system the main properties are: (a) An
on-off controller is used. (b) Only the average room temperature TR is
controlled. For analysis purposes 1, the heat output of the furnace is
ad justed so that the temperature ot the air circulating in the heating
system is 120°F when it is leaving the furnace during the on-period.
During the off-period the temperature of the air is considered to be 70°E
The outside temperature T, is held fixed at 20°F, and then allowed to
drop suddenly to zero. Computer runs were made for the conventional-
heating system for different values of thermostat (controller) time con-
stant T, minutes and hysterisis q ©F. The peak to peak room temperature
variation is measured and is called the cycling amplitude. Also the time
for one complete cycle of the room temperature is recorded, and is called
the cycling period.

If the conventional heating system is analyzed and compared to the
optimum heating system it is found that:

(i) the peak to peak variations of the room temperature are much
greater for the conventional heating system, when compared to the maxi-
mum deviation of the optimal system.

(ii) For an outside temperature disturbance the response and ad-
justment of the optimum heating system is superior to the corresponding
response of the conventional heating system. In the optimum system, the
temperature begins to fall gradually (due to an outside temperature drop)
until it deviates to -0.15°F. Then within about 5 minutes it tends to
remain to within 0.1°F or less from the original value. The conventional
heating system, on the other hand, begins to oscillate. The rates of in-
crease and decrease in the room temperature depend on the thermostat time
constant, and thermostat hysteresis. They also depend on the nature of
the disturbance. This is shown in Figures 12, 13, 14, and 15.

(iii) The rate of change in the room temperature is greater when
using the conventional controller thus causing the conventional heating
system to be less comfortable.

VII. CONCLUSION

An optimal heating system for a defined integral quadratic cost
function has been developed which incorporates the main objective of min-
imizing room temperature variations. The optimal control was shown to
have the desirable property of providing additional feedback loops to ac-
count for disturbances in the system. The feedback portions of the op-
timum control heating system were also shown to be time-invariant, a
characteristic which is advantageous in practice. Parameters of the op-
timum controller were determined through the use of the Control System
Algorithm Program (CSAP) on the 709G digital computer at the University
of Michigan. The optimum heating system represents an optimum from the
theoretical point of view for the configuration and cost function sel-
ected. Therefore it represents an upper bound or standard with which
conventional or sub-optimal systems may be compared. However, for some
specialized installations possessing rigid performance standards, it may
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be feasible to utilize a system such as the optimal.

Analog computer results showed a significant degree of improve-

ment could be obtained using the optimum controller rather than a con-
ventional controller.
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ALL VARIATIONS ARE MEASURED FROM THE ORIGINAL EQUILIBRIUM VALUES.
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ALL VARIATIONS ARE MEASURED FROM THE ORIGINAL EQUILIBRIUM VALUES.,
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