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A G.ENERAL METHOD FOR THE DESIGN OF LINEAR 
AND NO�LINEAR CONTROL SYSTEMS 

P.M. Frank. Universit4t Karlsruhe. Germany 

1. Introduction. 

Conventional design or feedback control significantly concentrt­
tes on a few prototypes or easily realizable controllers. the pa­
rameters or which have to be adjasted in such a way that optimal 
results within the predetermined limits may be obtained. The mo­
dern practice of direct computer ap :ication in control loops, 
however. makes it possible to realize even the most complicated 
controller structures. Consequently. the restriction on the con­
ventional controllers can tall away and the request for optimal 
�ontrol structure becomes or real practical importance. Frorn this 
poin£fv1ew,the essential two questions are: 

i. ) Which is the best possible control or a given plant. 
at all. i. e. what are the inevitable control errors? 

ii. ) Which is the simplest way to find out such a controller 
as to come nearest to the ultimate physical limitations? 

A lot or mathematical expence and many complicated studies o( sta­
bility are necessary to answer these questions on the basis or the 
single control loop. because the problem ot manipulating the plant 
has to be solved concerted with the stabilization problem ot the 
closed loop in one single unit. the controller. 

This paper deals with a new concept ot feedback control. by which 
the manipulating problem and the problem ·or_stabilization can be 
solved separately. This concept makes it possible to determine the 
inevitable control error and conclusively leads to Qptimal reali­
zable controllers tor linear plants as well as for nonlinear ones 
without particular mathematical expence. In order to find suitab�e 
technical solutions. approximations with regard to the special tech­
nical circumstances will be necessary. 



2. Specirication of the Design Method. 

2.1 Basic Control Concept. 

Fig.la shows the block diagram of the control loop, on which the 
design method is based, for linear conditions. A dynamic plant mo­
del S' is connected in parallel wit� the disturbed plant (transfer 
function S(s}}. Ir no disturbances enter S' and it S' simulates the 
plant perfectly (S' = S}, the output signal ot S' represents the 
�anipulated response x1 or the plant. By substracting this signal 
from the controlled variable x, the signal xy is compensated and 
only the disturbed response z is left over. From -z and the refe­
rence input w the manipulated signal y is generated by means of 
the two unit� Nz reap. Nw. In the following we will call them ma­
nipulating systems. 

Since xy has no longerany inrluence upon the input or Nz• the clo­
sed-loop system (fig. la} can be replaced by an open-loop system 

1 . 
as shown in fig. lb. The controlled variable in the frequency do-
main becomes 

X(s} = Nw(s}S(s}W(s} + [1 - Nz(s}S(s}] Z(s}. (1} 

It no noise is superposed on the rererence variable w, it follows 
from equ.(1} that, in order to obtain ideal control (x � w}, the 
transfer functions Nz(s} and Nw(s} must exactly equal 1/S(s}. Ge­
nerally, 1/S(s} is not realizable and must, therefore, be approxi­
mated sutriciently. It is important qow that the quality or this 
approximation has no inrluence on the stability or the closed loop. 

By a simple block diagram transformation, the reedback arrangement 
considered can be converted into the classical single control loop 
as shown in rig. le. The corresponding feedback controller consists 
or the manipulating systems Nw and Nz• the latter being red.back 
positively by a model of the plant. Ir NW = NZ = N, the equivalent 
controller transfer function becomes 

N(s} 
R(s} = ----

1-N(s}S(s} 

Note that for the performance or ideal control, i.e. tor 

(2} 

N(s)- 1/S(s}, equ. (2} yields R(s} -R.IS1 (a} with ·R..,�oo . This 
is the same result as in the case or single reedback control loop. 



5 

From the control configuration outlined above, a simple controller 
design can be developed. Let us assume for the first that the dy­
namics of the plant are known and constant in time and that the 
plant is stable. Poles of arbitrary order may, however, occur in 
the origin of the a-plane. Unstable plants should be stabilized 
first by an auxiliary feedback loop which later on can be combined 
with the controller. The essential steps in controller design are 
now: 

i.) Simulation of the plant 
ii. ) Approximation �t the inverse plant model 1/S by the two 

manipulating systems N• and Nz. (Spoken more generally: 
Performance of an optimal open-loop control of the plant). 

This method of design has an important advantage over the direct 
method based on the single control loop: That part of the control­
ler, which is responsible tor the stability of the closed loop, 
is known from the very beginning. The problem left over is a pure 
open-loop problem which can be solved without regarding the sta­
bilization problem. Besides this, since now w as well as z are 
available separately, the control loop can be simultaneously opti­
mized both for reference inputs w and disturbances z even it the 
characters ot z and w are different. 

2.2 Evaluation of the Inevitable Control Errors. 

For the determination ot N•(s) and Nz(s) we have to note that both 
the reference input w(t) and the dominant disturbance z(t), which 
has to be compensated, are usually superposed by additional small 
disturbances w1(t) reap. z1(t). From the practical point ot view 
it is convenient to require that in the ideal case no reaction to 
w1(t) and z1(t) is startet in the controller. w1(t) reap. z1(t) 
may, for example, be noise ot small intensity being present in any 
physical system. 

It the plant is simulated exactly, we get tor the controlled vari­
able in the frequency domain: 

The control error must now be defined as 
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So we have 

On the other hand, the errors or manipulation caused by nonideal 
realization or Nw and Nz are 

(4) 

Combining equation (J).and (4), we rind 

(5) 

Ir Nw(s) and Nz(s) are determined in such a way, that any preccri­
bed perrormance criteria · 

�{xwF<t>} = �{ew(t)tt a(t)} 
Q11{xwz(t)} = Q11te11(t)� s(t)} 

are minimized (see next paragraph) • the resulting control error 
can be explained aa to be the inevitable error. Thus, the inevitab­
le error can be calculated immediately rrom equ.(J). 

2.} Determination or Nw(s) and N11(a) ror Continuously Acting Control. 

Actually, the disturbances w1(t) and z1(t) are to be riltered out 
as well as possible by Nw(s) reap. N11(s) according to a certain 
perrormance criterion� reap. Q11• In respect to w(t) &<d z(t), 
however, Nw(s) and N11(a) has to approximate optimally 1/S(s) (pro­
blem or optimal riltering). In any case, the optimal manipulating 
system must be physically realizable. Therero1e, the. impuls re­
sponses nw( t) _and n11 ( t) must disappear· ror t < 0. The Fouriertrans­
rormability /ln(t)J dt<oo is otten requested as a rurther condition. · 

As a basis ror the determination ot N (a) may serve the block dia-. w 
gram shown in tig.2. This block diagram results rrom a change or 
the sequence ot Hw and S in tig. lb. Nz(a) may be caiculated just 
in a similar way; thererore we concentrate in the tollowing on 
the determinatlon ot Nw(a.). 
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The above problem is well known and solutions exist tor many ap­
plications. For stationary statistical inputs w(t) and stationary 
statistical disturbances w1(t) and minimizing the mean square 
error x2

F, the WIENER-HOPF-equation yields the following trequen-w 1 2 cy characteristic • 

N (jw) = RO • 
1 { "f'vw(w)S(-jw)} 

w "'f':(jw) lf'�(jw) 
(6) 

'\y:(j Col) and '\f' �(j,..J) are those terms or the power spectral density 
lfuu(w) whose roots occur only in the upper, reap. lower jw-plane. 
These terms can be round out by factorizing the power spectral 
density, lfuu(W) = 1':(Jw)· '/'�(jw), where "''uu(W) = S(jw)S(-jw)''fyv(w) 
and 1fvv<�> is the power spectral density ot the complete input 
signal v(t) = w(t) + w1(t). 

1fvw(w) is the cross-power spectral density between the input 
v(t) and the desired outputw(t). 

RO { )  symbolizes the �perator ot realizability. Its application 
demands: transform the term in parantheses by means ot �he two­
aided .c-1-transtorm and afterwards transform the result back 
again by means or the right-sidedi-tranatorm. It is convenient 
to develop the term in parantheses into partial tractions and to 
omit those terms, whose poles occur in the lower j�-hait-plane. 

!._al � It the reference signal w(t) is an aperiodi� deterministic one 
and the disturbance w1(t) is ot stationary statistical nature, 
the other conditions being the same as above - LEE rinds 2 

N (j ) = 
S2 

RO { IW(jw)I2·S(-jw) }' (7) w 1p:(jw) l#'�(jw) 

� W(jw) is the amplitude spectrum or the determinist1c input com-
ponent ·w(t) 

'Vuu<w) = "'':<Jw>Y�<Jw) = S(jw)S(-jc..J)['\f'w1w1 
(w) + S2/W(jw)/2] 

where �w w (W) is the power spectral density or w1(t) and g 
1 1 . 

is a constant. 

For determination or Nz(jw), we have to replace w(t) by z(t) 
and ·w1(t) by z1(t) in equ. (6) and (7). By this means it is pos­
sible, e.g. , to optimize the control loop· tor step characteristics 
ot the reference input w(t) as •ell as tor statistical diatur-
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bances z(t) si.mult·aneously. 

We can alao ignore w
1(t) and z1(t) tor the first. 

instead or equ. (6) 

Nw(JW) = 

and instead or equ. {7) 

Nw(Jw) = 

1 

Y :<Jw) 

1 
u•(Jw) 

t "f':<Jw) RO 
S(JW) 

RO { o• (j W) } • 

s (Jw) 

} 
Then we ba'Ye 

(8) 

(9) 
where o•(Jw) contains roota onl7 in the upper jw-halt-plane, and 
can be round out b7 factorizing IO(jW)\2 z IS(j�)f 2iW(Jw)j2• Since, 
usuall7, the degree or nominator or Hw(J�) exceeds that or the de­
nominator, realization·poles ba'Ye to be provided additionallJ. B7 
choise or suitable locations or that poles, additional performance 
criteria, tor example ti.JDe,idomain criteria, can be minimized. 

Naturally, any other performance criterion can be applied to instead 
ot the mean square error. The arrangement conaidered above can also 
be used tor the design·or time optimal control systems. In this case, 
Nw re3p. Nz BY,Jibolize digital systems which generate the optimal 
step series tor manipulation or the plant. We will not enter into 
this problem. 

2. 11 Realisation. 

The feedback contiguration considered 11&1 serve aa a tirat step tor 
finding out the optimal structure or the controller. There are three 
possible modes or realisation: 

i. ) ContinuouslJ acting control (CC) 
ii. ) Direct digital control (DDC) 

iii. ) H7brid control (HC) 

It is an essential disadvantage or the direct reali .. tion ot the 
controller according to.tig. 1b, that the manipulated signals ge­
nerated in Nz reap. Nw are not supervised. Mistakes as, e. g. ,  cau­
sed by parameter variations ot Nw reap. Nz• can yield steady sta­
te control errors� For CC and DDC, this ettect can be avoided b7 
�etermining the resulting controller tranater function and reali­
zing it as a unity according to the single feedback de'Yice. Fre­
quently, simpli�ications or the technical realization can be 
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achieved by such an operation. As for plants with distributed pa­
rameters, however, it seems that the transcendental terms of R(s) 
must be approximated by rational terms. 

The direct application of the feedback configuration (fig.1b) 
using a plant model, is signalized by considerable clearness. Be­
sides this, it allows a new mode or controller realization, which 
we call hybrid control: The plant model i� realized in an analog 
way, the manipulating systems are realized discretely, e.g. by 
means or a digital computer (tig. J}. The only purpose ot the com­
puter is to perform optimal open loop control. Its algorithm gets 
therefore, rathe.r simplified compared with its use in DDC. Even 
more important is, that in case of failure ot the computer, the 
control loop can never get instable. 

In many practical cases, either the reference variable is zero 
(constant-value control) or the disturbance variable and the refe­
rence variable have the same character• Then only one manipulating 
system N is required, which has �o be designed with reference to 
w-z. (see equ. (2)).  For the following, this simplification is as­
sumed. The ·results can be transtered without difficulty to the 
more general problem Nw(s) • Nz(s). 

J. Applications to some linear Plants. 

}. 1 Plants with Rational Transfer Functions with Minimal Phase. 

At first, let us consider plants with transfer functions or the 
type 

m a0+a1s+ • • •  +ams 
S( s) = --=---=--__;=---

sP(b0+b1s+���+bnsn) 

where m, n, p � o and integer and m � p + n. loforeover, no poles 
and zeros m&)' occur in the right halt ot the a-plane. The physi­
cally realizable solution tor N(s) follows from equ. (8) as 
N(s) = 1/S(s). Substituting this into equ.(3), )'ields X. = o, 
i.e. no inevitable control error appears in this case. 

In respect to the technical realizability, additional realiza­
tion poles must be provided in N(s). Let us, generall)', put up 
tbe following expression to� the technically realizable appro­
ximation or N(s): 

(10} 
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U(s) (11) 
S(s) ·V(s) 

where U(s) and V(s) are polynomials in s, whose difference of or­
der must at least equalize the resulting order m-p-n of the plant. 
By substitution into equ. (2) follows the controller transfer func­
tion 

R(s) :: 
The control error is 

1 1 
S(s) 00::1 

Xw(s) = [1 - ��=�] W(s) - [1 - ��!�J Z(s). 

(12) 

(13) 

As can be improved, U(s)/V(s) represents the transfer function of 
the closed loop. The resulting order of U(s)/V(s) is prescribed 
by S(s). The only problem still to be solved is to find �convenient 
expression U/V with the above mentioned limitation, so that a cer­
tain performance criterion will be satisfied. In practice, prepa­
red catalogs can be used. 3'4 

Ir· optimal control for disturbances as well as for reference in­
puts is desired (fig. 1c) , U/V refering to W(s) in equ. (13) must 
be different from U/V refering to Z(s). 

It p > o and disturbances are to be compensated, which enter the 
control loop at the input or the plant, V(s) becomes 1+c1s+ • • •  +c sq 

. q 
with q = n + p - m. U(s) must now be a polynomial or the order p, 
whose first (p+1) terms equal those of V(s). It can be improved 
that the disturbance response diappears for t-.�. 

3.2 Plants with Nonminimum Phase. 

Let us now consider plants with transfer functions or the type 
S(s) ·= s1(s)·A(s) , where 

m L: a'is11 
v:o s1(s) = f b 8,.. 
p=o p. 

represents a minimum phase term and 
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"t. c-1)cvs-v 
'\1=0 A ( s) = �:;;._ __ _ 

1 v E c..,s 
v=o 

an all-pass term. The physically realizable approximation of 
1/S(s) follows from equ.(8) as 

1 -1 N(s) = � Ak (s), 
1 

(14) 
where A;1(s) symbolizes the best physically realizable approxi-

-1 .J mation of 1/A(s). Since Ak (s) 1 1/A(s), an inevitable control 
error appears: 

A technically realizable approximation of N(s) is 
A;1(s) 

Nr(s) = S {s}V{s} 1 

(15) 

(16) 

In the simplest case, V(s) symbolizes a polynomial in s, whose 
-1 order equals the dirference of the orders or Ak (s) and s1(s). 

More generally, V(s) is a rational rraction. The transfer func-
tion of the controller becomes 

A-1(s) 
R(s) = 1 

__ ....:;k::.....,.---s;TBT V(s)-Ak
1(s)A(s) 

(17) 

Equ.(17) represents the optimal linear controller structuretech­
nically re�lizable and equ.(15) the corresponding inevitable con­
trol error. If, in the case of step inputs, !SE is the perfor­
mance criterion, then A�1(s) = 1. For plants with pure all-pass 
character (S1(s) = 1) we then find V(s) = 1. The transfer func­
tions of controllerl�pure all-pass plants up to the order 4 are 
the following: 

All-pass A(s) Controller R(s) 

c -s c _o_ 1 .�1 (PI) c0+s 2 2 8 

c0-c1s+s2 (18) 
1 CO 1 1 (PID) 

c0+c1s+s2 � ·�- + 2c":'" s c1 s cl 



:> .. 
c0-c1a+c2a--s"' 

c0+c1s+c2s2+s3 

4 c0-c1s+..- • • +s 

4 c0+c1s+ • • •  +s 

1 + '2' 

12 

1 
. 

CO '2C: s + --
3 c1s 

(18) 
c2 cl CO (- -

c 2 - -)s 
c cl I �· 3 (PIDS) 

82 
+ cl 

c3 

For all-passes ot higher order. additional S-terms(undamped oa­
zillating systems) appear in the controller transfer function. 

3.3 Plants with Distributed Parameters. 

Let us tirat consider plants whose transter !unction consists 
ot a dead-time and a rational minimum phase component: 

S(s) 

The physically realizable approximation ot 1/S(s) is 

N(s) = � N (s). 
�1 \DJ T 

(19) 

(20) 

where NT(a) means the optimal. physically realizable approxima­
tion or 

The unavoidable control error becomes 

-T s -T s 
Xvu(s)= [1-N'l'(s)e t ]w(s) - [1-NT(s)e t ] z(s). (21) 

By inserting realization poles. we get for the controller trans­
fer funi:tion 

R(s) = 1 � -Tts 
V(s)-NT(s)e 

(22) 
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The controller consists or the manipulating system NT/(s1y), 
w�ieh is positively fed back �ough the plant model Si the order 
ot the polynomial V(s) results trom the difference between the 
orders or HT(s) and s1(s). By finding out suitable coefficients 
or V(s) the control loop can be optimized. Since the control loop 
is extremely sensitive to dead-time variations}it is convenient 
to consider such variations by the determination or V(s): The 
•maller the bandwidth ot V(s) is chosen, the less sensitive is 
the control loop against parameter variations. More in detail 
this design method is treated in another publication.5 

As tor plants with distributed lag, whose transfer !unctions 
are ot the type 

-{TB' 
S(s) = s1(s)e 

(S1(s) as above), this method succeeds as well, but the mathema­
tical expense in-creases on account ot.the bad�-transtormabilityof 
e-•�. Additionally, the technical realization beeom�s more ex­
pensive, because even the controller contains distributed lag. 
In this ease, the hybrid arrangement ot the controller seems to 
be advantageous. 

-· Application to Honlinear Plants. 

4.1 Basic Control Concept and Design Technique. 

The method described may be even more advantageous infase ot non­
linear plants. Here the stabilization by means ot plant simula­
tion yields a remarkable simplification ot the controller design. 

Pig.4 shows the block diagram or the control loop tor nonl1near 
plants, when the disturbances z(t) enter the control loop at the 
output of the plant. Let us assume that the plant can be repre­
sented by a nonlinear characteristic NL and a linear transfer 
!unction S(s). The essential steps of design are: 

i.) Simulation or the plant in the positive feedback 
path or the controller (tor purpose ot stabiliza­
tion or the control loop and extracting the distur­
bed response). 

ii.) Cascade compensation ot the plant (tor the purpose 
ot optimal control). 
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According to ii.) a manipulating system must be found which com­

pletes the dynamics of the whole cascade to a transfer function 1. 

'The system to be determined may consist of a linear component N(s) 

and a nonlinear characteristic NL 

As in the linear case, the transfer function N(s) can be found 

by an approximation of 1/S(s). 

Additionally, a realizable nonlinearity NL
• 

is to be determined, 

which has to accomplish the following condition (see fig.5): In 

the ideal case, it is desired that the cascade of NL
� 

and NL is 

a linear system with tbe transfer function 1. If NL symbolizes a 

statical characteristic, NL* �epresents the invers,J characteristic 

of NL. 

In many cases, this postulation is physically realizable, as e.g. 

for quadratic characteristics etc. There are, however, a lot 

of characteristics, whose inverse characteristic is not realizable 

exactly, as e.g. those, whose slope is zero within finite regions 

(saturation, dead zone etc.). The more general formulation of 

the problem is, therefore, to find out that realizable nonlineari­

ty NL• , which minimizes a given performance·criterion Q{xw} <see 

fig.5b). llL- is not any longer restricted to be a statical charac­

teristic. 

4.2 An Example of Application. 

To demonstrate this method, let us considerthe design of a conti­
nuously acting controller for a first order plant with saturation 
on the following terms: When the reference input is a step function 
W05(t), the control error xw may go to zero (with a tolerance of 
! �with-in the shortest time possible T

A 
(time-optimal continuous 

control). 

Fig.6 shows the arrangement of the control loop. At first, the plant 

has to be simulated in the positive feedback path of the �ontroller; 

The linear component of the manipulating system is a phase lead sy­

stem (1 + T1s) with a realizing.pole at 1/�. The value of �/T1 
should be taken as great as possible. 

The nonlinear component NL�.can be found by the following conside­

ration: If there is no saturation or if NL can be perfectly com­

pensated, the optimal shape of the manipulated variable y1
(:y0) 
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is an impuls function with the amplitude W0T1/� (see fig.7a). 

The resulting step response of the control loop (see fig.7b, cur­

ve 1) is an exponential function with the time constant�. By the 

effect of saturation)the term of y1, exceeding the limitations 

y , is cut off. Consequently, the step respon�e is retarded as 
m 

shown in fig. 7b, curve 2. 

The inverse characteristic of_saturation is on principle not re­
alizable. ·The best what can be done in view of a short transient 
time, is to retain the manipulated signal at the limitation Ym 
for a longer time. The extension time TB - TB must be nearly pro­
portional to the intensity of the overshoot. Fig.8 shows a cir-

. 1' . th' 6 cu1t for rea 1z1ng 1s. 

The correspondin� step response of the closed loop is shown in 
fig.7b, curve 3. x follows the time-optimal curve with the time 
constant T1 by TB. At the point TB, y1 steps back to the shape 
of y0 and x follows1thereforeJcurve 1. ·Fig.9 shows the corres­
ponding analog circuit of the controller. 

The transient times TA/T1 (without use of NL* as well as for 
use of NL*) are plotted in fig.10 for �= 0,1 Tt as a function 
of the tolerance 1�1. Parameter is W0/ym. When the steps of w(t) 
and the tolerances E are small, considerable diminutions of TA 
can be obtained by use of NL•. The curve in broken lines repre­
sents the linear border line, where the amplitude of the impuls 
just touches the limitations y • In the region above the border m 
line, the control loop effects like a discrete time optimal con-
trol and in the lower region like a linear control. 

In this way we obtain a·nearly time optimal continuous control, 
which, in practice, does not differ considerably from the ideal 
time optimal control, but which actuates linear in the case of 
small inputs. This is a real advantage, since no oszillations 
around the rest position appear. 
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AN AL GEBRAIC METHOD FOR FOLLOW -UP 
SYSTEMS' COMPENSATION 

by Klaus w. PleBmann 
Technical College Aachen, German Federal Republic 

1. Introduction 
Optimum design of sequential systems has been dealt 

with by different suggestions published in professional 
literature11213. Moreov;r, cascades have been specified415 
which improve the dynamic behaviour if the simple cascade 
control loop does not deliver the required results because 
of the structure of the path. There are also to be mentioned 
those suggestions6'7 which make it possible to determine 
compensating elements from the function of the input signal, 
the given line path and the admissible output signal through 
a quadratic criterion. 

Our further discussion shall be based on Figure 1 ,  

·.vhere w stands only for discontinuol..'3 changes. Furthermore, 
1(p) is linear. ITAE criterion 

Q) j /w-x/ t. dt -- min 
0 

and statements 

and 

.! 1 
w = N'tPJ 

.!-=� w QCPJ 

( 1) 

(2) 

( 3) 

make possible the numerical determination of s�andard 
polynominals according to equation (2) and standard 
functions according to equation ( 3 )  for numerator and 
denominator polynominals of different order B,9. The re-
sult are standardised functions which are listed in tables 
1 and 2. These functions may be transferred to any given 
time range by means of a suitably selected factor. �he 
following shows how to transform sequential systems to the 
form of equations (2) and (3 ) , respectively, by means of 
compensating elements. 
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2. Transformation into Standard Polynomial Form 
2.1  First Method 

A sequential system according to Figure 2 is given 
with specified frequency responses F81 and F82• x/w is 
being transformed into the form of standard polynomial 
according to equation (2) by inserting a compensating 
element K as shown in Figure 3 .  

We have 

and from 

X = Fs1 F82 (w-x) 

� = Fs1 K (w-�) + X 

this 

K =Vs1 F82 CN-1) - 1) i---
81 

If we base the transformation on equation (3) , we 
obtain 

- 1> t::---81 

( 4) 

( 5) 

(6) 

( 7) 

Our further studies can be based on equation (6) without 
restricting the generality since the therefrom resulting 
relations may in the same way be applied to equation (7). 

If K is 

K(p) = iffi 
it follows directly for the realisation: 

order ZxCp) = order NK(p) 

( 8) 

This restriction for the selection of N(p) which has 
not yet been discussed is of great importance. We shall give 
you the statements on this using a simple example in the 
following: 
We have 

p(1 + pT) ( 9) 

and 
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N-1 = a.p + • • • • • + a pn-1 + anpn 
--� n-1 (10) 

and, thus, we obtain from equation (6) by the simplifying 
assumption 

1 
Fs1 = ......,.___:_,._ 1 + pT 

for the compensating element 
feR (a._,p + • •. + pn) 

K � p (1+pT)m-1 

= 
( n-1) m-1 � a,+ ••• + p - (1+pT) 

(1+pT)m-2 

Finally we get for n=m 
( ( ) ) ( (m-1) m-2, m-2 K = CRa1-1+ �a2- m-1 T P+•••+ �am_1- m-2 T 1P + 

(1 + pT)m-2 

( Tm-1) m-1 + eR- P 

by applying the binominal theorem. 

(11) 

The above-mentioned realisation condition is valid 
i � we conclude 

we get 
If we take line paths according to equation (9) , 

·1. Order ZK(p) = Order NK(p) 
2. Order N(p) = Order F81Cp) F82(p) 
3. Order ZK(p) = Order N(�) - 2 

(12) 

The realisation condition is to be tested corresponding-
-;; and a set of secondary conditions is to be derived (as in 

t.is case according to equation (12)) if the compensating 
method discussed so far is to be used, but where the fre­
quency response of the line paths is different. 
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On the basis of the given frequency response of the 
line .path, the total line path should be divisible into two 
paths, it is possible to derive the frequency response of a 

compensating element by simple algebraic means, whereby the 
frequency response transforms the overall transie�t response 
of the closed circuit into the form of stan�ard )olynomial. 
In most cases there will occur seconnary conditi 'ns because 
of the realisability of K(p). 

If the frequency �esponse is not given, but loci x/w and 
x�w are given according to Figure 4, the derived method may 
still be applied, only that the compensating element is 
determined graphically. Outgoing from describing equation (6) 
for K(p), the locus therefore may be determined point by point. 
The starting point must be equation (6), just the same as in 
the algebraic method. 

We have 

and 
X., w = Fs1 

and, subsequently, 

K = (F(N-1)-1) & 
S1 ( 13) 

It must be considered that F and F81 are given only 
point by point. Thus, the construction requires one in­
version, one subtraction and two multiplications. Graphical 
multiplication of two complex magnitudes is indicated in 
Figure 5. 

The known characteristics N( j w) - 1 are taken as 
basis, F81(jW) is inverted and, thus, equation (13) can be 
constructively processed. 

Figure 6 shows the construction for one , ·· .1t of K. 
The following points are given: 
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N (LU1)-1 Point on the chosen standard locus 

F1 (lU1) ·Point on the inverted characteristic F81(jUJ) 

F ( w1) Point on locus i 
By multiplication of N (UJ1)-1 with·F2 (UJ1) we get 

point A (W1), th�n 

B (w1) = A ( w1)-1 

and, finally, wanted point K (UJ1) by multiplication of 
B ( W 1) with F 1 ( W 1) • 

Naturally, with this construction only approximate 

values can be found which mainly depend on the accuracy of 

the drawing. Another difficulty is due to the fact that 

.l( jW )-1 must be selected before carrying out the design. 

A close relationship exists between the selectiQn of this 

value and the realisability of the compensating element as 
has already been described above. It must, furthe·rmore . ._ be 

consid.�rea·t�at the frequency response reqUired for realisa­

tion must be determined from the point-by-point acquired 

locus of K(jUJ). Thus, it seems advisable to star� with an 
approximation for K ( jW), for instance by assuming 

(14) 

or 

K (jW) (15) 

Studies have shown that quite good results can be 

obtained with these approximations, for whic h three points 

each are required in the design, without too much expen­

diture (see Section 3 on this). 

2.2 Second Method 

We have mentioned already at the beginning that special 

compensating methods for sequential systems have been 

suggested. With reference to these methods6'7 let us examine 
a system as shown in Figure 7. 



27 

we have, with line segment F8(p) being known: 

i = 1 11/P = � (16) 

and 

F = F K 1 - KP (17) 

Equation (16) and ( 17 ) give 

(18) 

Since in real systems the linear loop of the circuit 
haS only one single point which is stable, t�is part is 
changed into a compensating element K(p). 

We have 
1 K = P(N-1) (19) 

or according to equation (3) 

K = --=p=---- (20) 
Fs (Q-P) 

It is out of question that this method can also be 
dealt with and evaluated graphically. The resulting con­
struction may be regarded as a special case of the f rst 
method. In contrast to· the above-mentioned method no 
secondary conditions are required for the realisation of 
the element to be constructed according to equation (20). 

The order of the standard polynomial or the standard 
function is only a function of the order of F8{p). 

2.3 Numerical Application 

Especially the second method can be applied in 
connection with a DDC . Thereby, two items are of importance: 

1. Optimum adjustment of the circuit is obtained by 
irregular changing of w for x(t) according to 

• 

• 
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equati on ( 1 ), The computer.co-operates with a 

mult itude of c irc uits , exc ept s ome special cases, 

Therefore , w may b e  regarded as step func ti on 

f or each c omputing cycle with good approx im ation, 

2, An algorithm c an be derived from the describing 

e quat i ons for K(p)  by means of the methods of Z 

transform ation or special m ethods10) . This 

algorithm c an directly be programmed, In t his
· 

.conj unction, the algorithm for K(p)  may be re­

garded as digital filter . 

It sho uld also be ment i oned that this optimisation 

m ethod delivers not only the approximate ( by �r. e.ans of 

graphical . design as above-mentioned) but the optimum guide 

act i on (with the parameters of the line path b eing known) 

with regard to the ITAE c riterion.  

J, Example 

L et us assume we have the following frequency responses 

1 
1 + p 

_hen we have 

K 1 + 0,304Zp - Q,6634p2 
- 0,8513p3 

= 2 , 261 2 3 1 + Jp + 3p + p
' 

ak i ng ,  the reby , into account the realisation condition 

nd eq uat i on ( 7). 

�(p)  resulted from line 5 of table 1 on the basis of 

� e  above-m entioned c ons iderati ons, x(t)  is plotted i n  

·_gure 8, L et us take the loci o f  the discussed exampl e  

t d  m ake the following s tatement for the compensation 
v2 

K = ------..,o:-
1 + a� + b�

2 
• 

• 
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Th e fo llowing pairs of val ues result from the con­
struction of K - 3 points -

0 , 2  1 p1 = 1 ,9 .... j 1,1 2  w1= sec 

0 , 6  1 p
2 0 , 41 - j 1 '76 W2·= = sec  

0,9  1 : . p3 - 0,19 - j 1,61 w3= = s e c  

and ,  s ubsequently , 

K = 
1 + 2 , 25p + 0 , 69 p2 

2,31 

If K is applied in the s equen tia l  system a ccording to 
Figure 3, we have a tim e  behaviour of x(t) as plotted in 
Figur e  9. 

4. Summar:y 

Two methods have been d es cribed which - on th e bas is 
of standard po lynomials or sta ndard fun ctions , make it 
possibl e to d etermine compensating elements by means of 
simple a lgebraic  transforma tion s .  Se condary co nditions 
result from th e line segment to be giv en with regard to 
th e sele ction of po lynomials or functic.s taking, th ereby, 
into acco unt realisation cond itions . 

I t  has, furth ermore , been demonstrated that th e 
suggested methods may a lso be applied if th e loci are 
giv en .  In th is cas e  it is possible to evaluate th e compen­
sating element to be  � etermin ed by approx imation . This has 
been proved by experience and mea ns a simplifi cation of th e 
resulting construction. Th e results of ca lcula tion and con­
struction have been d emonstrated by means of a simple  exampl e .  
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Prder N(p) 

r 1+P 

� 1+1 ,497P+P 2 

P· 1+ 2 , 171p+1 ,77Bp2+pj 

� 1+2 ,645P+3,337P
2+1 ,951Pj+P

� 

5 1+3 , 261p+4,689p
2+4, 5P3+2 ,075P

�
+P5 

6 1+3 ,777p+6 , 866p2+7,1 1 8pj+51687P�+2, 24p�+P
b 

Table 1 Standard Polynomials 

Order 
2.1 P( p). 

Q (p) 

3.1 P(p) 

Q (p) 

3.2 P(p) 
Q(p) 

4 .1 P(p) 
Q (p) 

4 .2 P(p) 
Q (p) 

�.3 P(p) 
Q ( p) 

5.1 P(p) 
Q(p) 

5.2 P (p) 
Q(p ) 

= 1+2, 595P 
= 1+2 ,98P+P 2 

= 1+3 , 51 2p. 
= 1+4, 226p+2,791p2+p3 

= 1+1 ,375P+2, 069P2 

= 1+1 , 857p+2,733P2+P3 

= 1+4,764p 
= 1+6 , 069P+6 , 892p2+31425PJ+p4 

= 1+2 ,06p+3,36p
2 

= 1+� ,841p+5, 26Bp2+3 , 238P3+P4 

= 

= 

= 

= 

1+ 2,075P+2 , 1 59P2+1 , 833P3 

1+2,602p+3,276p2+2 ,987P3+p4 

1+9 , 21 3p / 
1+10,696p+1 4,736P2+10, 273P3+3 , 304p4+P5 

= 1+1,25P+3 , 199P2 

= 1+2,719+5;81 8p2+51 °p3+ 2,894p4+p5 
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Order • 
5·3 P(p) = 1+2,462p+2, 313P�+2,926pj 

Q(p) = 1+ 3,337p+4,scnp2+5,7BBp3+ 3,339P4+P5 

5 .4 P(p) = 1+ 2,7 38p+) , 505P�+3, 339Pj+1,186p� 

Q(p) = 1+) , 365+5,292p2+5,771PJ+3,478p4+P5 

b .1 P(p) = 1+6,806p 
Q (p) = 1+8 ,989P+16,975P2+15 ,609PJ+9,905P4+2,992p5+P6 

6 .2 P(p) = 1+0,594P+3,81Bp
2 

Q (p) = 1+2 , 475p+6 ,6)Bp2+B,926p3+7 ,192p4+2,949p5+P6 

6 . 3  P(p) = 1+1 , 267P+3 ,142p
2+ 2 , 52p3 

Q (p) = 1+2,621p+5,861p2+B , 08p)+6 ,935P4+2 ,76p5+P6 

p .4 P(p) = 1+2,862p+4,266p�+ ) , 816pj+ 2,772p
� 

Q (p) = 1+3,752p+7 ,144P2+8, 513p3+7 ,634p4+3,692p5+P6 

p .5 P(p) = 1+4,092p+5,951p�+8 ,466pJ+4,469P�+P5 

Q (p) = 1+4, 521p+7 ,729P2+11 ,061p3+8,183p4+4, 201p5+P6 

Table 2 Standard Functions 
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A S IMP LE P ROC E DU RE FOR T HE S Y NT HE S IS OF 
SAMP LE D - DATA CONTRO L  S Y S T E MS B Y  MEANS 

OF T HE BODE . DIAG RAM TECH NIQUE 

Introduction 

\volfgang Latzel 
Brown Boveri & Cie 
Mannheim 
Deutschland 

The analysis and synthesis of linear sampled-data control 
systems has advanced so far that the main problems can be 
considered solved . i'lhen representing the sampled-data syste111 
by means of its z-transform one may state on the basis of 
certain criteria whether the roots of polynomiaY F0 ( z )  are 
inside the lli"1i t circle . 1- ·; 2  Considering the time domain a 

general calculating scheme is obtained to determine the con­
trol function for a dead beat response at a given controlled 
system of class N and a discrete controller of class N . 3 • 4  
To reduce the equipment it i s  advisable to choose clas s  n of 
the controller smaller than class N of the controlled system 
thereby increasing the calculating operations to determine. 
the control function . 5 • 6 

Jp to now there exists , however ,  no convenient procedure to 
�alculate the coefficient s 1 of the controlle� from the re­
�resentation of #the controlled system by means of the Bode 
liagram as thi s is the case with continuous control systems . 

:>uch a procedure would be of advantag.e as its mode of repre-
5entqtion will be based on the description of continuous 
systems ,.,here the sampling effect will be considered by an 
3dequate correcting function . In addition , the relation 
between cutoff frerj_uencies and gains in the Bode diagram 
and the controll�r coefficients remains clear , whereas it 
'.'lill be lost in the computational procedures . It will be 
shown that with the below mentioned procedure only � 
�pproximate dead beat response will be obtained which does 
not have the high parameter sensitivity caused by a setting 
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according to dead beat response .  

Problem 

The considered sampled-data systems consist of a c ontrol l ec 
system governed by a differential equation and a sampl e d ­
data controller described by a difference equation . 

The sampled-data controller consi sts of a scanner wi th z e r ­
order holding device followed by a correcting element fo rmed 
in a digital computer . After being sampled in the holding 
device the 1co�t�nuous deviation �( t )  is converted into 
the stepped deviation �( t ) . The manipulated variable y ( t )  
which i s  also stepped i s  calculated in the digital computer 
and applied to the controlled system . 

Between the Laplace transforms Xw(p )  and Xw* (p )  of the time 
functions �( t )  and �* ( t )  ahead and behind the scanner with 
the sampling time T ( distance between two sampling moments )  
there i s  the relation : 

Xw*(p ) = � L Xw( p+j k .!l )  
· · - 00 

11. 27r = -r: ( 1 ) 
The holding device with the correcting element of class n 

( see Fig . ·1 )  has the transfer function : 
1 -e-pT d0+d1 . e-pT+ + dn . e-npT y (p) = x ( ) -pT -nnT ( 2 )  

w* P p 1 -c 1 . e  - • • .  - cn . e  · 

The calculation of this correcting element is to be per­
formed directly by means o� the Bode diagram . It is advisable 
to start with the transfer function in the basic strip with 
k=O . The influence of the suppressed harmonic oscillations 
of Eq . ( 1 )  will be investigated later . The transfer function 
of the complete sampled-data controller in the basic strip­
is : 

FRo ( p )  
= 

Y ( p ) 

Xw( p )  

1 -e-pT 
= ---

pT -pT 1 -c 1 . e  -

+ d e-npT n·  
-npT cn . e  

The coe.fficients ci , di of the sampled-data controller 

( 3 )  
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should be calculated in such a way that with controlled · 
systems of higher order ( Nz 2 ) - an approximate dead beat 
respons e "l'li th a correction time of 3 to 4 sampling periods 
vri ll be obtained . It will be shown that the cases n = 1 ,  2 ,  3 
are sufficient . 

I 
rhe procedure for the synthesis described below applies to 
any sampling time T compatible with the stability of the 
system . The max . value of T permi ssible for the stability 
a . � for the desired time response can be determined by means 
o£ this procedure . 

1 )  The description of the first-order sampled-data controller 

by means of the Bode diagram 

For the case n= 1 the socalled PD-sampled-data controller is 
o .ained "'i th the transfer function in the basic strip : · 

i?� ( ) 
. •  0 . 

1 -e-pT 

pT 

d +d e-pT 
0 , • 

In order to find the frequency response pertaining to this 
transfer· function the known transformation z- 1  = l:: of the 
z-plane i s  applied to the w-plane . To obtain the same dimen­
s i on for the fre�uencies p and w ,  it is advisable to express 
thi s transformation as follows : 

-pT 
p = a' + j w w = u + jv ( 5 )  

/ 
�. ft'=r thi s transformation has been applied to the z--depen-
�ent portion the transfer function is : 

v . _l vtr 1 +wra FRo 1 +wt 1+c 1 T 1 +� · 2 1 -c 1 2 

( 6 ) 



with the abbreviations 

d0+d 1 v = rc 
- l 

T • 
do-d1 Ta= 2 d0+d1 · 

4 1  

( 7 )  

( 8 )  
From the w-dependent portion· the following statements on the 
coefficients can be derive d :  

T In order to have a rate action it i s  necessary that Ta > 2 
which yields : 

It is necessary that c 1 < 0 , should the feedback by c 1 
result in an improvement as against the case c 1 = 0 .  

An explicit form in p which can be used for the direct 
description- in the Bode diagram, is obtained by the re­
transformation of Eq.  ( 6 )  for the range of small and high 
values of /w/ . 

On account of Eq . ( 5 ) w ·= p holds for � � � � 1 ,  and thus 
we obtain from Eq . ( 6 ) : 

For l wTa l � 1 we extend Eq. · ( 6 )  by 1 +� and transform , at 
first , the following term : 

1 + � = 

( 9 )  

T 1 +c 
1 +�' 1 1-c 1 

( 1 0 )  

After adequate extensions we obtain for the remaining term :  

wT wTa 
[

wT r ( 1 1 )  
n F1 = V - · · 

( 1 +4)2 = V . pT • 

pT a pT . ( 1 +4) 
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The term in brackets is the transfer function of scanner 
and holding device in the basic strip so that Eq . ( 1 1 )  is 
·rri.. tten : 

,... ,. -- ., [ � ( ) ] 2 r � = < , p 1 a ' � Ho P ( 1 2 )  

3 i :1 c e  r > �' the valiclity ranges for Eq . ( 9 )  and Eq . ( 1 2 )  a -
�r� verlapping sufficiently so as to allow a combining of 
-;;:-,;0 -:'.,·c equations . With the function according to Eq . ( 1 0 )  
c � e  ! inally obtains 

( 1 3 )  

?h· · :o , ;..-e have succeeded in representing the PD-sampled-data 
c�n �roller by a product of two transfer functioas where the 
!irs � -ne describes the ideal continuous PD-controller and 
the second one the effect of sampling and of the feedback 
e:e�ent c . The frequency responses  pertaining to the correct­
ing �ra11sfe r  function 

( pT , c )  
1 +c . e-pT 

1 +c ( 1 4 )  

are shown i n  Fig .  2 .  An increase in c reduces the phase 
�g;l e in the range 117 = 0 • . •  1 and results in a growing 
increase close to half the sampling frequency � = ; . At 
c = the correcting fuction has a singular point . 

� improvement of the control action by the feedback variable 
c i  = -c i s  to be expected if c 1 = -0 . 6  • • •.  -0 . 8  is cho s en .  
T�en , the amplitude increase at � remains within reasonable 
limi�s , whereas the phase angle is considerably reduced com­
pared with the case c 1 = 0 .  

After selecting c 1 we obtain for the coefficients d0 and 
d.1 : 

d0 = ;i . ( 1 -c 1 ) • [ � + � ] ( 1 5 ) 
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( 1 6 )  

The deviations between the frequency response representations 
according- to Eqs . ( 4 )  and ( 1 3 ) are below 1 dB in the range 
r.r =  0 . • . �. At the ratio Ta/T = 4- , 3 , 2 , 1  and a frequency of � the phase error is only 5° , 6° , 9° , 1 7° ; at lower frequencies 
it is correspondingly lower . 

2 )  Instructions for the adjustment of sampled-data control-

lers to continuous controlled systems 

Generally the adjustment of sampled-data controllers to 
continuous controlled systems is based on the dead beat re­
sponse where the controlled variable is approaching the value 
of the reference input within a given time . A controlled 
system of class N requires a sampled-data controller of 
class N where the time response has N+1  switch points . 

If class n of the sampled-data controller is  chosen smaller 
than class N of the controlled system , only an approximate 
dead beat response has to be expected. The dimensioning of 
the coefficients is based on the requirement that the 
quadratic deviation integral for t >  nT becomes minimum. 
For this case extensive calculating operations are required. 
6 , 7  

For the representation by means of the Bode diagram we ob­
tain relatively simple adjustment conditions provided the 
time response pertaining to the approximate dead beat re­
sponse can be given. 

Experience has shown that controlled systems of higher clas­
ses can be controlled without overshooting with a time re­
sponse to be composed of three third-order parabolae with 
the relation: 



y (- t )  = X ( t )  ( 1 7 )  

During the three sampling timre with the length Tm/3 the 
manipulated variable is constant and assumes the values 
Y=Ym • -2ym , Ym ( see Fig . 3 )  

By integrating three times , x can be described as a sum of 
four third-order parabolae ( with o' ( t)  for the step 
function) : 

[t3 1 T 3 T 1 2T 3 2Tm x (  t )  =ym ti• a' ( t ) -�( t--1) . 6' ( t-:1h �( t�T) • o' ( t-3) 

( 1 8 )  

By means o f  the Laplace transformation we obtai� for the 
desired transfer function of the closed control loop ::o b:

P

:e:o[ �;; ;�
T
:;;pl t; : 

opt m 
( 1 9 )  

This involves the following transfer function of the open 
control loop : 

[ -pTm/ 3 ] 3 
F ( p )  _ 1 -e 

0 opt - [::..:....:::__1 -3 --=-[ --�pTFr"m"'7""l/ 3r-] ..,.3 - pTm/� - 1 -e 

Its frequency nesponse is  shown in Fig . 4 

( 2 0 )  

. At low frequencies i Foopt l shows a decrease of 20 dB/decade 
for the integral action . The zero-decibel-frequency is  
�d1 = i; at a phase margin of �Rd = 65° . With the frequency 
�d2 = 2� there is �0 t = - 1 80° at a gain margin of ARd 
= -9dB�m op 

The gain characteristic I F0 j rises in the range �0 = 
o o opt opt - 1 80 . . .  -270 at the maximum 1 . 5 dB over the straight line 

dropping with 20 dB/decade . With the frequency Q= £; = �. 
there is ) F0 j =0 at a phase angle 'fo = -540.0 . On account 
of the periog��ity of Fw harmonic os8�tlations will also · opt 
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occur in F00pt which are , however , negligible as they are 
below 1 per cent . 

As example for the dimensi oning of the PD sampled-data con­
troller the controlled system given in6 is used . 

where T1 =2s , T2= 1 . 2s ,  T3= 1 s ,  T4=0 . 8s ,  T5= 1 s .  

( 2 1 ) 

As in Fig . 1 5  in6 a sampling time of T = 4 . 5s is chosen . 
Fig . 5 shows the arithmetic operation to be performed in a 
few steps . After representing the exact gain characteristic / Fs / the selec ted cutoff-frequency 1 /Ta is that frequency 
at which I Fs ! has dropped by further 3 dB as against the con­
stant drop of 20 dB/decade . 

Coefficient c 1 has been selected so as· to result in the 
desired gain characteristic . The gain is chosen dependent on 
the phase margin and the gain margin . 

For a choise of V=0 . 1 ;  c 1 =-0 . 7 ,  Ta=3 . 1 s and T=4 . 5 s we ob­
tain for the controller coefficients : 

d0 = 0 . 20 

d1 = -0 . 03 c , = -0 . 7  

In Fig . 6 the time response i s  shown obtained with these 
values . The correction time is 1 8s as against 1 2 s in Fig . 
1 5  in 6 , the quadratic deviation integral i s  only 1 8  per 
cent greater . 

As shown by the frequency response F0 in Fig. 4 , the 
harmonic oscillations in Eq . ( 1 )  are ��iligible if the time 
response can be described by a course as in Fig .  3 .  



For the impulse frequency response F0* (j�) required to 
describe the sampled-data control system we have to con­
sider in Eq. ( 1 ) the terms with k = 0 and k = -1 ,  then we 
obtain : 

( 22 ) 
Assuming a frequency response Foopt (j�o� ) according to Eq . 
( 20 )  we have at a frequency � a phase angle of -260° and 
thus a negative real component . When the sampling time de­
c reases in proportion to the increasing sampling frequency 
the phase angle �0 ( j  %) increases . No loss of stability will 
have to be expected if y0 ( j�) = -270° . . .  -450° as positiv� 

_ 

real components are belonging thereto . If , however ,  y0 ( j�) 
= -450° . . .  -630° the stability may be endangered if the real 
component of F0 (ij) becomes too iarge . In order to avoid 
thi s care should be taken that the gain characteristic of 
F0 (j�)  at high frequencies , especially at � will not exceed 
the straight line 1 /� dropping at 20 dB/decade . 

3 )  The representation of the frequency response of the 

second-or�er sampled-data controller 

With n = 2 ,  we obtain from Eq . ( 3 ) after applying the trans­
formation of Eq . ( 5 ) the following transfer function: 

F 1 • wT 
Ro-p_)T :--'!' ' 1 +� 

d0+d1 +d2+wT (d0-d2 )+ (�) 2 ( d0-d1 +d2 ) 
1 -� 1 -c2+wT ( 1+c2 )+ (wi)� ( 1 +c 1 -c2 ) ( 23 ) 

c 1 ::> 0 ,  ( 24 ) 
In the denominator of the last fraction the constant term 
is dropped so that by reducing the fraction by wT for w�o 
term pT is maintained in the denominator and describes an 
!-action . Thus , case ( a ) describes an PID-sampled�data 
controller the transfer function of which is defined by : 
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( 2 5 )  

The PID-sampled-data controller can be described by a pro­
duct of two transfer functions where the first one describes 
the ideal , continuous PID controller and the second one the 
effect of sampling and of the feedback element c2 • The effect 
of the feedback element is again given by Fkl as per Fig . 2 
with c = c2 . From c2 we obtain c 1 according to Eq . ( 2 4 ) . 

For the coefficients d0 , d1 , d2 we obtain : 

( 2� )  

Y-7 ) 
( 28 )  

Fig .  7 shows the obtained time response on a fourth-order 
controlled system ( as Eq . ( 2 1 ) ,  however without I-element ) : 

( 2 9 )  

When adjusting the controller first Ta i s  sel ected equal to 
the max . delay time T1 = 2s . As cutoff-frequency 1 /Tb that 
frequency i s  cho s en at which the gain characteristic I 1 +pT I F8 � has dropped by further 3 dB as against the -con-
stantF a - drop of 20 dB/decade : 1 /Tb=0 . 48s-1 • 

The value required for V results 
Curve a in Fig . 7 corresponds to 
V=0 . 495 and T=3 . 3s . 

Thus , we find : do = 1 .  01  
d1 = -0 . 24 
d2 = 0 . 02 

from the phase margin . 0 a phase margin of 6 5  at 

c 1 = 0 . 4  
c2 = 0 . 6  



Curve b corresponds to V=0 . 53 at a phase margin of 62° . · 

.:.:ase ( b ) . iiJi th certain values of c 1 , c2 we obtain a second­
order sampled-data controller with PD2- action permitting to 
govern controlled systems with double-integral action4 . 

From Eq . ( 2 3 )  we obtain for the transfer function of the 
PD - sampled-data controller : . 2 

V . 1 
Pf 

w1' 

1 +4 
( 1 +wTa ) ( 1 +wTb ) 
( 1 +wT c ) ( 1 +wT d) 

( 30 ) 

( 3 1 ) 

·he rate times Ta ' Tb are defined by adjustment· to the given 
c ontrQlled system and are set by selecting the di . Depending 
on c 1 , c2 the delay times Tc ' Td have a certain range . The 
2. imit value of the w-dependent term of Eq . ( 30 ) for w - oo 

remains unchanged if instead of the two separate roots Tc 
and Td a double root at T0 = VTcTd is chosen .  Thus , the 
design of the controller is considerably simplified and a 
relation between c 1 and c2 obtained : 

( 32 ) 

:-ienc e ,  the transfer function of the PD2- sampled-data con-
troller is : [ 1 - � 

c 1 -pT 1 �  . e  

2 

( 33 ) 

F i g . 8 shows the frequency responses of the correcting trans­
fer function 

[ 1 p-T
e -pT] 3 

F k2 ( p l.' .  c )  = 

-

[ 1 +c J 2 
-PT 1 +c .  e - . ( 34 ) 
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which is to be added to the transfer function of the ideal c 1 pn2- controller ( with c=--z) . For the coefficients d0 , d1 , 
d2 we find : 

c 1 2 [TaTb Ta+Tb 1 ] 
d0 = V( 1 - � ) • � + + -4 b T.:: 2T · 

( 35 ) 

c 1 2 [T Tb 1 ] d1 = -2V ( 1 - �) • � -� ;4 . ( 36 )  

c 2 
d2 = V ( 1�) 

Fig . 9 shows- the time response on a controll�d system 

1 
( 1 +pT1 )(1 +pT2)(1+pT,)(i+pT4) .pT5 .pT6 

which we find· from Eq • . ( 2 1 ) by adding. one !-element with 
T6=10s . As with the first example the adjustment yielded 
Ta=3 . 1 s ,  whereas Tb=,10s  was assumed to be two powers of 

( 37 )  

( 38 )  

ten higher in order to get the maximum possible phase lead 
within the range of the zero-decibel frequency. With T=4 . 5s ,  
we obtained _ with -� = o . 5  an admissible proportional gain of 
V=2 . 5 . 1 o-3 and hence : 

do = 0 . 372 
d1 = -0 . 425  c1 = --1 
d2 = 0 . 058 c2 = -0 . 25 

The time response is  satisfactory , however not the steady­
state error on account of the very small admissible value 
of V .  A disturbance z = 1 0-3 will result in a deviation 
�=40 per cent . 

4 )  The representation of the third-order sampled-data 

controller with integral action 

By means of a suitable programming a third-order sampled-
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data controller can be realized with a PID2- time response .  
From its transfer function 

F • _1. . ...:!L . Ro pT 1 +� 
d0+d1 +d2+d3� ( 3d0+d1 -d2-3di)+( f) 2 ( 3d0-d1-d2+3d3)+(�) 3 (d0-d1+d2-d3) 
1-c -c -c + wT ( ) wT) 2 wT 3 1 2 3 � 3-c1+c2+3o3 +( � ( 3+o1+c2-3c3) +(�) ( 1 +c1 -c2+c3) 

follows as condition for the integral action: 

Hence , the transfer function -is  written: 

1 V . j)'l' 
( 1 +wTa ) ( 1 +wTb ) ( 1 +wTc ) 

( 1 +w;) ( 1 +wTd) ( 1 +wTe ) 

( 39 ) 

( 40 )  

( 41 ) 

The numerator polynomial with the di is defined by the ad­
jus.tment to the controlled system, whereas the denominator 
polynomial will be chosen so that a double root at T0 = lTdTe exists . �ence , we find : 

c1 = 1 - 2 . "(C3 1 

c2 = 2 .  "(c;-c3 

and for the transfer .function: 

( 42 ) 
( 43 )  

( 44 )  
In the correcting function Fk2 (pT , c )  it i s  necessary to have 



c= rc;. 
For the coefficients di we 

2 [T TbT 
do= V ( 1 + �) • \3 

c + 

2 [T TbT 
d1 =-3V . ( 1 + � ) . a

T3 
c + 

d2=3V 

d3=-V 

2 [TaTbTc ( 1 + � )  • 

T3 

2 [T T T 
( 1 + h) . a b c 

3 ,.. T3 

5 1  

have : 

TaTb+TaTc+TbTc 
2T2 

TaTb+TaTc+TbTc 
6T2 

T Tb+T T +TbT a a c c 
6T 

TaTb+TaTc+TbTc 
2T2 

... 

+ 

Ta+Tb+T ] 
+ c + 1 

4T · 'S 

T +Tb+T a c 
1 2T 

Ta+Tb+Tc 
1 2T 

Ta+Tb+Tc 
4T 

( 45 )  

' 1 ] - -g  

( 46 )  

+ � ] 
( 47 )  

- � ] 
( 48 )  

When applied to the controlled system o f  Eq . ( 38 ) , Tb=Tc 
=500s was selecte d ,  whereas Ta=3 . 1 s .  At a sampling time 
T=3s and with c 3=0 . 4  we obtained an admissibl� gain o� 
V=1 . 1  . 1 0-5 and for . the coefficients : 
d0 = 0 . 92381 
d1 = -2 . 1 5790 
d2 = 1 . 55 1 60 
d3 = -0 . 3 1 749 
With 
V = 

do+d 1 +d2+d3 

( 1 + )'c; > 2 

c 1 = -0 . 2  
c2 = 0 . 64 
c3 0 . 1 6 

( 49 ) 

there results from the coefficients V= 1 . 02 . 1 0-5 ; thus , it 
is shown that with the di no further tens places are required . 
The time response ( Fig . 1 0 )  shows a satisfactory result . 

For reasons of .stability there should only be a very small 
effect of the integral action . A variable disturbance z 
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will result in a rate error X • Should the disturbance Z . V 
change during the· period T by the value 1 ,  there results a z 1 T steady-state error with the value Xy = V . ¥ . 

z 

Summary 

The proposed procedure for the synthesis of sampled-data con­
trol systems on the basis of the Bode diagram technique 
features a relatively simple and clear calculation of sampled­
data control controller� : uses the well-proven method for 
continuous systems . It is mainly applied to controlled systems 
of the order N �  2 and sampled-data controllers of the order 
n s 3 ,  where it is necessary that n s  N .  

Controllers with I-action are defined by � ci = 1 .  The results 
obtained with this procedure are shown on controlled systems 
of higher orders than three . 
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SU BOP T IMA L REGU LATION O F  S EC T IONS OF 
HIG H ER OR DE R , E SP E C IA L LY TAK ING INTO 

AC COU NT A L L - P A S S  P ROP ERTIES 

w .  Backer 
Institut ftir Regelungstechnik 
Aachen/ German Federal Republic 

1 . Introducti on . 

With the means of control engineering it is to be 
attained that the controlled variable of a plant exactly 
follows the given  command variable , independent of any 
pertubing effects whatever. I n  the region of very many 
fields of appli cation,  as e . g . , in process technology , 
in many cases the controlled system is fixed,  only an in­
formation on the controlled variable its elf can b e  obtained 
and manipulation for regulation is only p ossible at one 
point . In these cas es the precise fulfillment of the task 
of regulati on noted above mis carries due to the following 
three points : 

a) If there are all-pass elements present ( e . g . ,  dead time , 
all-pass of the 1 st order) , an unavoidable regulating area 
occurs1 ' 2 whi ch one has to put up with. 

b)  Arbitrary derivati ons of the c ontrolled variable cannot 
be formed in the regulator as they would be required. In  
most of  the cases one must be  s atisfied with the first 
derivation , which leads to the employment of the PID-re­
gulator, linearity being prerequisite in the whole operat­
ing range .  
c) The efficiency o f  the positioning element , e .g . , its 
Positioning speed, is limited. The optimum regulation in 
these cases , which nowadays is des cribed with the aid of 
the maximum pri nciple of Pontrjagin and co-workers3 ,  how­
ever again presuppos es all derivations of the controlled 

·Variable . 
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In ti e following , a concepti on for regulati on is 
developed, whi ch takes all three restri cti ons stated into 
account for the cas e that the command variable changes 
suddenly. 

In  order to come to results which can ·be employed 
in practi ce , a controlled system is here ass umed ,  whi ch 
can be des cribed by ( n-2) series connected delay elements 
of the 1st  order , as well as an all-pass element of the 
1 st order with the frequency respons e 

F a = 
1 - pT0 
1 + pT0 

( 1 )  

and a dead-time el eme nt .  The positioning element should 
have integral behaviour , which applies for many practical 
cases ,  at least  approximately4• Taking the positioning 
speed to be  restri cted, the restri ction is ass umed to be  
symmetri cal . A restriction of  the positi oning stroke can 
be disregarded for the time bei ng.  This controlled system 
including the positioning elements ( see Figure 1 )  possesses 
the follcwi ng frequency respons e (Tn_1 = T0) 

F = 

( 1 -pT ) e-PTt 0 

2. Criteria of Optimizati on 

( 2) 

I f , in the t ask s et here , one selects the time until 
the rated value is att�ined as the criterion of optimi za­
tion,  then one obtains the so-called optimal time or 
rapidity regulation. But this criterion cannot be applied 
for a suboptimal regulation,  as in these  cases the r at ed 
value is only exactly attained for t --- oo • I n  these cases 
the time is stated un�il drifting into a tolerance barrier.  
This , however , does not appear to  be  convenient , as then 
the optimal p ositioning possibly depends on the value of 
this � ��ri e r ,  and just as with criteria as the quadratic  
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regulating area, the ITAE criterium etc., the optimal time 
process no longer appears to be the most favourable tran­
sition. As compared to this, the linear regulation area re­
ferred to the command jump iJ is a convenient criterion of 
optimization with the addition that no overshootings may 
occur. 

00 

I = f (with 1; � 0 f� o.lle t)  (3) 
0 

Here this criterion leads to the most rapid aperiodic tran­
sition and contains the optim&l time process as an abso�ute 
optimum. 

3. Optimal Time Regulation 

With the controlled system to (2) as is known one 
obtains the optimal time process, if the quantity yR 
alternately assumes i �s upper and lower extreme value. 
The process consists of n-intervals if n is the degree of 
the denominator polynominal3, 5, 6• That also applies for 
the here existing dead-time element and the all-pass ele­
ment of the 1 st order7. The op�imal switching times t1 to 
t0 are only determined by the denominator polynominal · and 
must, if all time constants are different, satisfy the 
following system of equations: 

- 2 t1 
1 - 2 it1/T1 

1 2i 
t1/Tn-1 

+ 2 t2 

+ 2etiT1 

tiTn-1 + 2i - . +  

+ 

+ 

• 

:!: 
+ 

:!: 

tn = -

i tn/T1 

e 
t;ufTn-1 

w 
1RmaxCRVS 

= 0 

( 4) 

= 0 
That means that besides the time constants of the controlled 
system, the switching times are only de endent on the ex� 
press ion 
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w = 1:'w 
( 5) 

This value � w pre cis ely states the time , after which the 

output quantity Ys of the integrator for the first time 

attains the final value . 

� example the cours e of yR , Yg and x at an optimal 

trans iti on is depicted in Figure 2 for a secti on,  whi ch 

cons iats of two delay elements . 

4 .  �inear Resulating Area in the Case of Optimal Time 

and Suboptimal Process 

The linear regulating area can simp ly be determined 

in the foll owing manner: When pass ing through a delay unit 

of the 1 s t  order with the time constant T and -the am­

p lification factor 1, the linear regulating area in?r.e� es 

by T_, in···_th6-·- �as e of an all-pass .element to ( 1) by 2T0 - : _ 

and in the case· of a dead-time el ement by Tt • Cons e quent­

ly , the reg �ating area is comp osed of the sum of all time 

constants, i ncluding T0 and Tt , and of the linear - regulat­

ing area of the input function y8 , shaded in Figure 2 ,  which 

is d es cribed by means of the sw�tching times . At n swit ch­

i ng intervals one thus obtains for the optimal regulating 

area 

I n  

no 

n-1 
1

o = L Ty 
=0 

caus ed by caus ed by the 
the s ecti on input function 

principle the cours e is dep i cted in Figure 

If one forms the limiting value for 'rw 
limitation is effective , then o ne 

lim 
I = T0 + Tt 1:.-v-- o 

obtains 

( 6) 

J .  
_..,. a ,  i . e . , 

( 7) 
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.This represents the unavoidable regulating area, which 
is caused by the dynami cs of the controlled system and 
which one must put up with. Here it should als o be point ed 
out that when the zero occurs in the numerator of ( 2) , 

although the optimal cours e is concluded at the same time 
as without this zero , the linear regulation area, however, 
is increas ed by T0 • 

If one reduces the •  n switching intervals to a single 
one , i . e .  if one only lets the integrator ·run up to its 
final value , in  order to then switch off , then all t �  =�w 
and one obtains 

n-1 I1 = L:: 
f =O 

1 . 
+ Tt + 2 't w ( 8) 

This straight line wi th the grad�ent 0 . 5  ( see Figure 3) 
simultaneoUsly repres ents the asymptote for ( 6) , if 1;w 
strives towards the infinite . 

If one combines all time cons tants of the denominator 
polynominal in  ( 2) to a single time constant T, then, if 
one substitutes the relati ons for the switching times , 

n-1 
I u  = L 

1 =0 
n-1 

with T = ) T� � 
results . It turns out that the linear regulati on area ( 6 ) , 
which one obtains for the exact optimal time co.urs e ,  is 
always greater than the one specified by (9) , whi ch thus 
represents a lower bound. This relation is great advantage 
for coars e estimates . 

For its real i zation a system with n switching inter­
Vals requires n free parameters., i . e . ,  generally ( n-1 ) 
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derivati ons of the controlled variable . As normally ,  however, 
only the first derivation is available that means that . only 
systems with two switching intervals can be built up with 
tolerable expenditure . On the basis of the system of 
equations ( 4) it can be  s hown that the process precis ely 
takes pl ace with minimal li�ear regul ation area without 
overshooting ,  if b oth these switching intervals are attuned 
to the greatest t ime constant of the s �ction.  I n  this case 
the linear regulati on area assume s  an expression according 
to the relation (9) , in which T is to b e  replaced by Tn ' 
the greatest time constant of the system. This relation is 
plotted in Figure 3 with the designation I 2 • The impairment 
in the case of this s ub optimal process as agai nst the strict­
ly optimal one is express ed by the distance of the curve r2 
and I 0 in Figure 3 .  The difference is the greatest for � w • 0 
and then jus t  amounts to 

{ 10 )  

For increasing values o f  1:'" w the difference coatantly 
b ecomes smaller. The deviati ons of this suboptimal process 
from the strictly optimal one can always then be  disregarded, 
when the sum of dead time , all-pas s  time constant and of 
the greatest s e-cti o.n-'time constant is very large in relation 
to the remaining time constants . Hereby,  the - difference is 
the smaller , the greater W is in relation to YRmaxCRVs • 
In every cas e  the deviation can easily b e  determined by 
means of the relations given here . If  no digital computer 
programme is avai lable for the determination of the switch­
ing times in the case of secti ons of higher order , then these 
can b e  determined by means of approximations , or one jus t  
contents ones elf with an estimation of the linear regulati on 
area according to ( 9) . 
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5 • Real izati on of the Subontimal Regulation System 

The suboptimal �egulati on system suggested here starts 
from the fact that the part of the controlled system with 
the greatest time constant is stri ctly regulated according 
to optimal time , the rest of the s ecti on is not taken into 
account and is practi cally connected in s erie s  w ith the 
actual regul ati on circui t .  That can be achieved without 
engageme nt in the controlled system by connecting a model 
parallel to the controlled syst em ,  whi ch with simple means 
reproduces the controlled system as well as poss ible ( se e  
Figure 4) . Then the difference u between the controlled 
variable x and the output of the moael is approximat ely 
zero . In this case the optimal time regulator of 2nd order 
over the i ntegrator only works together with the first pa rt 
of the mode l ,  a delay element of the 1 s t  order , whos e  time 
constant corresponds with the great est s ection time constant . 
Thus Ys carries out the desired adjus tment movement with 
2 switching i ntervals . The compensation of the r emainder 
of the s ection t akes place by means of the second part of 
the model , an element with all-pass character and the fre­
quency respons e  

( 1 1 )  

whose trans ient function is fully drawn out in Figure 5 • . 

I n  g eneral , for the determination of the coeffi ci ents , 
one pro ceeds in such a manner that the controlled system 
without positi oning element is approximated by means of two 
time constants Ts1 , Ts2 and delay time Tu• Here attention 
must be pai d  to the fact that the approximati on is mainly 
favo�able for  great values of t .  Strong deviations in the 
initial part of the trans ient functions do not matter so  
much, as at that time .t h e  control deviation is geners.lly 
still rather great and thus , at least during the greater 
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part of the trans ition, no inf�uencing of the s wi tching con­
dition exists . Then TR1 = T81 is ·to be set for the greater 
of the �vo equivalent ti�e constants . The rest of the s e cti on, 
shaded in Figure 5 , can be approximated by means of the 
term ( 1 1 ) .  With the equivalent characteristic values T82 
and Tu 

( 1 2) 

then results for all characteristic values of the model.  

In the pres ent form the sys tem is  not very s uitable 
for practi cal employment . Under the assumption that com­
pensation is ideal ( 1.1;:Q) and only steppe d  c_ommand signals 
occur , the block wiring diagram Figure 4 can be _redrawn 
into Figure 6 .  One thus obtains a two-point switch with a 
twofold delayed feedback, which, however, is partially 
cas caded in non-linear manne r .  In this cas e  the non�linear 
characteristic becomes independent of the characteristic 
values of the controlled system. For them the fol�owing 
equation applies 

( 1 3) 

Hereby , xe can only �qove in the region from -1 to +1 .  
The othe r regulator characteristic values in Figure 5 
res ult from th� characteristic values ( 1 2) by the invers ion 
of the block wiring diagram to 

VR1 = 

VR2 
= 

= 

1 ' TR1 1Rmax 
= 

Ts2 TufTS2 
� e ' 81 

1 

TR2 

Ts-v 

= TS2 
( 1 4) 
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As yR generally is not variable , 4 free parameters 
• max 

remain , in order to adapt the regulator to the controlled 
system. 

The regulator will always be able to enfo rce the 
desired behaviour of the controlled variable , if the 
difference between the output value of the controlled 
system and that of the model does not influence the 
switching intervals too much . This practically only then 
no longer applies , when the ratio of T8�Tu be comes too 
small - the peak of the compensation term in the qegativ� 
dire ction ( see Figure 5) then becomes very big - and when 

tt"w ass umes very small value s .  

6 .  Examples 

In  Figure 7 s everal command transi e'nt functions in a 
section with the frequency respons e  

( 15)  

are depicted. The characteristic values of the regulator 
were determined in the manner stated above and set on . the 
regulator . In the cas e  of an ideal model of the c ontrolled 
system , a course should occur for y8 , as it is plotted for 
��/T1 = 0 . 3  as a dotted line in Figure 7. The deviation 

of the linear regulation area from the one given in Figure 3 
by the curve 1 2  then expresses its elf by the difference of 
the shaded areas . However, the mos t important state�ent of 
these curves is that the behaviour of the circuit has 
practically become independent of the amplitude of the in­
put si gnal . 

Naturally the refl ections carried out here can b e  
transferred in the same manner t o  s e cti ons without all-passes , 
Whi'ch is of parti cular signifi cance for practical application , 
as secti ons with all-pass properties do happen to be relatively 
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rare . I n  Figure 8 a s e ction with a �arge time constant T1 
and several time constants smaller by the factor 10 were 
assumed.  The predetermined characteristic values of the 

. regulator supply transiti onal functions , which deviate 
from the course in a similar manner as thos e shown in 
Figure 7. By means of an alteratio� of the characteristic 
values by 20 to 50 per cent , by that one recogni zes the 
small parametri c s ensitivity of the sys tem , the transiti onal 
functions shown here were obtained .  For the s ection of the 
1 st order the process is strictly in the sense of �he optimal 
time regulation; for the s ection of the 2nd order the compen­
sat i on is ideal . 

All the examples s hown here are representative . Further 
examples are dis cuss ed in8 , where the detailed derivations 
are al so spe cified. 

7 .  Comparis on with Linear Regulators 

The regulator shown in Figure 6 has very great s imilari­
ties with the linear PID regulator , if one counts . the inte­
grally ope rating positioning element as part of the regulator. 
If one starts from the linear system,  then one recogni zes 
that in the regulator developed here actually only the 
customary feedback of a PID regulator is adapted to the 
limited positioning speed by the ins erti on of a non-linear 
characteristi c .  On the other hand the linear PID regulator 
here appears as .. limiting cas e ( for 't' w -- 0) of this non­
linear regulator ,  which could be des ignated as " optimal 
time PID regulator" . The compariso n  with the customary li­
near regulators , for which no limitati ons whatsoever applied, 
on a secti on of the 6th order (T1 =T3:T4=T5:T6=0 . 1  T1 ) is 
shown in Figure 9. One p erceives that the behavi our of the 
PID regulator is practi cally attained for small values of 
't' w • ( In the central regi on the PID regulator s hould not 
as cend more flatly than the regulator to Figure 6 .  This is 
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caus ed by a small parasitic  time constant in the regulator . )  

8 .  Behaviour in the Cas e of I nt erferi n� Signals 

This regulator was derived under the ass umption that 

only steppe d  changes of c ommand o ccur . H owever , its field 

of  appli catio.- is not restricted t o  such cas es . Sh ould non­

stepped command signals or i nt eri ering signals of any type 

oocur , then the behavi o ur of this regulator is anal ogous 

to that of the l inear PID regulator . Thus , for ins � ance , 

if the regulating circ 'it is optimated for command j umps , 

then an excess inert b e haviour results in the cas e of 

stepped disturbances at the input of the s ecti on (Figure 1 0) , 

just as one is als o  accus t omed t o  in the c ase of linear re­

gulators . In exactly the same manner as the l i near regulators , 

one can also . newly optimate this mgulator by adj usting i t  

more sharply .  

9 .  Regulators with a Swi t chi ng I nterval 

The expenditure for the regulator t o  Figure 6 can no 
longer be j ustifi e d ,  especially f or very large values o f 1rw . 

The optimal regulation area I 0  is then practi cally i denti cal 

with the regul ating area r1 in Figure 3 ,  which one can 

attain by means of a switching interval . For s uch a process 

with only one swit ching i nt erval , the model of the control­
led system ( s ee Figure 4) consists of a proporti onal element 
with the amplification factor v8 and the element to ( 1 1 ) .  
The two-p oint swit ch al one alreaO.y repres ents the D,t 'unal 
time regulator of the 1 st order . By means of appr p ri · te 
redrawing of the b l o ck wiring diagram , the " optimal l.ime l>I 
regulator" results , whi ch consists of th well-known two­
point regulat or wi th delayed feedback a�cl �he s eries 
connected int egral positi oning element . By means of these 
ref_e cti on , if the contro lled sys tem is approximated by 
means of Tu and T8 , one attains the fol l. owing s etting val ues 
for the de a ed feedback . 
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( 16) 

Of cours e ,  for an optimal adjustment these s etting 
values must still be somewhat varied, as their derivation 
is based on considerations of appr.oximati on. However, in 
every case , j ust as do the s etting values ( 1 4) , they furnish 
a process which lies fairly close to the optimum and whi ch 
is g�nerally s omewhat too inert . 

1 0 .  Summar;y 

The optimal linear regulating area of an optimal time 
process with n switching intervals is determined .  It 
happ ens that for many cas es a transition , which is only 
produced by two switching intervals or only by a si ngle 
one , comes very close to the opti�l form. Subsequently , 
constructions of regulators are spe cified which approximate­
ly produce such a proces s .  These regulators are not more ex­
pensive than the linear PI and PID regulato�s , but they can 
replace thes e everywhere , where the control acti on is im­
paired by limitations of the positi oning spe ed .  As the 
techni cal possib ilities of thes e devices are extens ively 
utili zed, they can on the other hand lead to deliberately 
taking such l�mitations into account to a very much greater 
extent , whi ch will taan result in economi cally more favour­
able systems . 
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THE R E DU C TION OF DYNAMIC 
MEANS · OF DIS CO N T I NUOU S 

VA R IA T IO N  

E R RO R S  B Y  
P ARAM E T E R  

Nomenclature 

a 

D 

e 

k 

K 

n 
t 

V 

X 

y 

a ,  

t 

a 

1. Introduction 

R . M .  Davies , T .  H. Lambert , M. J .  Joby 

Mechanical Engineer ing Department 

Unive rs i ty College London 

(with sub s cripts ) parameters 
d Heavys ide different ial ope rator , dt 

error, x-y 

constant 

forward gain of summing amp l i fi er 

order of the derivatives 
time 

output voltage from parameter switching circuits 

input to the sys tem 

output f rom the system 

inputs to parameter switching circuits 

( e . g .  y ,  e ;  y ,  e ,  etc . )  

se cond s t age s poo l valve displacement 

No real control system can s at i s fy the ideal requi rement 

x ( t )  y ( t )  ( 1 )  
for all values o f  t ime t .  The purpose o f  most servomechani sm& i s  t o  reproduce 

some control s i gnal with power gain, and power gain inherently introduces time 

delay effects 1 . Thus a more rea l i s t i c  criterion of near ideal performance is 

where 

x ( t )  :: y ( t )  } 
i ( t )  = y ( t )  

x (n) ( t )  = y (n) ( t )  

n � 1 
FlUgge-Lotz and Wunch

2 
proposed a second order nonlinear sys tem which 

functioned b as i ca l ly by varying the output accelerat ion discont inuous ly so 
as to satisfy the cond i t i ons 

( 2 )  

(3) 



for a range of control s i�als . 
2 

( af + a1D + a0 ) y 

with 

y 

y 

X 
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} 
The system had an equation of the form 

a01 - a02 s � ( y . e) - a03 s gn (ye) } 
al l  - al2 �� ( · e) - al 3 s � (ye) 

The parame ter terms of the right hand s ide of (6) were cons tants so that 

the paraneters a0 and � could take on a number of discrete value s . 

s tudies
3 

confirmed that certain c omb inations of parameters produced a system 

s atis fying (4) . 

The principle of the system of FlUgge-Lotz and Wtmch was as follCIIo(S .  

The error was maintained small b y  varying the output acceleration 

dis continuous ly so that i t  was al ternately larger or sma l l�r than the input 

acce leration. When , owing to rapid input change s , this al ternating pattern 

could no longer be sus t ained, large errors occurred .  Fig . 1 indicates the 

changes occurring in the sys tem of equat ion (5) follawing a short segment of 

the control input . At the points B. C, D, E and F e i ther e or e change 

s i gn ,  and between these points the sys tem may be regarded as _essentially 

On the sect ions AB and DF 

y < lt 
wh ilst on BD 

y > lt 

The output trends are largely dictated by the vari ati ons of the parameters 

On th� output s e ctions BC and DE the parameters act so as to 

prevent excess ive overshoot by exercising the maximum corrective action, so 

that on BC 

which tends to produce an output acceleration 

y > ll 
Whe re as on DE 

ao • ao l  + ao2 + ao3 

al • al l  + al2 + al3 
s o  that the output acce leration tends to s atis fy the condition 

(9) 

( 10) 

(11) 

(12) 
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0n CD and EF the rate of change of error nas changed s i gn so that the pairs 

of terms a02 and a03 , a12 and a13 are opposed in action. The corrective 

action exercised by the parameters is thus , depending on the relative si zes 

of parameter terms ,  either decreased or even reversed . The latter condition 

is not usually des i rable as it can readily cause divergence between input 

and output . A lessening of the correct ing action of the parameters tend s 

to ensure that the succeeding overshoot , when . the output crosses the input 

again, is minimised. The output paths such as BC and DE may be termed 

' overshoot ' paths , whi lst CD and EF are termed ' approach ' paths . 

The sys tem is equipped to follow input variations so long as 

I � I max < I y I max 

This paper is concerned with the application of discont inuous 

parameter variation techniques to an inertially loaded electrohydraulic 

position control system. The advantages and limitations of the technique 

( 1 3) 

in a practical s ituation are examined .  Both analogue computer and hydraulic 

rig studies are an integral part of the experimental programme .  

� ·  System Des cripti on 

The b as i c  l ayout of the hydrauli c  pos ition control used is indicated 
in Fig . 2. Harmonic response tes ts were carried out and various parts of 

the system were exci ted with constant amplitude s ignals . The results of 

these tests indicate that the linear open loop transfer operator of the 
control system is 

z -
e 

K 

145D(l + •0023D) (1 + • 2 1D + L) (1 + • 52D 

603 6032 15 10 

where K is the forward gain of the summing amplifier.  

+ o2 ) 
15 102 

The f actors which comprise the denominator of (14)  sensibly arise as 
follows : 

the first is the integrating time cons tant ; 

the third is the complex del ay associated with the actuator and load 

including compres s ib ility and leakage effects ; 

( 14 )  

the fourth is the complex de lay assoc iated with the torque motor and moving 
parts of the first s tage of the valve ; 
and the second is the de lay associated with the rapid response of the hydraulic 
second stage of th� valve . 



It was subsequently found necess ary to increase the leakage 
hydraulic ram art i fi cial ly .  The transfer operator then becomes 

1. a 
e • 145D ( l  + • 00 23D) (l + 

K 
• 72D + L) (1 + • 5 2D + L )  

565 5652 15 10 15lo2 

These t rans fe r operators were used in the analogue stud ies which preeed .. 
practi cal tests . 

Parameter changing ci rcui ts were desi gned as shown in Fig . 3 .  
Schmitt tri gger and logic circuits provided gating s i gnals for a pair of 

4 s ix-diode gates . When given the input s i gnals a ( t )  and S ( t) 
output is 

Vout ka ( t )  sgn (a . S )  

rhe equipment was suitable for 
with the hydraulic rig .  Full details of the circuits used are to be 
i.n refe rence 5 .  

. ' 

In this invest i gation i t  was found practical to use variable 
:erms dependent upon output , error, and the ir rates of change only, 
!econd order sys tem of reference 2. This limi tation was essentially 
by availab le transducers , as it can be shown that h i gher order switched 
parameter terms can be used to reduce errors in sys tems of h i gher than 
order5 ' 6 . The approxima"te equation of the hydrau l i c.  system was thus of 
form 

(KG�D) + �1 ) Y  -{ [ al2s gn (ye) + al 3sgn (ye) ] y  

+ [a02s gn (ye) + a03sgn (ye) ] y }  x 

where KG (D) a 1. in equation (14)  or ( 15 )  as appropriate . e 
computer flow diagram for the sys tem is shown in Fi g . 4 ,  and the b lock 
of the variable parameter hydraulic sys tem is Fig . S . For the analogue 
3 tudies , one second computer time was s caled as ten seconds real time . 
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Experimental ?rocedure 

Initial analogue studies were undertaken using th� open loop transfer 

operator of equation ( 14 ) . The procedure for setting up the sys tem wa> to 

1et the variab le parameters to zero and apply a low frequency harmonic 

input .  The parameter terms were then adjusted sequential ly i n  the order 

a02, �2 , a03
, a13

and so on , until a minimum error was obtained.  This process 

was repeated at a number of other frequencies untii a sui t able set of 

par1111eters was ob tained. 

It was found that large parameter values , or high forward gain , K, 

gave rise to an osci l l ation . The frequency of osci l l ation was about the 

1ame value as the frequency term as sociated with leakage and compressibility 

effects on the actual sys tem. Follow up tes ts carried out on the hydraulic 

rig confirmed the presence in practice of this cond ition .  Analogue res ul ts 

had indi cated that reducing the gain K or the s ize of the variable parameters , 

or increasing the damping factor of the term associated with leakage and 

co.pressibility effects , suppressed this os c i l l ation . It was decided to 

uae this latter method to suppress os ci llations in the hydraulic control as 

it appeared to be the leas t  res tricting of the possible s olutions . 

All further analogue and practical work carried out was on the increased 

leakage system, equation ( 15 ) . Setting up the parame ters on the practical 

system was essentially the same as on the analogue . 

4. � 
In the following,  the time s caling of the analogue results has been 

corrected so that direct comparison of analogue and practical results is 

possible. The parameter sets used in the analogue and rig s tudies were 

respectively ;  for the analogue of the sys tem, 

. 081 

a03 = .070 

a1 2  = .021  

a13 = .015 

K 3 

and for the hydraulic system, 

ao2 
= . 19 

a
o3 . 205 

al 2  . 031 

al 3  .013 

K 3 
Pigs . 6 and 7 show anal gue computer harmonic and · s tep response traces . 

( 18) 

( 19) 
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Figs . 8 ,  9 ,  10 and 11 compare the harmonic , step and random responses 
hydraulic sys tem with and without discontinuous parameter variation. 
random input was ob tained f rom a s ignal generator 
noi s e .  

5 .  Dis cuss ion 
The discontinuous parameter sys tem, driven h armonically at 1 Rz , 

shows results which are very s imi lar to its s imulat ion results in 
Fig. 6. Specif i cally, the characteristic high frequency osci llations 
in the e rror s i gnal have the same form, and the ratios of 
to the output amplitude is 4 . 9  x 10-2 peak to peak in both cases . 
the dis continuous and the proportional sys tem resul ts of F ig .  8 
even at this frequency , the former has cons iderab le advantages . 
lag is almost negligible ana the flat topping whi ch appears on the 
trace and attributab le to Coulomb friction in the actuat�r is overcome . 

In F ig.  9 ,  s imilar comparisons can be made for the higher input 
f requency of 5 Hz . Here the advantages of the dis continuous sys tem, 
of the faithful following of the command s ignal , are even more 
The phas e  lag is much smaller and . the amplitude ratio is s t i l l  
As the input frequency w as  gradually increased, the number. of parameter 
switching occurrences per cycle was reduced , and at 5 Hz there are clearly 
fewer than at 1 Hz . The trace showing output ve locity, 
s aturation ,  an e f fect which tends to limit the e f fectiveness of the 
improvement at higher frequencies . 
unsymmetrical port arrangements in the j ack . Delays in switching, which 
further dis cussed beloW'·, als o contribute to performance deterioration at 
higher frequencies . 

The s tep responses shown in Fig.  10 show that a faster rise time is 
achieved by the dis continuous sys tem. This is to be expected s ince the 
forward path gains are the s ame ,  but in the dis continuous sys tem the nr'eS,�� 
of amplif ied parameters in the feedback path increases the loop gain 
the rise , resulting in a· larger amplitude valve mot ion .  The fourth trace 

shows the valve motion , �. and it is noticeable that after the s tep there il 
cons iderable agitation of the valve because of the continuous switching of 
parameters . Thus the output , y ,  shows some deterioration in the 
of a s tationary input ; and this ef fect , along with the oth�r eh 
is evident in the analogue trace for s tep inpu t ,  F i g .  7 .  A modification 
avoid this effect is sugges ted in the next section .  

In response t o  a random input , i t  i s  clear that performance of 
dis continuous sys tem is superior to that of the proportional sys tem. 
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1 measured peak to peak are reduced by about 4• and both amp litude and phase 

results indicate more f ai thful following of the input without the flat 

topping which appears in the prooortional resul ts . Here it can be seen 

that the frequency of parameter switching is variab le , being higher when 

the input signal is s lowly changing and the acceleration& of which the 

system is capab le considerably exceed those demanded . The low frequency 

switching occurs when the input velocity is near zero ,  and the agitation 

is similar to that following a s tep input . The largest errors occur at 

points where the output and its velocity are both near zero ; resulting 

in less control because the e ffects of the parameters are in oppos ition 

to one another. This is a result of the particular compromise made in 

selecting parameter magnitudes . It could be overcome by us ing other value� 

but other penalties would be incurre d .  

6.  Conclusions 

In designing the controller, and obtaining the resul ts reported above , 

the effects of switching del ay imposed const raints on the active components 

of the controller. These e ffects were overcome and therefore are not 

observable in the results above , but can be visualized by reference again 

to Fig. 1 .  Clearly l arge errors wil l  occur if  there i s  del ay in switching 

when the error changes s i gn - for example at D. S imilarly , when the output 

velocity changes sign, for example at E ,  a delay will cause the next 

crossing of y and x to occur at s uch an angle that unnecess arily large 

deviations of these vari ab les will follow the crossing. This results from 

the fact that up to the swi tching point , E ,  p�rameters a
02 and a

03 
are acting 

together to cause large corrective action; but after this point they are 

acting in opposi tion so that the resulting reduced corrective action will 
effect a less abrupt cross ing at zero error . 

These delays of course are always present,  but in comparison with the 
response times of the sys tem their magnitudes are importan t .  For this reason , 

parameter switching by the use of relays incurs delays which are unacceptable 

for the electrohydraulic system, and a controller using solid state components 

had to be desi gned .  This controller was initially incorporated in a feedback 

loop around the electrohydraulic valve but the speed of response of this uni t ,  
because o f  the low inertia of i ts moving parts , showed the controller to be 
inadequate . Al though there was no deterioration of performance , there was 
no improvement ; and a redesign of the controller would be necessary to meet 
the higher speed switching requirements . 

The ove rall inerti ally loaded electrohydraulic sys tem, operated with 
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dis cont inuous parameters by the contro l le r ,  shows performance 

its propor tional counterpart with s imple feedback for most inputs . 

de teriorat ion when the input is s t ationary (for example , following 

input) could be e liminated by the introduction of a mode switch for 

proportional operation at small errors . 

Concluding, it can be s aid that control by the use of 

parame cers provides a means of improving the performance of 

systems as long as frequencies are such that s aturat ion and swi t ching 

do not become excess ive . The con trol ler can be considered as an ele 

unit wh ich can be inserted in the feedb ack path , and thus 

part of the loop , in order to effect this improvement . 

7 .  References 

l .  Wes t ,  J . C . , "Analytical Techniques for Non- linear Control Syst-" 

English Univers i ties Press , 1960 .  
2 .  FlUgge-Lotz , I .  

_
and Wt.mch , W . S . ,  " On  a Nonl inear Trans fer Sys te�a" 

J . App. Phys . ,  2 6 ,  No . 4 , . pp 484-488 , 195 5 .  
3 .  FlUgge-Lot z ,  I . , Tay lor, C . , and Lindberg, H ; ,  "Inve

.
s tigation o f  a 

Nonlinear Control Sys tem" . N . A. C . A. Report No . 139 1 ,  1958 . 
4 .  �H llman ,  J .  and Pucket t ,  .T . H . , "Accurate Linear Bidirectional 

Diode Gates" Proc . I .R . E . ,  Jan. 1955 . 
5 .  Joby, M. J . , "Control Sys tems Sub j ec t  to Discontinuous Parseter 

Variation" Ph . D .  Thes is , Univers i ty of London , 1968 . 
6 .  D avies , R.M. , L�ert , T . H .  an d  Job y ,  M . J . , "The Improved Response 

of Servomechanisms by Dis continuous Parameter Variation" 
� 

(to be pub lished) 



87 

I I 

EIG. l.  
�!:l B IB 6b ES. - TypICA L SXSTE"M 



.:X:, + PO W E R  

...... . 

VA LV E POS I T I O N  
TR A N S D li C..E R  

2 - 5TA 4 E  :rA C. K  L o A D  S U M M I N G  � 
y r-+ At1 PL I F I E  R A M P L I F I E R f..-- � E R VPVA LV E r----

y OJ P. POS J T I O N 
TR A N S DU C E R  

':J 0 I P. V E  LOC..I T  "'( 
TR A N S D U C..E R 

-

FIG. 2 BLOC,K DIAGRAM HYDBAVLlC POSITION CONT R O L .  

� 
� 

� 
f4-



89 

� z 
" 
., ,.... ... ...... � -.D -

er 1S 
\11 � 
E I 0 t lt 

• � 0 
0 ., 0 

� 
� -

� .l � -
• I 
� 

� -� � � - -....I 
1S .. I A • � 0 \11 - �  O c 

' o  .. 

.. 8 
... lt Ill 
l. • 
3 Ill � lit 

a:: 
> 0 > + I  + !  

0 Q 
::z :z - < < ..» -...J 

� I � 
:1 � 

� >' '): I 

� ., � � 
cc � ..., ... fC 

r � :: � .E ::1 � ::r: � v " V • "' 1- "' ... 

� -:a; -
1t 



90 

• 

, '! ·  • ..Q ..Q 
I U) U) 4" .... . - -

.. • 
.. ,. d d 



91  

Q) 
I 

0 
, ·'f 
u 
_J s: 
:::> \.&J 
4: t-
0:: "' 

-� Q >-
>- V) 

I :r 



. 92 

F I G . �. A NA LO& U E �Y �T E M  \4 ARM o N I C.. 
· . l:l ES PO NSE . ( I N PUT F R  £ � U  E. N. �� j 1 .  

,X, I 
y � 

e. � 
----�-----��-----��---���-------� 

F I G. I .  A N  A LO G u E 5 V �  T E M ,  
S T E P R E S. PO N �E .  



93 

h.l_!_L' • l. '!!z' ·'  •_ • '.L' e l b,A e t  '.d._ ' _!_' 1 l ' -.l.-1. 1 1  a 1 ' ....L. A-1-L-L. 

S�STE M W' I T H O V T  VA R I A B LE T E R M S .  

V A R I A B L E  PA R A  METE R 5YSTE M. 
- -- -- - - - - - --

- -, -, -, -, -, -, -, -, l -, --, -, -, -, -, 1 -, -, -, -, ., -, -, -, . .  , -, l 1 -, 1 -, -, -, -, -, -, -, -, -, -, 1 -,_ -, -, ., -, -, 

·�Se """":· --� ..-:•' .--. \:......_ .-r.' .�, . ,. -- . . , .._ A. '��� ""\ • ..,..........,., ...... ..,....... � • •  � ... >-.� ' ·<·.�,.,......- -,.;.;.� .�� 
· I :X. 

,bl_..l_..l . .l ....l . .l A_,L.,!_ ....I � -..,1-..!>� ..l A . ..l_.l ....l .....l ....l ...l .l _.l .l .l ..l,.l.�_,.l ...i . .l_...l-.t ..l�-�- ,.l ....l'"l_....l . .l .....l ,i .l ..l 1 0  H Z  TI M E  M A R K E R. 
F I G. Q . H A R M O N I C.. R E S P o N S E H 'f D R A V l-1 �  

SY� TE M .  ( I N PVT F'R 'E'GtV E. N C..Y J HE.) 



94. 

SYS T E fV)  'N I TH O U T  V A  R l A �  L .E. 

VA R I A B L E  P A R A M  E T£ R 5 Y..ST E  M .  

-\ - -l --. \ _ J  .\ _ .\.�. -�\... _ .. L-1_ ,.\_ __ .\ ___ ., ) __ \_ \ . •  \ __ _ .J_..L- �\....--L_,I_.\. . ...-L....-'._.,_� 
SO H Z . T l  M E  M A R K E R. .  

F I G.  q .  H A R M O N I C.  R E S P O NS E H Y D R A U L.I 
SY_St T £ M . { I N P'J...I FR E QU E N CY S ... 



95 

. .  � �---- -------------------------------------
•OiltY 
__,.------------------------------

S'fS T E M W I TH O V T  V A- F U � S l- E  TE R M S .  

VA R I A B L E  PA R A M E TE R � '( 6 T E M .  
�- - . ' ·-, -,  -, -, -, -, -, -r -r -r -; -, -,- -, -, -, -, -, -, -, -, ...._, -, -, -, --, -, 

4� ====���------------------------------

�.% --� ' • • ' ' • ... ' - ' . - ' .. "' • ' . - ... ... .... . :r 
� 

---,..
.,
. -

., .. ..... ,,- ,..,, . .,• - -.;· _,.. '.l' ,._ ..,· - --
,.

. 
--- � 

.. 
,. --:-.. -.· -� •Oitj -----r 

0 ... - . .. . 
_ _  ,.. __ . .... ... , . .. 

-L-..L� _.___.__.. --1..� --1. ---L--1 .-J--1. --1. ___1 --1. --L-..L--1. ___1 ___,\ --1. ___1.___1 ___1.___1 d 
TI M E  M A R KE R  S' O  H "i: ,  

- ---- --

Fi el. l o . ST E P R E & P o N � E  { I V  . .STE P) 
HYD R A ti L I � S'(S. T E M .  



. .:::c. 
:1 

1·2.Se. 

96 

� � , , , , , , , , , , , , , , , , , � , � � , , , , , , , , , , , , , , , , , , , � ,  

t. I ! 1 I I l I l t �· I L \ I I • t t zzL J mbJ· J 

S Y .S T E M W I TH 0 U T  VA R If\ B L.. .E 

V A R I A B L E  P A R A t-1 'E TE R  S'f S T E  M. 
� , , , , , , , , , , , , , , , , , , , , , , , , , , , ] , , , , , , , , , , , , , , ,  

Se. .�· .. ·::"""�'.\\\v-v-·"'...._;::::::::�\\\\\\\\\--v-v 
•0� � . " · · · . · .t·� · .... u. �- •-

.t-.....1. t I t I I I I l l. t \ t I A tf· • l \ ' \ I l '. '. \ l I I I *� l . I_ l • l J A I I_ l. I I I h 

li M E  JVl A R k E R.  I O H � . 
1= 1 &-. 1 1 . R A N D O  M R E S, P O N � 'S  

H '1' C> R.A V L.. I �  S Y � T E M . 



97 

R E CE NT R E S EARCH ON E F F E C T S  O F  
QU ANT IZATION I N  AU TOMA T IC CONT ROLS 

A exanQer W e i nmann 
T e chnical Col lege V ie nna 

Austria 

1 ,  I ntroducti on, Abstract 

The prob l em of the quant i zation of s i gnals in c o ntrol 
systems has already fre quently been dealt wi th b e caus e of 
its actual i ty .  Numerous ass es sments of upper limits f or the 
extent of the effe ct of quanti zati on by the authors B.c.;RTRAM , 
GRIEG , J OHNS ON , MYERS , SLAUGHTER , WIDROW and others have 
been p ut forward4 1 5 , 1 3  t o  1 8 , 3 2 , 40 , 49 , 5\ thes e  and other 
known pap ers pres uppos e far-reaching differences of us eful 
signal and qaant i zation s t ep , I n  the cas e  of large s i gnals , 
reference i s . almost always made to the s tatistic  c�aracter 
of the random noi s e  of quanti zation (KORN , T.hDAK , KUO and 
others 9 , 1 2 , 25 , 26 , 42 1 43 ) . On the other hand problems are 
still ope n ,  whi ch in the cas e  of small s ignals mai nly _ result 
from the fact that us eful s i gnal and random noi s e  of quanti za­
tion are oc cas i onally to b e  regarded as correlated8 and the re­
fore appropriate ext ensi ons of the exaoinat i o ns o f  relay 
systems app ear to be exp eQi e nt1 7 , 36 , 

I n  the pres ent pap e r  the effe cts of Qetermi nis t i c  
quanti zati on proce s s e s  ab ov e all i n  small si gnals and i n  
the regi on b etwee n  s�all anQ l arge si gnals are examined 
first of all ( s e e  Ju�Y 1 7 ) . Th� res ults relat �  �o the spe ctra 
of ope n  transmi s s i on sys tems and in conne cti on with that to 
the determination of ne c e s s ary conditi ons for natural oscilla­
tions of cl o s ed multi-stage regul ati on sys t ems . 

The results from determi nistic c ons iderati o ns are 
supp l emented by res � 1 ts of statistic origin.  The s uppres s i on 
of stat i s ti c quanti zation fractions of spe cial distrib ution 
dens i ty on s canned two-p oi nt sys tems of digital arrangement 
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is also pointed out ; for that purp os e  only a very small 
amount of filtering or compensation equipment is required . 

2 .  s �  plement on the Problem of Deterministic Quanti zation 

In clos ed functi onings , increas ed occurrence of re­
gulators or other transmi ssion elements is to be found of 
late , which provide deterministi cally quanti zated output 
values or others s ub j ect to a related signal restri ction.  
Due to this property of signal restrictions , the signal 
output in closed automati c  controls is decisively determined, 
if the signal amplitude and the respective stage of quan­
ti zation lie in a comparable order of magnitude. 

Several papers have already been written on a similar 
sub j ect.  Thus ,· for instance ,  BENNETT3 points out the spectral 
dispersion of signals from quanti zated elements . I n  exten­
sion of this , · the paper in haod offers statements on spectra 
of s ignals whi ch result from harmonic input os cillations 
with only a few steps of quanti zati on, importance b eing 
above all attached to the continuous dependence of the 
spectra on the amplitude of the harmonic inp ut os cillation. 
In  its ess ential features this applies for any desired gra­
dation of quanti zation, thus , for instance ,  also for regu­
la�i ons of optimal distributions of quanti zation barriers , 
which were examined by LEWIS , MAX ,  PEATMAN, HERGLER, TOU 
and others6 , 9 , 1 5 , 28 , 30 , 34, 35 , 44 . 

In order to now show the c entral problems , leaving 
away unne cessary difficulties , and to work out the ne cessity 
of the cal culation process to section 3 , only the case of 
equidistant quanti zation with regard t o  the amplitude of a · 

harmoni c signal .:/. (lot)of the ampli tud.e A is reported on 
( Figure 1 ) . If the spectrum of.:t.�s also related to A , 
then one obtains " amplification factors v2 for the domi nant 
and harmonic waves of the output quantity of quanti zation. 
The value v1 corresp onds to the known des cribing function. 

If E is the cons tant quanti zation increment fndependent 
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of the range then , under the - conditi ons of Figure 1 ,  the 
following value results for the amplifi cation or exitat i on 
factor of the i-th harmoni c 

vi =· 4 E  
:Jt i l 

n 
L- + r cos ( i  arc sin �e )J ( 1 )  K="1 

According to Figur� 1 , i can only accept odd val ues . 
The values n or n + 1- represent those integral multiple s 
of , which limit the amplitude value A of the i nput :  

n e  :S A -.!!!: ( n+1 ) e • 

This depe ndence of the excitation factors Vi on the 
quotient value �Aand on the ordinal number i is sho�n 

( 2) 

by Figure 2. The fact that the curves displ ay  s harp re­
sonance-type s e ct i ons right into the higher harmoni cs , for 
travelling through which only s light changes of t he ampli­
tude A of the inp ut are ne cessary , and the fact that the 
res onance maxima only decrease slightly with the rising 
ordinal numb er i and that the existing controlled systems 
in many cases exhibi t insu:fficient lo·N-pass characteristics ,  
all underline the .ne cessity of preparing further accurate 
methods of examinat ion for regulations wi th the transmission 
elements mentioned f or s upplementi n� estimated methods of 
the des cribing functi on. 

Although the example of a possi bility of quanti zati on 
given only represents a special and s impl e  cas e and numero us 
other variants also appear to be quite p racti cal for appli ca­
tion1 3 , 3? ,  vari ous forms of quant i zation , however , have the 
essenti al common characteristics . 

3 . Multi-stage Deterministic Relay Sys tems in Self­
contained Regulations 

3 . 1  Multi-stage sys tems . Natural oscillati ons 

ZYPKIN has specified a widespread process in order t o  
examine relay systems , s u c h  as �o-point regulators and 
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three-pos ition controllers i n  their ready s tate os ci llati ons55 . 
The process has �ndergone various extensi ons , e . g .  by 

46 TSCHAUNER • 

At this point an algorithm is sketched,  whic h formally 
permits an extension of the above cal culation to several 
opti onal switching level s ,  _ if the ·quantization or a similar 
operati on takes place in a deterministic manner .  To begin 
with the algorithm is here introduced without statement 
e . g . , of suffi cient conditions or of numeri cal or graphical 
methods of solution. When occasion arises , this is to be  
reported on later. 

In  order to show the nature of the conc eptions on which 
the algorithm is based,  simplifications are· still selected 
in the first instance , whi ch are then later discarded .  

O n  the premis es of uniform and half-wave symmetrical 
mode w:i, th . .  tlfE! ;fundamental wave angular frequency :w- and -u.nder 
tb.,£ .as��pti"o_n :-tfiat 

.. the ampiitud� . of x(wt)of a �egul�ti�-
n -_,-_ 

circuit signal alweys pas s es .through n swit ching levels 
in the as cending and descending branch (Fig-ure 3 )_, per 
half-wave 2n + 1 switching points result . With the speci­
ficati ons of the switching levels � and the still unknown 
swit ching phas es •If the time dependence of ..i_iwt)(Figure 3 ) 
can be  drawn .up , the condition of quantity to the switching 
points being 

( 3) 

In extensi on of the considerati ons of ZYPKIN55 , the 
closing condition of the regulati on circuit ( �t least in 
the fracti on of quantity1 1 ) can be  s et up to FOURIER­
devel opment of ..Xz (loOt). 

The 
peri odi c 

formulae for the FOURIER dissociati on of the 
function f(wt)wi th pure alternating p ortion,  

'ir 
bi = i J f( w t) sin i U.I t  d w t  

0 

( 4) 
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X j f ( lal t )  cos i loll t 

0 
d w t , 

and the equation for the combinati on to form a FOu�IER 
series , valid for symme trical half-waves , 

00 

f ( w t) = [. [b i sin i w t + ai cos i Ui tJ , 
i=1 , 3 , 5  • •  

in this case of application results in 

2n 
a( K+1 ai L [ = k cos d w t .  bi X i. K sin i t.u t 

k=o 

( 5 )  

( 6) 

(7) 

The individual h�onics can b e  s uperimposed in the 
remai ning regulati on part G(jw)assumed. to b e  linear.  I n  the 
thus resulti ng summation function the switching times d. K 
and the corresponding switching levels �k are entered in 
order to  fulfil the clos ing c ondition :  

x 9.. ( �
K) = . t.. f ( i W )  Lbi sin i d.K+ ai cos i U.. iJ + V(iiU ) 

1.=1 ' 3  ' � . .  . 

Lb .  cos i 

-' J} l. d. K - ai sin i -
K = i K ( 8) 

ThereinUllll) and V{\»)are the real or imaginary parts of G(jw) . 
From the arrangement ( 8) ,  for k from zero to 2n a total 
of 2n + 1 e quati ons result for the unknown values UJ and t�J- -1 

to c:l.2n . The value c:l0 can b e  freely presele cted as origin of 
the time . 

The solution of the problem of the arrangement of 
necessary conditions for steady state os cillations in a 
multi-state relay system is attributed to  the s olution of 
an e quati on system ( 8) with trans cendental functi ons , 
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whereby for numeri cal evaluations the solution values happen 
to lie wi thin estimable narrow ranges . 

Generally , one wi ll only obtain the points  of· solution 
after trying out several values of A or n. 

It  should be p ointed out that the method of solution 
is not restricted to quanti zed si gnals with constant cours e 
of the signal in the individual . periods of time . The method 
of soluti on is only bo und to a relatively cle arly arranged 
calculation of the FOURIER-coeffi cients ai and bi . This 
app lies as soon as .Xt,�an be built up as f(wt )  in such a 
manner that ( 4) and (5)  can b� completely int egrated, even 
in the case of general preselecti on. Then a system of general 
equations remains in ( 8) and not by any means a sequence of 
integral relati ons . These prerequisites for integrability are 
also fulfilled then if , from the point of view a momentary 
observer of the si gnal , at the points of time Gl.lt.the signal 
for the subs equent interval � toct.t�an be predicted. Among 
thes e  trains of thoughts the _ generali zations could be postu­
lated that e . g. , the representation of the · signal in the 
interval d..�e to�" • ., is carri ed out from � and the . given 
equation i.k ,. � :/. (UJ't>l.;_Hereby the thre

_
shold of these  

processes only seems to be  limited by the · extent of  the 
numeri cal cal culati ons or numerical-graphical determinations .  

The aforeme ntioned equations of the general arrange-
ment of non-linear feedback syst{)llH 'Jtill allow for manifold 
extensions , such as expans ions oi tht trans cendental functions 
in the vicinity of the switching p o i nt ,  binding of the switch­
ing times d..k to a temporal raster, such as general i zed sampl­
ing etc. 2 , 3 3 , 5G , 57 , control of the ZYPKIN swit ching direction 
conditions , stability of the natural oscillation etc .  

The greater the number of switching points per half­
wave , the s ooner the a ccurate determination of the wave shape 
becomes superfluous , as the calculation is already very ex­
pensive anyway. 
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3 . 2  Two-point regulators with sampling 

For small s ignal changes a two-point respons e  of the 
regulator or of other transmis sion elements applies for 
many cas es of appli cation of quanti zing systems1 • 1 7 . 

If the two-point decisi ons are bound to temporal 
stroke rasters , as in the cas e of di gital regulators , then 
the ZYPKIN method for relay. �ystems55 can be s imply extended 
by the followi ng algorithm . ·According to the phase position 
of the sampling times for the own movement of the system , 
there will be  sampling times with and without two-point 
positi oning magnitude changeover swi tching. At all events 
sampling here caus es decelerated natural os cillati ons , for 
the two-point �hangeover switching can always first be  
carri ed out in the sampling time following - on a decision. 

How the algorithm for the determination of s traight­
forward natural oscillations of sampling two-point regUlators 
without dead zone would have to run off , is sp e cified in 
the following: 

In  the hodograph of the continuous two-p oint system55 

frequency values are plotted, which correspond to integral 
multiples of the sampling period of the sampling proces s ,  
namely above all of such values , which lie i n  the vicinity 
of the inters e cti on with the straight-line curve , whi ch runs 
parallel to the abs cissa at a distance of �0, the hysteresis 
width of the two-point system. 

Thes e  points would, however , belong to natural oscilla­
ti ons , which require vari ous values �1 instead of the · given 

af0for steady state natural os cillation. For thes e values 
�1the wave shape of the natural os cillation can be deter­

mi ned in the well-known manner. 

It  is now to be  checked whether , if 1Co should actual­
ly be on hand, the vibration amplitude ae1 could be attained 
by means of sampling to a certain phase and supp�rti ng with 
the corresponding ·support element . If this should be the 
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cas e , then a natural os cillati on is possible at the examined 
frequency and phas e .  There can also  be cas es , in whi ch one 
does not find s uchlike conformity for any value of �1 , 
whi ch means that pres umably more compli cated modes are 
pres ent , 

The cons iderati on can also b� carri ed out in such a 
manner that for the values ae1 one s eeks clas s es of exterior 
excitations , which are able to maintai n a forced oscil la­
tion in the cas e of the actual hysteresis . These  clas s es 
are rela �ively easy to be found as time-dep endent area 
units . They specify within which thresholds the exteri or 
exci tati on would have to lie , so that an os cillation is 
als o  made possible at �o . I t  is then possible to j udge , 
whether by means of sampling and s upport an exteri or ex­
citati on for the satisfacti on of the actual swi tching con­
dition at at1 could be b uilt up from the wave shape bel ong­
ing to ae 0 , which lies in the aforementi oned clas s es , The 
dis crimi nation s i gnal of the s ampled and unsampled quantity 
is to be regarded as exteri or excitation , �lthough it ori­
ginates in the internal signal pro cessing of the· regulation. 

4 . Regulati on Circuits with St ochastic Multi-stage 
. Quanti zation Pro cess es 

In numerous and frequently cited papers the statisti cal 
influences of the quanti zati on process es are dealt with theo­
reti cally . The p ublications range from GAUSS-type and similar 
distribution �f the signals to be quanti zed3G , 3B , 39 , 41 , 53 , 54, 58 

over general arrangements of distrib ution10 , 26 , 31 , 32 , 59 up 
to the bi nary noise occuring as output of relay components 
in the cas e  of two-point regulating circuits 14 , 27 , 29 , 39 , 41 , 45 . 
Thes e essays are partially als o valid for sub s equent represen­
tati ons , in whi ch the practi cal s etting _of tasks for the 
utili zation of a special dens ity of probabi lity distribu-
tion for the increas e worth mentioning of the steady state 
accuracy of regulations and the reactive eff ect on the 
synthesis of digital regulators are als o shown in

.
the dynami c 

respect . 
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In the following the statisti cal origin of the ' Quanti­

zat i on error is first of all dealt with in a �vo-p oint system 

whi ch as decisive relay element contai ns a digital measuring 

system with p ul s e  c ode modulat i o n .  In it a p ul s e  trai n of 

comparatively high frequency fL ( guidanc e  frequency) is con­

trolled by means of a gate ci rcui t  (Figure 4) ; the latter 

peri odi cally carries out the . opening for the durat i on of tne 

time int erval tM . There is no s tati s t i cal c ombi nati on bet�ween 

the phas e of the guidance frequency and the time interval 

tM . The phase difference , which ori ginated from two uncor­

relat ed s i gnals , infl ue nces , as was �� �wn by preci s e  exa.­

minati ons50 , the si ze of the number originati ng in the above 

manner and decisively i nfluences the two-p oint deci s i on 

whi ch can b e  derived from it . The number attai ned by means 

of puls e code modulati on in the counter can· only accept two 

integral val ues R and R - 1 in the s t eady state condition,  

whi ch are ambi ent t o  the exact the oreti cal numeri cal value 

fL� 5° , i . e .  the ro unded off value belonging tc fL\l is 

R or R-1 . 

The probability that R or R - 1 is attained is 
all the great er ,  the cl os er the product fL1M l i es �o the 

boundary values R or R - 1 .  If the form of the p ulse fL 
is disregarded, then the following densi ty of probability 

distribut i o n  res ults : 

p ( �) = ( -fL1M+R) dlC r-R+1 ) + ( fL1M- R+1 ) �( r-R) . (9) 

I n  this r is the statis t i cal variable for the counted 

in number and &(r) is the s tandard Dirac needle funct i on at 

the point r = o .  

The probability o f  attaining the adjacent integral 

( quanti zed) value P. or R - 1 , is thus ·linearly dependent 

on the exact value fL� ( Fi gure 5) .  

The twq-point decis ion and the on or off switching 

command are derived from R or R - 1 in the c ounter . 

Becaus e of the linear connecti on b etween the on switching 
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command probability and the exact measured value ( Figure 5 )  
o r  becaus e o f  the equality of the linear expe ctation value 
and the exact measured value , the exact value can very well 
be concluded from the partition function , j ust as s oon as · 

it . is possible to calculate by means of a few quanti zed me­
asured values . The fact that the p,artition function exhibits 
charact eristic maximum values in dependence on the s ignal 
variables also makes it p ossible , by means of searching 
methods , to draw conclusions from the quanti zed measured 
value to the exact value to be measured.  

These two trains of thoughts can advantageously be 
made us e of for control engineering . The proportionality 
of frequency of · the on switching commands and of the value 
fL� or of a � input deviation leads to a control devia­
tion remaining finite . This c an b e  almost nullified by· a 
pos itive feedback arrangement with low-gain amplification, 
as it is known in principle for determinis�i c systems 
( Figure 6 ) . The se�rching process in conformity with 
Figure 7 als o  brings about very go od result.s .  

The positive feedback arrangement is marked ·by very 
small requireme nts51 • Only a linear element with first 
order delay is ne cessary . The linearity confirms the theo­
reti cal ass�pti on on the probability distribution function 
and furthermore also proves the validity of the considera-

• tions of being able to go over to dynamic conditions in the 
steady state condition, e . g . , in cons equence of working 
movement of t� two-point regulator . 

The positive feedback or the s earching process in the 
form of a further regulation loop cons iderably improve the 
steady state accuracy , namely to the s ame extent , in which 
their own accuracy lies . The overall accuracy of the cas cade 
results from the product of the accuracy values of the partial 
systems basi c regul.ation and positive feedback or s earching 
process . 

The measuring results on digital computers of• the 
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non-conventi onal des ign just des cribed cited in conjunction 
with this and the measured values from digital computers 
of the conventional form cited for comparison,  show the 
essential improvements as regards steady state accuracy , 
which can be  attained at the same counting frequency (band-

' width) and frequency of measurement ( repetition frequency) . 

Hereby , it is even possible at the same bandwidth of 
the counting elements to reduce the meas uring accuracy of 
each individual measurement (by shortening the counter) , 
in order to increas e the frequency of measureme nt52 , becaus e ,  
after all , the accuracy can b e  reconstructed by me ans of the 
measures me�tioned.  This measure is similar to the theoretical 
arrangements for solution of KATZENELSON1 9 , VIDAL , KARPLUS48 , 
VELTMAN47 , KNONLES , EDWARDS20 to 24 and MONROE31 • 

Consequently , the systems des cribed decisively contribute 
to the imp�ovement of the compromis e  solutions from rapidity 
and accuracy of regulations . 

The considerati ons mentioned are not only restri cted 
to two-point systems , but allow for an equival ent extension 
to multi-stage switching systems ; proportionally operating 
digital computers are to be regarded . as such. By means of · 
the p ositive feedb ack or s earching processes the proportional 
behaviour caus ed by the quanti zation instructions can be 
increas ed up to an integral behaviour .  

The examinati ons of two-point systems were emphas i zed 
for the simpl e  reas on that , among comparable digital syst ems , 
thes e  poss ess the highest amplifi cation and that in the 
steady state condition even multi-point systems almost always 
exhibit two-point behavio ur .  

In further Figures the quantitative effects o f  the 
positive feedback on a digital two-point regulator are con­
trasted with a regulator of the conventional structure:  

In  Figure 8 the relative accuracy G of a c oars e-staged 
digital regulation without an additi onal measure is c ompared 
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with a posi tive feedb ack loop . Hereby the curves , which 

are dis tinguished- by the type of line , apply f or different 

repetition frequenci es . Even if the infl uence of the latter 

is l eft out of consideration, the improveme nt of accuracy 

by 30 to 40 dB is very s triking • . Hereby , the higher ex­

? e ndit ure for i nstrument techno logy for the p o sitive feed­

back amo unt to l ess than 1 0  per cent . 

In �he mean switchi ng rate of the regulator output 

si gnal , only small deviations with a maximum of ! 30 per 

c ent result when emp l oying the positiv e  fe edb ack. 

Figure 9 gives informati on f or the measured dis crete 

statis ti cal dis trib ution dens i ty of the regule.t or o utput 

si gnal for the s ame form of appli catio n .  

Hereby , the abs c issa determines the i nt egral mul­

tiples of the peri od of the meas uring or repeti t i on fre­

quency , �he ordinate s hows the measured distribution den­

sity . The c urves are valid for the i nt ervals of the on 

and off state , as well as for. the p eri od of _the switching 

moveme nt . 

Further practical experiments on vari ous c ontrolled 

systems , e . g . , on drive speed controls have als o  furnished 

proof that by means of positive feedbacks of the form 

des cribed not only the diminuition of the effects of known­

dis tributed quanti zat i on errors is possibl e ,  but that 

- statistical quantities with only estimable di s trib uti on can 

als o b e  comp e ns ated, as , for instanc e ,  the peri odical �nd 

statistical errors i n  the employment of spe ed rec orders . 

The task aimed at by the employment of p os itive feed­

back or s earching pro cess could als o be approached by me ans 

of integrators , which . are conn� cted at the putput of t he  

two-po i nt measuring sys tems . As compared with syst ems with 

pos itive feedback, however, the syst emd with i nt egrators 

wo uld operate more unfavo urab ly as regards error balance , 
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stability ,  and s tarting . This has been confirmed by meas ure­
ments on actual systems . 

5 .  Summary 

The stro ng res onance-like dep e ndence of the spe ctral 

excitati on facto.rs on the signal ampli tud.e if the s i gnal s  
are pres ent only quanti zed with a f ew stages , shows th� re­
quirement for working out a draft of a complete repres enta­

tion for multi-p oint systems from the common process of t-.e 
des cribing functi on and the we l l-known ZYPKIN process for 
two-point systems . 

Taking specifi c distributi on dens ities and their de­
pendence on s i gnals as a basis , ext ensi ons worth men"Gi on­
ing,  but nevertheless i nexpens ive , can als o  be specified 
for s to.chastic multi-point systems whi ch have numerous 
practi cal advantages . 
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AN OP TIMA L  HEA TING S Y S T E M  
Adel  H .  Eltimsahy 
University of . Toledo 
Toledo, Ohio 
U .  S .  A.  

I .  INTRODUCTION 

Louis F .  Kazda 
University of Michigan 
Ann Arbor, Michigan 
U. S .  A. 

A review of the research and work which ha s been done , and is be ing 
done, in the area of gas-fired forced-air controlled comfort heating sys­
tems reveals little documented effort expended to s tudy the hea ting _ sys­
tem from a control sys tem point of view. Fur thermore, practically no ef­
fort has been expended in trying to optimize these sys tems using the 
techniques o f  modern control system theory . There are two approaches 
available to s tudy this problem. 

(a) One approach is to use full scale experiments and utilize a 
tes ting procedure designed to indicate the effect of modifica tion made 
on a given sys tem. These exper iments are prac ticable in principle, but 
they are exceedingly difficult to real ize except under control led lab­
oratory conditions . In addition, they are very time consuming and pre-2 sent a very lengthy and expensive program. This approach has been used 
for many years and has provided many useful results for warm air: heating 
sys tem designers . It is especially useful when the objective is to in­
ves tigate design improvements in par ticular components of heating sys tem& 

(b) The second approach is to utilize an analytical model .to rep­
resent the sys tem. The advantages  of  the analytical  approach are (i )  
re lative inexpense to perform, ( ii) easy to duplicate results ,  and 
( iii) relatively easy to evalua te resul t s .  Furthermore, the analyt­
ical approach often provides valuable ins ight which leads to a more com­
plete understanding of the ac tual sys tem. It mus t be emphas ized, of 
course, that the accuracy of  the results obtained util izing the mathe­
ma tical mode l is entirely dependent on the degree to which the model rep­
resents the ac tual sys tem. In the pas t few years other researchers have 
performed analytical studies on the domestic heating process .  However, 
these s tud ies were primary l imited to open loop, s teady-sta te situa­
tions3, 4 and were not concerned wi th the dynamic response of the sys tem. 

II .  THE MATHEMATICAL MODEL 

The fixed portions of the domes tic heating sys tem mus t include 
the fol lowing basic elements : 

1 .  Domes tic Space : The habitable enclos re whose temperature is to be con­
trolled . 
2 . Room Boundar ies :· It includes wal l s ,  ceiling, and f loor . 
3 . Furnace : The sys tem component which supplies the thermal energy . 
4 . Air Ducts : The sys tem component which transfers tre heated air 
throughout the habi tab le enclosure . 
5 .  Gas Control Valve : The sys tem componen� which releases combustible 
gas to the furnace hea t exchanger on signal from the control ler unit .  

In  general all  of  the above elements affect the dynamic performance 
of the system ;  effects of some of the components ,  however , are negl igi­
ble 1 . 

The above lis ted components are integrated into a schema tic block 
diagram indicating the ir relationship to the overa ll sys tem. Such a 
dia ram is shown in F " gure 1 .  
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An approximate mathematical model for .the fixed 
sys tem has b�en es tabl ished! · and is expressed by the 
vector . linear differential equation : 

components of the 
following single 

· vM«: x �[�) ' � o • [t] , m - ��] Ell A = 21 
31 

(1 ) 

TR average temperature of the space to be heated. 
Iw average temperature of the inside surface of the outside wal l . 
Te average temperature of the _heat exchanger wall . 
If average temperature of the furnace flame. 
To outs ide atmospheric temperature. 
u3 b3Tf, mz = dzTo 
The components aij of the matrix A, b3, and d2 are parameters of 

the system. 

Ill. FOIHJLATION OF THE l'Ell'l.'URBATION MODEL ' 

In this section a. perturbation model is formulated to represent 
the heating sys tem as referred to some equilibrium positioQ. First, as­
sume that the controlled input u and the uncontrolled input m are 
such that the sy�tem is operating in an equilibrium condition, in other 
words x = 0 .  I n this case any disturbance which occurs in the system, 
for example an opened door , entering people, additional lighting, etc . ,  
causes a deviation in x from its nominal or equilibrium value . 

To obtain the equilibrium values, se t x = 0, therefore : 
Ax0 + u0 + m = 0 (2) 

The zero subscript here refers to the equilibr ium vec tors . In or­
der to maintain a desirable room temperature which is a component of the 
vec tor x, it is evident that u, the controllable input to the system in 
the equilibr ium s tate, takes on some value u0• To de termine the value o.f 
uo re

r:�t
ed=

� i

on
:�r

)

r rt�ron= (� ; [� ] r�2J l�3l 0 a33 l�e:J u3o 0 . 
By ap

[

p
:��

ri
:�i 

m
g_l
ip[u

�=�
]ions this 

r:�
]t ion

T::

co
�
[

s
�2] 

(3) 0 a33 1j u30 La31 0 
From Equation ( 3) ,  it can be seen that knowledge of the desired 

room temperature TRo and the outside temperatur·e expressed by m, de ter­min�s the equilibrium values of the control lable v�ria�le Tf9, and the vart.ous state temperatures . Let x = x0 + ox x = Xo + 4 x  
and u = u0 + 6 u 

where o x, 6u , and o x  represent deviations from the nominal values of x0, 
u0, and x0 respectively, then y = Ay + v (6) 

where 6 x = y, cS u. = v 

This latter equation is the conventional wel l-known l inear first 
order matrix differential equation. The compone�ts of the vectors in 
this equation represent variations in the s tate of the sys tem. It is to 
be noted that in this case this new perturba tion model (6) is valid for 
large swings from equilibrium since the model of the o.ril!linal dynamic 

• sys tem is 1 inear . 
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IV. THE OPTIMIZATION CRITERION 

The main objective in the optimiza tion of a gas -fired forced-air 
hea ting system is  to reduce and pena l ize room temperature varia tions due 
to dis turbance s ,  and is pr imar ily used here to def ine the optimization 
cr iterion. The square penal izing will discriminate he �vily against 
occasional large room temperature var ia tions . This philosophy is justi­
fied as long as  the type of control used does not have any s ignificant 
phys ical l t.i tat ioas . In a gas - fired heating sy s tem. for example, phys­
ical l imi tations are imposed by the heat exchange 1 S  It is mainly due 
to power limi tations . Therefore in order Lo consid�r power l imitations, 
a term in the square error cri ter ion is added tha t  is proportional to 
the square of the control signa l .  Having these two factors in mind, the 
optimization criterion for the forced-air heating sys tem can be repr�­
sented as follows : . 3 T 

J(y, v) = L f . 
n=l o 

2 2 
[qn ( o )  � vn ( o ) ]  do (7) 

vaere J(y,v) is the error 
var iable,  T is the period 

criterion to be minimized, o is a dummy t ime 
over which the minimization takes place, q ( o) ::

) 

v:e �I�n def:nedrrs :  g 
IJ3<o)j Lo o 

v(o ) 

Tbe first term in the integrand of the quadratic criterion ( 7 )  rep­
resents the penali ty on the room tempera ture variat ions, and the second 
term is introduced for power l imt"tation. 

V.  THE OPTIMAL CONTROL LAW 

The optimiza tion problem a t  ha d is one of s ta r t ing from some ini­
tial temperature dis turbance y0, and driving the sys tem y = Ay + v to the 
equilibrium s ta te while cons tra ining the o r i ginal s y s t em to perform in 
such a way as to minimize the v a l ue of t he c o s t  func t ional J(y,  v) . Here 
the period of optimization is a l l owed to be very large ( i . e . ,  T ..... ) ,  
since thE bea ting sys tem has to be o p t imized over a long per iod of time . 

The me thod of dynami.c programming a p p l ied to this l inear t ime in­
variant heating �;s!Pm is guaranteed to provide a c losed l oop or feed­
back control law , t  for a given se t o f  heat ing sys tem parame t e r s ,  which 
satisfies the o p t imizat ion c r i ter ion d e f ined in s e c t ion IV . It does no t 
pose any difficulties such as ins tab i l i ty of the r e s u l t ing equations which 
could resul t by applying the calculus of v a r i a t ions to a system to be op-
timized over a semi- infinite interval (as r�®)O For the se reasons , 
the method of dynamic programming is thought to be the mos t  suitable meth­
od for the optimization of the hea t ing sys tem under t he op t imization cri­
ter ion represented by ( 7 ) . Bel lman ' s  Dynamic pro gramming is basically 
an optimization process tha t proceeds backward in time ; that is, the s o l ­
ution is computed o v e r  t h e  l a s t  interval o f  t h e  proce s s  and · succe ssive 
solutions are compu ted for the remaining interv a l s  of decreas ing t ime un­
til the total solution is o b ta ined for t he ent ir e proces s .  

In order t o  a p p l y  the func t iona l 
programming, this o p t imiz a t ion pro b l em 
blem of minimiz ing : 

3 T 
! 1 

n=l t 
d o 

equat ion te chnique of dynamic 
fs embedded wi thin the wider pro-
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subject to the heating sys tem Equation (6)  and the initial condition 
y(o) = y0, with t ranging over the interval ( O ,T) . Le t the minimum of 
this cos t functional be : 

E(y_, t) = min 
V f 

n=l 

T 
dO (8) 

t 
Invoking the princ iple of optimality to Equation ( 8) the funct ional equa­
tion becomes : 

E (y, t) = m�n 2 J [qn ( o) + vn (o )]  
n=l t 

{ 3 t+ E: 2 .2 

where £ is an incremental change in the time t .  This equation is reduced 
to the following expression ( by integration and Taylor series expansion) : 

E (y, t) = min{ t [q� (o ) + v� ( o) J  E: + E (y, t) + ! y � £�J+ 6 t; )  
V n=l n=l n ayn at 'J 

:;:rr;q! ,, , . .  � , .� . .t '· :� . .  :� } .  ,. ,,, , , 

where 6' ( E:) -+() as E:-+0 

min 2 [q� ( o) + v� (o )J + 2 y l.L + 2!. = 0 
Therefore { 3 3 } V n=l n=l n ayn a t  ( 10) 

The minimiz ing control s ignal vec tor v*( o) is obtained by minimizing 
the sum of terms wi thin the brackets of equation 10 with respect to each 
signal of the control vec tor . Minimizing now with respect to v3 ( o) ,  the 
only non zero component. of the vec to.r v( o) , • • •  (keeping in mind the rela­
tion be tween the vectors q and y) , is therefore :  2v�- + � = 0, 

a y3 . 
where v5 = optimum control s igna l .  
Consequently, the condition for minimum error is : * 1 a E  ( 1 1 )  v3 - 2 ay3 
In order to de termine the optimum signal v� , ; �3 for m1n1mum error mus t 
be de termined first .  Substituting Equation (11) and the value of q in 
terms of y into 'the func tional Equf tion ( 10) , the condition for minimum 
error becomes : / + !, cL> 2 + ; _a!_ + � = 0 ( 12) 

1 4 aY3 n aYn at 
As seen from Equation ( 12) ,  the c��Jition for m1n1mum error is in a par­
tial differential form. To solve such an equation a power series solu­
tion is assumed, and the coefficients in the series are found by direct 
substitution. 

Since the integrand of the error criterion function is a quadratic 
express ion and the dynamic sys tem is l inear, the minimum error function 
E(y, t) is also quadratic and can be written as : 

� 3 3 
E(y, t) = k( t) + 2 �( t)ym( t) + 2 2 krok( t)ym( t)yk ( t) ( 1 3) 

m=l · m=l k=l 
where kmn( t) = knm( t) , and 
where k ( t) ,  km( t) ,  kmnC t) are the parameters to be de termined from Equa­
tions ( 12) and ( 13) . By par tial differentiation of Equa tion ( 13) , 
( aE(y, t) ) / (ayn) and @ E (y, t) ) / ( at) are writ'teri as fol lows : 

and 

3 aE��, t) 
= kn( t) + 2 L knm( t)ym( t) ( 14) 

n m=l 
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3 3 3 

m�l � ( t)ym( t) 
+ m�l k�l 

( 15) 

If these partial der ivatives are substituted into Equation (1 2) the con­
dition for minimum error become s :  

2 1 [ 3 
krunYm]2 3 3 3 

Yl + 4 k3 + 2 I + k ' + I �m + I I k�YroYk m=l m=l m=l k=l ( 16) 

+ � [ knYn + 2yn 
3 

knmYm] = I 0 
n=l m=l 

The condition for minimum error expressed by ( 16) is satisfied for 
all  f inite values of Yn( t) , assuming the k-parame ters are independent of 
Yn( t ) ,  only if each of the coefficients of the constant term, Yn ( t) ,  and 
Yn( t)ym( t) in Equation ( 16) vanishes , where n,m = 1 , 2 , 3 . There fore by 
equating the coe f ficients of the constant term, Yn and y y each equal to 
zero, the following simul taneous first order differentiaY Wquations in 
the k-parameters resul t .  

fl (k ,kl , k2, k3, kl l ' k22' k33' kl2 ' kl3' k23) 
f2(k ,kl , k2, k3, kl l , k22, k33, kl2, kl3, k23) 
�3(k , kl , k2 , k3 ,kl l, k22 , k33,kl2, kl3 ,k23) 

k ' I 
kl 
k '  2 ( 1 7 )  

flo(k , kl , k2, k3, kl l , k22, k33, kl2, kl3 ,k23) = k23 where : f1 , f2 , . • • . .  , f lo are in general nonlinear functions of the k­
parameters, and the primed k ' s  refer to the derivatives of the k-para­
meters with respect to - time . 

This method of assuming a solution leads to the reduc tion of the 
problem o f  solving a partial differential equation to the problem of 
solving a set of first order ordinary differential equations . The bound­
ary condition for the k-parameters are deduced directly from the required 
boundary condition on the minimum error function. From the expression 
for minimum error func tion for t = T, the boundary condition is 

E (y(T) , T) = 0 which means that k(T) = kn(T) = knm(T) = 0 ( 1 8) 

The problem becomes now one of f inding the optimum control sys tem 
of a one-po int  boundary value problem. The parameters of the optimum con­
trol system, k( t) ,  kron( t) where m, n = 1 , 2 , 3 can be determined from the 
set of ten differential Equations ( 1 7 )  with boundary condi tions given by 
( 18) . It is to be noted that the number of parameters are ten and the 
number of initial conditions expressed by ( 18) are ten. 

The solution of the set of differential Equations ( 17 )  as T tends 
to •, must as sume s teady state . If the k-parame ters assume steady state 
values , then the differential equations given by ( 1 7 )  reduces to a set of 
algebraic equa tions . Therefore, when the dynamic sys tem is time in­
variant, the error function is quadratic, and the optimiza tion process 
is carried over a semi- infinite time interval ,  the parame ters of the op­
timal control law become time- invariant .  

Since the heating sys tem is to be optimized over a semi- inf inite 
time interval for a quadratic optimiza tion criter ion, equations (8) through 
( 15 )  become 

E(y) 

E(y) 

3 
min I v n= l 

min { I v n=l 

lb� ( a) + v � ( a)] d a 
t < + t [q�( a) + v;( a) J 

( 8 ' )  

d C+ E (y ( 9 ' )  



3 
E (y ) = k + r 

m=l 
where k, �' and 

3 
r 

m=l 

3 
r n=l 

3 
L = r . 

n=l 
Yn ayn 

3 
kmYm( t) + r 

m=l 
� where m, 
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0 
3 
r 

k=l 
kmkym( t) yk ( t) 

n = 1,  2 ,  3 are fixed cons tants.  

By subs tituting ( aE) / ( ay3} from ( 19) into ( 1 1 ' )  gives : 

(10 ' ') 

( 1 1  ' )  

( 1 2 ' )  

( 13 1 ) 

( 14 1 )  

( 1 5 1 )  

(19} 

k3 
vj = - :f - k31Y1 - k32Y2 - k3JY3 
Therefore it is neces sary to determine the parame ters k3, 
k33 to de termine the optimum control signa l .  

(20) 
k311 k32, and 

Substituting now from Equa tions ( 14 ' )  and ( 19) into the condit ion 
for minimum error ( 1 2 ' ) , and also using the vec tor matrix d i fferential 
equation y = Ay + v, the fol lowing �s obtained : � 3 3 2� 3 3  E 3 � y2 - i k� + 4k3 L �3Ym + 4 ( L km3ym) + L ( L � knt2 L ksn>ll = 0 

1 m=l m=l n=l m=l s=l 
Since equation ( 2 1 ) is s�tisfied for all values of Yn( t) ; by equating the 
constant term in this equation to zero, the following is obtained : 
k3 = 0 3 ( 22) 
Similarly for the coe fficient of ym : -k3� + L �k0 = 0 (m=l , 2, 3) 
and s ince this ts true for all finite values ofni,Jm, therefore 

kl = k2 = k3 = 0 .  2 3 
For the coefficient of yf : 1 - k13 + 4 L aln kn 0 (23) 
For the coe f ficient of 2 · 3n=l y2 . 2 

- k23 + 4 r a2n k2n = 0 ( 24) 
3 n=l 

For the coefficient of y2
3: -k

2 + ·4 \" a3nk3n = 0 (25) 33 n;l 

For the coefficient of yly2 : 

For the coe f ficient of Y1Y3 : 

For the coe fficient of  Y2Y3 : 

3 
-ku k23 + r (alnk2n 

f=l 
+ a2nkln) · 

-kl3 k33 + r
l 

(aln k3n + 83n. kln) 
n= 3 

-k23 �3 + r (a2n k3n + a3n k2n> 
n=l 

= 0 (26) 

= 0 ( 2 7 )  

= 0 ( 28) 

Equations (23) to (28) are in general nonlinear algebra� equations 
in the parame ters �' m, n = 1 , 2, 3 and require a d igital computer for 
solution. In the next section a solution of  these parame ters for a 
particular heating sys tem on the digital computer wil l be shown. 
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Equation ( 20) now becomes : v) = - [k31Yl + k32y2 + k33Y3] ( 29) 
The control func tion v), derived here is referred to as the optimum con-
trol law. · 

This optimal control scheme for the var iational sys tem may be com­
bined with .the equilibrium system developed in Section Ill to obtain an op­
timal feedback sys tem for the heating proces s .  In block diagram form the 
system may be schematically represented as shown in Figure (2) .  In this 
diagram a controller is provided which compares the values of the environ­
mental state and the desired s ta te and commands the appropriate equili­
brium input .  It  should be noted that the number of feedback loops is 
equal to the order of the heating system ;  it is noted also that the feed­
back signals  are measurable s tate variables .  

Thus, an  optimal he-ating system for a defined quadratic cos t func­
tion has been developed which has the desirable property of providing 
feedback loops to account for distrubances in the sys tem. This optimum 
law will be applied to a particular heating sys tem in the next sec tion to 
develop an optimum control ler. The optimal heating sy stem is then simu­
lated on an analog computer to s tudy its behavior . 

VI . EXAMPLE 

The varia�ional vector matrix differential equation as derived in 
section Ill now becomes : y = Ay + v 
whereT vT = (v1 , v2 v3) = (0 , 0, 0 . 235oTf) 
and y = (y1 ,Y2, y3j = (6TR, 6Tw, 6Te) where yl = 6TR, y2 = oTw' y3 = 6Te 

The square matr ix A de termines the system under consideration, and 
therefore the k parameters of the system as defined by Equations (2 3) to 
( 28) may be2written as follows : 

1 - 2k31 + 0 . 388 k31 - 0 . 764 kl l  + 0 . 1688 kl2 0 
- �32 - 0 . 388 k32 + 1 . 1 12 kl2 - 0 . 3896 k22  = 0 
-k33 - 1 . 956 k33 + k31 = 0 

-k3lk32 - 0 . 2884 kl2 + 0 .042 2  k22 + 0 . 097 k32 + 0 . 2278 kl l  - 0 . 097 k31 -k3lkJ3 - 0 . 68 kJl + 0 . 0422  k32 + 0 . 097 k33 + 0 . 25 kll = 0 -k32k33 + 0 . 227 8  k31 - 0 . 5864 k32 - 0 . 097 k33 + 0 . 25 k 12 = 0 

0 

The University of Michigan Control Sys tem Algori thm Program employ­
ing a 7090 digital  computer was used to solve for the k-parameters .  This 
program was basically obtained from IBM, wi th some modifications added. 
The modified program is entitled CSAP and is currently available at the 
University o f  Michigan Computing Center Library. This program appears as 
a subroutine on the sys tem disc and may be entered s imply by calling CSAP. 
Once the program h� � been called, it will function exactly as described in 
the user ' s  manua1 . 9 The solution for this par ticular system is : 
kll . = 1 . 4449 , k22 = 1 . 32 73, k33 = 0 . 2065, kl 2 = 0 . 805 , k31 = 0 . 4467 , 
k32 = 0 . 36 .  The optimal control signal becomes : v� = - (0. 4467 y + 
0 . 36 y2 + 0 . 2065 y:}) , or 0 . 2 39 oTf = - (0 . 4467 OTR + 0 . 36 oTw + oJ065 o't ) 
Hence, the b lock d�agram of the optimum heating sys tem us ing this control 
law fol lows as shown in Figure 3 . It is to be noted that o Tf, o TR' oT , 
and oT are the var iations of temperatures from equil ibrium values , an� 
are de¥ined · as fol lows : 6Tf = Tf - Tf0 , 6 TR = TR - TRo , 

6� = Tw - Tw , 6 Te = Te - Te • 0 0 
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Therefore, to generate v*, the variatioaal signal, it is necessary to 
first generate the equiltbrium values of the temperatures,  Tf0, TRo, Tw0, 
and Teo • 

For equilibrium conditions : fa = � =  te = O,  
Tf = - 1 .045 T� + 2 . 05 Te , Te = 0 . 43 Tw Q 0 0 0 2 . 3t TRQ 

- Te0 + . 19 T0 
+ 1 . 97 TRo , 

From thes€ latter equations ' it follows that having TRo, and T0 as 
set inputs, the equilibrium values Tf0, Te0, and Tw0 may be generated. 

Having established the equilibrium values,  they may be now combined 
wi th' the fixed portion of the heating sys tem and the optimum controller to 
provide the optimum control sys tem. 

1 .  First Case : The room temperature TR 
outside temperature is initially set at 200F ,  
initially in the equilibrium s tate of : 

is set at 7oor, and the 
The system is therefore 

x� = (70, 52 . 9 , 1 15) °F , Tf0 = 163 . 80y 
The outside tempera·ture T0 is then suddenly changed from 200y to 0°F . 
For these conditions the room temperature Ta, the surface wal l  tempera­
ture Tw, the heat exchanger wall  temperature Te, and the control signal 
temperature Tf were recorded. These temperature responses '  are shown in 
Figures 4, 5, 6, and 7 respectively. 

From Figure 4, it is evident that the room temperature TR decreases 
gradually from the time the dis turbance occurs until the time when the 
variation 6 Ta becomes -0 . 150y ;  a to�al of 16 minute s .  After this ,  it be­
gins to increase at  a slower rate back toward its original value . In 40 
minutes, the room temperature at tains the value of 69 . 90y ,  This is ex­
pected, since the optimization criterion was considered over a semi-in­
fini te time interval .  The optimum control signal Tf as seen in Figure 7 
increases gradual ly from the time of the drop in the outside temperature . 
This effect occurs to compensate for the heat loss .caused by sudden dis­
turbance. In Figure 5, it is noted that the surface tempera ture of the 
wall  initially falls  rapidly to 45 . 37or, then it  gradually begins in­
creasing until it reaches 490f .  Figure 6 indicates the effec t of the 
dis turbance on the heat exchanger temperature Te . This temperature ini­
tially drops to about 109°F because of both the decrease in room tempera­
ture and the decrease in surface wal l  temperature . It then begins to 
gradual ly increase until it reaches within 2 . 40f of its �riginal value . 
This is caused b� the increase in the flame temperature . 

2 . Second Case : For this case the room temperature is set at 70or 
and the outs ide temperature is ini tial ly at· OOf . The equilibrium values 
are : x5 = (70,  49, l l 7 )  °F, Tfo = 182 . 80f .  The outside temperature 

· 
then rises suddenly to 4QDy, Figures 8 to 1 1  show the s tate variables 
and control signal responses to this disturbance. The room temperature 
�esponse is shown in Figure 8. This temperature increases gradual ly to 
'0 . 15°F then fal l s  to 70 . 050f .  The wal l  surface temperature shown in 
:igure 9 rises as a result of the dis turbance and then it decreases until 
it reaches 630f .  The heat exchanger temperature also rises by 6°F and 
' hen will decrease gradually to 1 10°F .  This resul t is illus trated in 
: · gure 10 . Figure 11  shows the optimal control signal .  I t  i� apparent 
l ttat the · flame temperature changes gradual ly to 153.  5°F ,  which imglies 
!.ildt the dis turbance caused by an outside temperature rise from 0 F to 

i �  F, decreases the flame temperature by 29 . 3oy to keep the room tempera- . 
+ � r e to within O . l°F of 70°F . 
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Comparison :  If the conventional heating sys tem is  to  be  compared 
with the optimal sys tem, the basis of comparison mus t  be the defined per­
formance criterion. It is true by definition that the optimal sys tem 
developed is the best with respect to this criterion ; however, interes t ­
ing points can be made by  analyzing the systems in genera l .  

For a conventional heating sys tem the main properties are : (a) An 
on-off control ler is used . (b)  Only the average room temperature TR is 
controlled. For analysis purpos.es  1 ,  the heat output of the furnace is 
adjusted so that the temperature ot the air circulating in the heating 
system is - 120°F when it is leaving the fun.ace during the on- period. 
During the off-period the temperature of the air is considered to be 70� 
The outside temperature T0 is held f ixed at 20°F, and then allowed t� 
drop .suddenly to zero. Com;>uter runs were made for the conventional · 
�ating · system for different values of thermostat ( control ler) time con­
s tant TT minutes · and hys terisis q °F .  The peak to peak room temperature 
variation is measured and is called the cycl ing ampli tude . Also the t ime 
for one complete cycle of  the room temperature is recorded, and is cal led 
the cycling period . 

I f  the conventional heating system is analyzed and compared to the 
optimum heating sys tem i t  is found tha t :  

( i) the peak t o  peak. variations of  the _room temperature are much 
greater for the conventional heating sys tem, when compared to the maxi­
mum deviation of the .optimal sYStem. 

( ii) For an outside temperature disturbance the response and ad­
jus tment . of the optimum heating sys tem is superior to the corresponding 
response of the conventional heating system. In the optimum system, the 
temperature begins to fall gradually (due to an outside temperature drop) 
until it deviates to -0 . 15Dr. Then within about 5 minutes it tends to 
remain to within 0 . 1Dr or less from the original value. The conventional 
heating system, on the o ther hand, begins to oscillate. The rates· of in­
crease and decrease in the . room temperature depend on the thermostat t ime 
constant, and thermosta t  hys teresis . They also d�pend on the nature of 
the disturbance . This is shown in Figures 12, 13, 14, and 15 . 

( iii) The rate of change in the room temperature is greater when 
using the conventional controller thus causing the conventional heating 
system to be less comfortable . 

VII . CONCLUSION 

An optimal heating sys tem for a defined integral quadratic cost 
function has been developed which incorporates the main objective of min­
imizing room temperature variations . The optimal control was shown to 
have the desirable property of providing additional feedback loops to ac­
count for dis turbances in the sys tem. The feedback portions of  the op­
timum control heating sys tem were also shown to be time- invariant, a 
characteristic which is advantageous in practice . Parame ters of the op­
timum controller were de termined through the use of the Control Sys tem 
Algorithm Program (CSAP) on the 7090 digital computer at the University 
of Michigan. The optimum heating sys tem represents an optimum from the 
theore tical point of view for the configuration and cost function sel­
ected . Therefore it represents an upper bound or standard with which 
conventional or sub-optimal sys tems may be compared . However, for some 
specialized ins tal lations possessing rigid performance s tandards, it may 
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be feasible to util ize a sys tem such as the optima l .  

Ana log computer resul ts showed a s ignificant degree of improve­
ment could be obta ined using the opt imum control ler rather than a con­
ventional contro ller . 
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