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ON THE SELECTION OF SUBGOAL AND THE USE
OF APRIORI INFORMATION IN LEARNING CONTROL

SYSTEMS*
L. Z. Jones, III K. S. Fu
Graduate Engineering School of Electrical Engineering
Education System, GENESYS Purdue University
University of Flor:da lafayett~, Indiana
Port Canaveral, Florida
ABSTRACT

Mumerous methods have been proposed for the design of control systems
which learn to function in unknown or partially kmown environments. Most
learning schemes are radical departures from the techniques using continu-
ous adjustment of parameters which érew out of early developments in model
reference systems. Principal contributions to the area have been control-
ler models and algorithms. In studying these models, the system is ab-
stracted to such an extent that there is quite often a loss of contact
vith practical considerations. The objective of this paper is to present
some results in the theory of leai'ning control, but also to lock again at
some of the practical problems encountered in applying a learning control-
ler to a problefn.

This paper defines the subgoal as a subordinate to the primary goal
of minimizing the performance index. It must evaluate each decision one
control interval after it is instituted. The subgoal problem is to choose
a subgoal which will direct the learning process to the optimal as pre-
scribed by the given performance index. An apalytical svlution is pre=-
sented and extended heuristically for the general case. "I'his extended
method makes use of the apriori inforaation about the plant.

Two other problems are also discussed. A fixed grid is used to
partition the state space into control situations, and a method of ex-
tending the grid is proposed and evaluated. Tke controller is initial-
ized using the apriori information, too. A full scale simulation con-
firms that the proposed methods of choosing the subgoal, .extending the
fixed grid and initializing the controller are improvements over pre-
vious methods.

*
This work was supported in part by National Science Foundation,
Grart GK-1970 °



I. INTRODUCTION

In the current decade, there has been a surge of interest in design-
ing systems which exhibit learning behavior and research has progressed
rapidly on probabilistic models and learning algorithms. The control prob=-
len has been abstracted to allow one to isolate the decision problem and to
study the convergence properties of learning or reinforcement algorithms.

. This paper is intended to bridge the gap in the design problem. On
ore extreme is the system proposed by Fu and wjal‘l'.z1 which assumes only the
order of the plant is known, a more or less black-box approach. On the
other extreme is the case where the plant equations are known and the de-
signer solves an optimal control problem. The problem, posed as a question,
is: How is the theory used to design and mechanize a learning control
system? Several facets of the design are considered in the ensuing sec=
tions following some additional background.

On-line learning occurs with the controller embedded in a closed loop
control sy'ste.m.2 A learning controller collects some pertinent informa=-
tion during its operation about the random variables or functional which
describe the controlled process or plant-environment relation, and pro-
cesses it according to an algorithm to optimize a pre-specified perfor-
mance index (PI).3 Many of the pioneering contributions to the area of
learning control originated from the approach of considering a learning
system as an adaptive system with additional memory.z’h More recently,
contributions to the area of learning control have sprung from stochastic
a.ppro:dma.tions’ ggnd automata theory. 7,8,10,12

II. THE CONTROL PROBLEM

The general control problem is a classical optimal control problem.
That is, it is desired to design a controller for a plant described by
an ordinary differential equation 'as Equation (1) to minimize a perfor-
mance index specified by Equation (2). :

x = £(t,xu) x(0) = x, (1)

T
PI(u,x ) =f F(t,x,u)dt (2)
0

In general, the state x is an n-vector and the control imput u is an
m=vector.

The primary goal is to design a controller which minimizes a given PI.
The learning control designer, in general, does not have complete Xmowledge
ol f. Instead, he must measure the PI as the system operates and use these

measurenents and his incomplete or iraccurate mathematical model to guide



after-the-fact decisions.
The physical constraint on the control imput is that it is bounded as
shown in Equation (3).

Jo;(@)] €U, i=1,eem; n=0,1,... (3)
1

In order to develop some of the analytical results in Sections IV and V,
the”constraint will be relaxed, but it is mot ignored. In fact, as evi-
denced by the following presentation, the type of constraints form an in-
tegral part of the investigation.

There are two often cited classes of control constraints which lead
to different implementation and application results, but which appear the
same to the decision making element of the control system.

(1) Parameter ‘Choice - Partition the i-th of M parameters in a speci-
fic form of controller into Ki levels. Learn the best values
from the set of % allowable decisions, where

M :
xp =5 K ~ %)

(2) cControl Action Choice - Partition.the closed interval [-Uyp *+ Uy
into K levels. Learn the best u, for each state x from the set
of K allowable control actions.

One example of option (1) is: learn the best set of ga{n values in a con-
trcl law constrained. to be of the form

u(n) = ¥’x(n) (5)
Option (2) is an attempt to learn u*(x), itself, subject to quantization of
both state and control. The proposed system uses this option.

The following are steps for the design and mecha;niza.tion of the learn-
ing controller:

l. Sample time to allow time for making and reinforcing control

decisions.

2. Quantize the control input into a finite collection of allowable

control actions.

3. Partition the state space into a finite collection of regions

called control situations.

L. cCnoose a reinforcement algorithm and a subgoal to direct the

learning process.
The reinforcement learning control systeml’lhis realized by these steps.

The primary control problem is to design a controlier ¢ the plant
in Equation (6) which satisfies the prirery goal of minimizing the per-
formance index in Equation (7).



x(n +1) = gx(n) + u(n) n=0,1,... x(0)= X, (6)

N
Y (¥ (@) @ x(n) + e (a-1)) A
=1

PI(U:EO)

Matrix Q is .a.t least positive semidefinite and @ > o. Plant coefficients
# and h are, in general, unknown or partially known and might depend upon
the dperating conditions of the plant. Sampling period T is fixed and
problem time T = NT is fixed or infinite. Initial state X, is considered
fixed for the purposes of solving the optimal control problem, but during
normal operation of the plant, it can assume any value in a compact sub-
set of the state space. Control imput u is to be chosen from the finite
set U of control actions, formed as indicated in Step 2.

u(n) € U = [ul’"”“K] n = 0,1,ee0,N=1 (8)

This is not a completely general problem, but the results indicate that
it is of general interest in demonstrating the design techniques.
IIT. T3 LEASNING CONTIOL SIST=M

The learning control system belongs to the general class of systems
shown in Figure 1, in which the decision making element of the controller
is a variable structure, finite, stochastic automaton A. All other system
corponents are combined into E, the stochastic environment of A. E con-
<ains the plant and its enviromment, the control imput mechanization and
the performance evaluator. This model is well suited to an investigation
oI the convergence oroperties of reinforcement or learnming algorithms.
Some researcherslo’llha.ve used the model for examining the convergence and
expediency of automata, and some7’8’12ha.ve already applied it to the adap-
tive and learning control system problems.

This general model is structured to a particular application to con=-
trol problems by defining the three pertinent terms:

(i) Control Decision - made in A, sent to E
(ii) Control Decision Evaluation - made in E, sent to A

(iii) Control Interval - time for E to evaluate a decision
It is usually assumed that control decisions require negligible time.
Tnis tire is small compared to the control interval, but it is not exactly
z2ro. However, this is a discrepancy that the learning system can auto-
maiicaily compensate for, provided it doesn't become excessive‘l

Figure 2 is the schematic diagram of the proposed learning control
syctem. The plant is assumed to obey physical laws which lead to a mathe-~
matical model as Sguatien (1) which is then sampled tc yield Equation (6).

In a classical sarmpled da%a control system, the sarpling pericd is ar im-



portant control parameter. Here it is even more important because, as is
made clear in Section IV, the sampling period is also the control interval.
Several authors'’ ’lshave demonstrated that there is an optimal sampling
rate for obtaining data to use in digital identification techniques.

Though the present application does not perform an explicit identification,
the controller inherently identifies as it learns to make the best deci-
sions. =2ased or this, it is reasonable to expect that there is some op-
timal sampling rate, which is not zero. However, since there is no unigue
way to choose the optimal T, one was selected by trial and error for the
experimental work in Section VI.

A control situation is a collection of states .for which the same
control decision is optimal.f These states can be generalized to include
measurable but uncontrollable inputs as well as measurable state variables.
It is emphasized that the purpose of partitioning the state space into con-
trol situations is to make successive trials as nearly alike as possible.13
Viewed in a general sense, the system is accurmlating experience from a
succession of trials which are effected by an uncontrollable parameter X5
It performs best when a control decision is compared only to other deci-
sions made in like circumstances. The fineness of the grid determines the
amount that the x, effect is reduced.

Two factors influenced the selection of a fixed grid for the partition
of state space: simplicity and speed. Figure 3 illustrates the technique
for a two dimensional case. The grid partitions the finite region bounded
by I:&] < 50, [le < 50 into 200 square sets. Symmetry allows quadrants
3 and 4 to be folded onto 1 and 2, respectively. In higher dimensions,
the squares would be hypercubes. A state is classified by multiplying its
elements by appropriate scale factors and truncating to integer wvalues.
Section V considers the classification of states located outside the grid.

Since the system can learn only by trying, the learning time depends
on the number of possible trials KL or EL and the trial time T or 7.
Option (1) might use T or 7, option (2) uses 7, so the time to perform one

trial of each decision is LPKPT, LPKPT or IKT seconds. Learning time will

e rmltiples of this minimum. Based on experiments reported in Section VI,
a typical learn.ng pattern is that the worst decisions are ruled out with
only one trial and ine two or three better omes are tried several times.

A representative estimate is that within each control situation it would

+
Vo

The statement is idealized; in reality there is an inherent averaging

over the states in a given situatior.
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take K + 3x3 = K + 9 trials to select the best. This corresponds to a
minimum learning time of L(K + 9)T seconds.

A stochastic automaton is used as a model for the learning controller.
The primary goal of the controller is to learn to make control decisions
which cause the PI to be minimum. It is conceivable that the PI could be
used to evaluate decisions and to direct the learning process. However,
it ¥s not a suitable evaluator for the system presented here. The control-
ler chooses one of K admissible control actions to act for one control in-
terval, T. Therefore, it is necessary to have & per-interval (per-decision)
evaluator or a subgoal to guide the reinforcement. A detailed description
of the operation of the controller and the reinforcement algorithm, which
is similar to that proposed in Reference 1, is given in Appendix A.

IV. THE SUBGQAL PROBLEM

The subgoal problem for the proposed reinforcement learning control
systems is formulated as fo.u.ows.lh The plant is assumed to be described
by a vector difference equafion.

x(0¥1) = Fx(n),u(n),m)  n =081 x(0) =z (9)
The state x(n) = x(nT) is an n-vector, u(n) = u(nt) is a scalar control
input, n = n7 is time, T is the sampling period, and f is an n-vector func-
tion of x(n), u(n) and n. The primary goal is to minimize a performance

index of the form

PI(u,x ) = ZEtz(n),u(n-l),n] (20)
n=1
where F is a scalar function of its arguments. The solution of this opti-
mal control problem is subject to the constraint that the control must be
chosen from a finite set of admissible actions as in Equation (8).

The primary problem has its primary goal of minimizing the PI, but the
tem subgoal is used to refer to both the sub-problem and its criterion.
Mechanization of the system requires that the subgoal (the criterion) have
these characteristics: '

(i) It must evaluate each decision separately.

(ii) It must be related to the PI so that minimizing the subgoal with

each decision also minimizes PI.

The problem posed in Equations (8), (9) and (10) is a specific optimal con-
trol problem which the learning system is to solve on-line. Solution in-
volves successively trying the admissible control actions until the "best”
one is learned. If the PI of Equation (10) is used to evaluate the trials,
rather than a subgoal satisfying (i), then a control decision it a choice
of a sequence of N imputs {u(n); n = O,¢c.,N=1}, u(n)eU. There are £



such sequences and it takes NT seconds to evaluate each trial. Furthermore,
PI depends on X, SO step 3 in the mechanization procedure is still re-
quired to partially eliminate (or at least desensitize) this dependency.
Partitioning the state space into L control situations creates L simul-
taneous experiments, in each of which the l‘o dependency is assumed to be
negligible. As N increases, both the time to complete a trial and the
number of possible sequences increase. The control decision in (i) on the
cther hand consists of choosing a single control input from the K admissible
actions in U. The subgoal must be capable of evaluating this decision and
zay be called a per-interval PI. Requirement (ii) is obviously necessary
since the objective is to solve the primary problem.

A sub-goal is a function of x(n) and u(n) which is minimized with re-
spect to u(n). Step 3 in Section II is still required to bandle the x(n)
dependency, i.e., trials of u(n) are compared for all x(n) in a particular
control situation. Consider

G rx(n),u(n),n] = B [x(n +1),u(n),n] n=0,...,N-1 1)
where x(n + 1) depends on x(n) and u(n) by Equation (9), and F is a sca-
lar function of its arguments. The form of the subgoal in Equation (11)
satisfies (i). However, it remains to find relationships between f, F and
Foy
problem. The F, satisfying these relationships is the exact subgoal, other-

1
wise, it is a subgoal referred to as arbitrary, sub-optimal or inexact.

to satisfy (ii). Finding these relationships is precisely the subgoal

Only the exact subgoal is expected to direct the learning controller to the
optimal PI.

Relationships between f, F and Fl can be obtained via dynamic program-
ming for the special case of a linear plant, quadratic PI and unconstrained
control, as in Equations (6) and (7). For the unconstrained case with N

fixed and K(N) free, the optimal control law is found to belg

u*(n) = k’(n + 1)x*(n) n = 0,...,N-1 (12)
and the minimum value of the PI is

PI*(z ) = PI(u*,x ) = x 'P(0)x, (13;

where the gain vector k(n) and the matrix P(n) (an mxn symmetric, time-
varying matrix) are computed by iterating Equations (1%) and (17) backward
in time with starting condition P(N) = tol].

R(n) = P(n) + Q (%)
2 n) = - (25)
$(@) =0+ BE(B) B = Hyessd (6)

P(n-1) = ¢’ (n)R(n) (n) + &s(n)k’ (n) amn)



Consider a subgoal of the form

s6(n) = x’(n +1)3(n)x(n + 1) +xu°(n) £18)
where, in simplified notation, the arguments of SG are represented by n.
Substituting Equation (6) into Equation (18) and minimizing with respect
to u(n) yields the solution which minimizes the subgoal at time nT.

i ;

, un) = - E%(%_g-yf— x(n) (19)
The exact subgoal should cause Equations (12) and (19) to te identical, so,
Equations (12), (15) and (19) are compared to obtain these relationships
between the PI and the subgoal.

6(n) =R(n +1) =0 +P(n +1) n=0,...,N-1 |

i (20)

Several significant observations bear on this result. First, a
learning controller is being used because of some lack of information
about the plant-enviromment. Yet, @ and h are required in computing the
exact G. Section V presents and evaluates a procedure for choosing an
inexact subgoal when the known values of @ and h are in error. It is
stressed here that the learning system uses the subgoal in Equation (18),
but does not use the a.né.ly'bical expression for the control law in Equa-
tion (19) which minimizes it. The system learns the control law using only
the subgoal and past experience to reinforce current decisions.

A constant G matrix is desirable because of the method for storing
past experience. Otherwise, an additional state, time, must be included in
the partition formin, control situations. It so happens that a constant
G forms the exact subgoal if N—- o or if Q is properly time variable.
Though the latter is not too likely or meaningf\l, the infinite time prob-
lem is an often cited case. Even a knowledge of the form of the exact sub-
goal is of some value. It is especially useful to know that the subgoal is
a time-variable quadratic of the states for finite N. Then, any arbitrarily
chosen constant G is sub-optimal. except when N - ». In the solution, P(n)
converges after relatively few iterations. So, even though P is unknown,
it is known to be nearly constant until the last few sampling periods.

And, it is reasonable to expect an inexact, constant G to yield near-opti-

mal performance.

V. USES OF APRIORI INFORMATION
In wany practical situa.tiohs, the designer has nominal values and ex-
pected ranges of the plant parameters at his dispcsal. His job is to make
the best use of this epriori information in his attempt to completely solve
the primary problem. The most important problem confronting the designer
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is still the choice of a subgoal. Section IV scived the protiem for one
class of systems, with the result depending*on exact inowledge cf @ am h.
In the following, a practical method of selecting a subgoal is suggested
and compared to other uses of the same apriori information. Then, two other
aspects of the design are considered: fixed grid extension ané controller
initialization.
¢ Choice of & Sub-Optimal Subgoal

Begin with the ideal case: no control constraints and no state space

partitions. Let the plant be represented by Equation (6) with actual para-

meters ¢ and h. The apriori information is contained in a model composed
of Equation (6) with givgn or guessed ncminal values’B and E. The suggest-
ed choice of a subgoal for the primary problem of minimizing the FI in
Equation (7) is ¥

$6(n) = x’(n41)Gx(n41) + au(n) (21)
where the constant G matrix is computed from Equations (1%) and (17) wi..
=0, h=1and N~ =. These equations become (22) and (25) in their
sceady state condition.

G=P+Q (22)
VS
e 2
X vl (23)
¥ =% + Bk, (24)
P=3'ch *a ke ‘ (25)

The fixed gain l_&, is the gain in the optimal contiol law for the model.
The learning system, directed by the sub-optimal subgoal in Equation (18),
learns 51‘ by making on-line trials and reinforcements. Assuming the
learning process converges, the completely learned gain is given by
h'Gg

E--Y&va (2
Neither ‘—‘-'L nor EF is optimal, except as a special case, but the learning
controller is preferable if the following inequality is satisfied.

PI(U*:EO) < PI(uL,go) < PI(uF,zo) : (27)
The control inputs uy and “F are given below for this ideal case.

u (n) = Kk x(n) (28)

up(n) = kzx(n) . (29)

Next, consider the primary problem posed by Equations (6) and (7) with
a bounded control inmput.
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[u(n)] < U, (30)
This leads to a computationally difficult two-point boundary value prob-
lem, which is not likely to have a unique solution. The complications are
due to the discrete-time formulation, and they are especially serious when
N - . But, knowing that the form of the optimal control law is a satura-
ting a.zx:pl:i.f‘:i.er22 , dependent on X, 2 procedure for choosing a subgoal can
be ‘suggested. Ignore the control bound and calculate G using ?, T and
infinite N, as above. The fixed gain, calculated at the same time, can be
used for comparison. Equations (31) and (32) are the resultant learned and
fixed control laws,respectively.

uL(n) = U, sat { kI’f;(n) ]

M

(31)

kix(n)
mF(n) = Uy sat T ; (32)

In general, both of these are sub-optimal. In fact, if @ = 'B and h = E,
then Equation (32) is the Letov solution.?3 It , too, is sub-optimal except
for those initial states for which the trajectories enter (or originate in)
the linear region and never leew.ve.2

An identical approach is suggested for choosing a subgoal when the
control input 13 qgantized as in Equation (8). Compute G (and Xk, for com-
parison) using @, h and infinite N, still ignoring the constraints. The
subgoal and its constant G matrix are given by Equation (21) and (25) for
the primary problem posed by Equations (6), (7) and (8). Solutions to the
primary and sub-problems are switching boundaries which separate the state
space into regions. In each of these regions, one control action u, is the
best. And, the switching bounda.ryl separating the region in which u¥ = u,
from the region in which u¥* = uj is the set of all states x for which u;
ard u. are equally good. Equivalently, it is the locus of points x yield-
ing constant u = % (ui-luj).

As ¥~ » in Equations (14) and (18), the gain k in Equation (15) be-
cores =cnstant at the optimal value for the infinite time problem with
unconstrained control. The optimal switching boundaries for the primary
problem with constraints are conjectured to be the hyperplanes in
Equation (33).

k'x =% (ui’i'uj) (33)
Only the boundaries between adjacent values of u are required. With no
loss oI generality, order the elements in the set so that ug and u,,, are

adjacent numerically as weil as in posiiion in U. Then, Equation (34)
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gi;res the (K-1) switching boundaries.

1 2

B S0 3, ) ~ dom deeliad (3%)

The learned and fixed switching boundaries are the following hyperplanes.
al
. =R== = -

x = Z(ui-miﬂ) =N erete yE=l (35)
at .

Ex = 5wy ) =LK (36)

Heré, as before, k;, and k; are given by Equations (26) and (23). Equation
(35) is the optimal solution to the sub-problem of controlling Equation (6)
with actions from U to minimize Equation (21).

Reference 20" contains numerous comparisons between the learned and
fixed controllers using the equations presented above. The next section
contains simulation results to compare them.

Before proceeding to the similation however, two other uses of apriori
inforration are considered.

Extension of the Fixed Grid

A fixed grid covers a ‘subset of the state space, as discussed in

Section ITT. The states encountered during system operation \ull either
(1) exactly coincide with, (ii) be contained in, or (iii) contain the sub-
set. Presumably, (i) is the design objective, avoiding either the uneco-
nomical use of memory locations accompanying (ii) or the degraded perfor-
mance of (iii). Of the latter two, (iii) is preferred, provided a means of
mapping outside states into boundary sets (i.e., for extending the grid),
is available. It should cause little degradation in performance. Several
schemes can perform this extension. The simplest method to implement is to
extend the grid lines outward from the boundary parallel to the coordinate
axes, as shown in Figure 3 for a second order system.

The method proposed here uses the apriori information to calculate
K'F and G. This vector 1_%, predicts the positions and slopes of the switch-
ing boundaries and can be utilized to extend the boundary sets. Figure 3
also shows this form of extension in two dimensional space. The slope of
the predicted switching boundaries (loci of constant u = }_Q;é) used in this
case is -2. Results of simulation studies are reported in Section VI for
a large number of plants and wide variations of assumed knowledge confirm-
ing that this form of extension yields superior performance.

An extension in two dimensions can be prograrmed by examining the
geometry of Figure 3. Systems of third and higher order are more diffi-
cult and the classification time for higher dimensional space using an
extended fixed grid could become greater than for the variable grid it
replaced. However, it is unlikely that it would be necessary to grid a
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very high dimensional state space even for high order systems. One reason
is that only the measurable states or outputs wculd be gridded. Besides,
the majority of the operation time is with x inside the grid.

The two learning systems used in the experiments in Section VI differ
only in their method of extending the state spa.ce'grid.

LERN: Extends parallel to the axes

o LARN: Extends parallel to the predicted switching boundaries
Initialization of the Controller )
The controller was defined in Appendix A in Equations (A1) and (A11).

Of the variables involved, pij‘(o) and Ei:; (0) must be initialized. With no
knowledge of the plant, the controller is initialized by setting all
Pi,j(o) = 1/K, ;i.j(o) = Cij(o) = 0, and requiring that each action be chosen
deterministically in each SJ. (as it is encountered). No reinforcement can
take place in the j-th colum of P(n) until the state has been set K times,
slowing down the learning process.
Assuming that some knowledge of the plant is available,this technique
is no longer necessary. Then, the following procedure is suggested:
23 5 B, ':};_, Q to compute G, the subgoal to be used henceforth.
2. Use @, E and a representative x5 = x(0) for each S, and compute
diJ.(O) for each u;. This initializes the estimators Eij(o) =
di,j (0) and setting Ci.(O( = 1 initializes the counters, off-line.

w
.

Initialize pij(O) based on Eij (0), i =1,...,K for each SJ’ using
the knowledge that if some u, is the best in Sj, then Ui and
u, , are the next best. y

4. Make control decisions as in Equation (A3) and reinforce based

upon evaluations with the subgcal using G.

The typical x(0) used in Step 2 was the center of SJ., Ji= Lyeeeyle  Using
this as the initial condition, each control action in turn was used to
corpute x(1) and then di,j(o) by Equation (AS).

Three methods for initializing pij(o) for Step 3 are compared here.

a. Set equally likely, making no use of apriori information.

pij(O) =2 By = LRt e JR=CAG T 37)
o. Set proportional to the estimates, the method used in Reference T

for all time, but here only for initializing. Since -1 s“éij(o)

< + 1, translate it to the unit interval and set the probabilities

as follows,
81 tofs & oy« o) wa g
i 2 ij 4
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ai.(o)
P50 =% all 1,3 (39)

E 3,3(0)
2=1
c. Set to fall off from the most likely in a linear fashion.
Find M,, the index of the maximm d; J(c) as indicated in Equa-
E tion (All) for each j. The equations below cause probabilities
adjacent to the largest to be (K-1)/K times as large, etc.

Pat L+ 2K (%0)
M.3(0) = =
J &€ - kK 2KM +2M, - 28
i ) b J
(x-M.+1)
Pl ]
30— lgie N,
P..(0) = 5 (41)
i (k+M,+i)
By 3(0) - +
J Mycigk
-

For the conditions in .Sectionl VI, Figure 4 depicts these three techni-
cues for the 96-th control situation of those experiments for Plant 1,
Model 1, Condition 1, with xl(o) = x2(0) =27.5, G = 37.8078151,
Gyp = Gy = 2.2047662, Gy, = 1.292.:261&, @ = 1 and the control sets U given
in Equation (45). For this case M96 = 1, and as can be observed, there is
little difference in- the latter two methods. The linear reinforcement
technique was used in the simvlations reported in Section VI, but method b
could have been used with little difference. The main improvement comes in
setting them so that the controller may begin to make probabilistic deci-
sions and be reinforced immediately, rather than bhaving a period of deter-
ministic decisions in order to initialize the controller on-line.

VI. EXPERIMENTAL RESULTS
Purposes of the Experiments

The basic learning control system has been presented with a forrmula-
tion of the subgoal problem, and some conclusive results for several spe="
cial cases. The suggested method for selecting a subgoal is a heuristic
extension from the ideal case, and uses a model of apriori information to
make thne selection. Twc other aspects of the design were given special
considerations above. The motivation for seeking answers about the grid
and initialization was supplied-automatically when the first simulaticn
comparison o subgoals was begun.zo The most drastic need was to cut
down the computer time. The switching from hyperspheres to a fixed grid

reduced approximately twenty minute programs on I3M TO94 to about one




mimuite.

The purposes of the experiments reported below are to evaluate the
proposals in Section V on & full scale simulation, accounting for quanti-
zation effects. Learning time was of incidental importance, which is the
reason the algorithm from [1] was left unmodified. The primary purpose is
to establish that in many cases the subgoal chosen as suggested yields
better performance than other controllers designed with the same,apriori
information.

Description of the Experiments

A plant is controlled by several methods in each eicperiment , differing
in their use of the model of apriori information, and data is presented to

compare them. -
A1l plants and models are described by the differential equation

o] 1 [o]
x + u x(0) = X _ (42)

I
n

0 -a
with parameter values given in Table 1, including emact and poor informa-
tion. The primary goel is to control the plant subjecf to control con-
straints, given only the model parameters, so as to minimize the PI of
Equation (7) with @ = 1. Though the sampling period, which is also the
control interval, is T seconds, the performance index evaluates response
over T = NT seconds. Results are presented for two conditions:

50 20 0 .
Condition 1: x, = , T=0.25 sec. N=15, Q= (¥3)

(o} Q1T S

Lo 10710
Condition 2: x = 5y T=0.15 sece. N =25, Q= (u)

o] 0 10

Control input u is assumed to be bounded by -20 < u < 20, and this inter-
val is quantized into K even levels. Two sets of allowable control actions

were used. : ‘
K=5: u(i) € U = {-20, -10, 0, 10, 20} (45)
K=9: u(i) e U= (-20, -15, -10, -5, 0, 5, 10, 15, 20} (46)
Equations (22) and (25) and the model dzta were used to corpute G,

which is the method suggested, and which assumes T and N are infinite and

TABLE 1. PIANT AND PLANT PARAMETERS

MODEL NO. ) MODEL NO.
18 2 3 1 2 3 L 5 [ s 8 9

a | 1.0 0.0 -1.0 | +1.0 +0.5 +2.0 +1.0 +1.0 0.0 -1.0 +1.0 0.0
b | 25.0 25.0 25.0 | 25.0 25.0 25.0 12.5 50.0 25.0 25.0 25.0 12:5
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u unconstrained. The learning systems are directed by the subgoal of
Equation (21) with the computed G, and @ = 1. Several fixed controllers
using the EF in Equation (23) were used to control the plants. Table 2
lists the ~ontroller gains and switching boundary slopes just computed.
Using these k; values, the fo].':owing control laws were used with tbeir
respective plants: Fixed-Free (u unconstrained), Pixed-Bounded (using
the _same gain, apply a saturation as in the sub-optimal Letov solution),
and Fixed-Quantized (quantize ﬁsing the allowable control actions and the

same gain value). The fixed control law equations, are:

\&,F(n) = —k;é(n) (47)
(n) = 20 sat “ﬂ'(n) (48)
Upp\?/ = 20
3 + s
upg(@) =, tr A h oy ) g b TiM (49)

In the learning experiments, normal operating conditions were simu-
lated by choosing an X, with uniform distribution on the region bounded
by the fixed grid in Figure 3 (and outside a circle of radius 5), control-
ling the plant for N control intervals, é.nd reinforcing each control de-
cision as discussed above. Every sixth X, was chosen deterministically as
the test x for that condition [either Equation (43)or (44)], and PI values
were recorded for learning curves.

Program output, after 50 trials with the test x, forK=35 (75 for
K = 9), included a grid which showed the most likely uy for each SJ. and the
learned trajectory. This furnished data to compare the learned to the
theoretical switching boundaries, as well as the PI values. A measure of
the correctness of the learning is the Number of Incorrectly Learned Sets
(WI1S) given in Table 3. In order to compare LERN to LARN, only the 38
porder sets (j = 1,..., 20, 21, 40, L41,..., 180, 181, 200) were considered.
For the most part, LERN and IARN caused identical learning inside t}ie grid.
Performance index values are given in Tables 4 and 5 for all learning con-
figurations.

The two conditions in Equations (43) and (44) have identical T = 3.75
seconds. Different Q and X, were chosen so tbat the trajectory for Cond
tion 1 would spend less time outside the grid than that for Condition 2.
As would be expecied,in this case, LARN did not improve on LERN as much
for Condition 2 as for Condition 1. To illustrate, compare the ratio of
the NILS tctal from Table 3: 120/50 = 2.4 to 104/106 = 2.26 and 191/98 =
1.95 %o 205/108 = 1.90. Typical learning curves and system responses are
given in Appendix B.
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Discussion of the Results

The following observations are rade on the basis of the experizernt
results:
1. Increasing K yields better performance (See Tables 4 and 5) but
longer learning time.zo
2. Learred results compared with Fixed~Quantized (FQ) is fairer than
+ with Fixed-Bounded, assuming K can be increased:
a. Learned performance is always better than FQ wh:n the gain
differs; e.g., Plant 1, Models 4 and 5 and Piant 2 and 3,
Model 9.
b. General trends not apparent for a 74';; e.g., Plant 2, Models
6, 7 and 8.
3. LARN is better than LERN, with a greater difference in Condition
1 than in Condition 2, as shown in NILS totals of Table 3 and
as was predictable from the initial conditions (See Figures 5
and 6).
L., It is especially significant that even when the Model leads %o an
unstable fixed controller, the learned controller is stable,

e.g., Plant 1, Model 4, Condition 1.

VII. CONCLUSIONS AND FURTEER RESULTS

Jithin the scope of the experiments reported in this paper, it is
concluded that the learning systems directed by the subgoal compares well
with a fixed controller designed with the same apriori information. The
proposed method of grid extension along the predicted switching boundary
slopes yields better performance than a parallel extension. It is parti-
cularly significant that the learning controller leads to stable perfor-
rance even when tne apriori information yields an unstable fixed controller.
This means that though the learning system may not always excell, cases
might occur when using the fixed contrcller would be disastrous.

It is often said that learming control systems, such as the one pre-
sented in this paper are too commlex and that they are not realistic so-
lutions to practical control problems. There is no doubt that such objec-
tions are valid in some sense. But, it is a very narrow and confined sense.
The randon search is the central part of the controller and this method of
searching is time consuming. But, there is a trade-off between convergence
and efficiency. This method of c¢cntrol is proposed for those situations in
which the use of simpler methods is not possible because of lack of suffi-
cient information. And, above all, convergence is desired and required.

It behooves the designer to be on his toes to solve his problem with the

least complicated technioue which.assures acceptable performance.
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TABLE

2 CALCULATED GAINS AND SWITCHING BOUNDARY SLOPES

CONDITION 2

R CONDITION 1
@ -k, -k, -SLOPE -k, -k, ~SLOZE
1 0.5074222 | 0.1998071 | 2.5395600 | 0.2652512 | 0.2648241 | 1.0016130
2 0.4492075 | 0.2145366 | 2.0938500 | 0.2463311 | 0.2835234 | 0.8688212
3 10.3951808 | 0.2308742 | 1.7116720 | 0.2283038 | 0.3032204 | 0.7529304
MODEL
" xo.
1 0.5074222 | 0.1998071 | 2.5395600 | 0.2652512 | 0.2648241 | 1.0016130
2 0.4778033 *| 0.2069751 | 2.3085060 | 0.2556800 | 0.2740493 | 0.9329703
3 0.5696028 | 0.1866106 | 3.0523600 | 0.2850548 | 0.2471174 | 1.1535200
4 0.9582076 | 0.3835247 | 2.4984250 | 0.5198223 | 0.5189877 | 1.0016080
5 0.2578663 | 0.1010737 | 2.5512700 | 0.1333281 | 0.1331133 | 1.0001260
6 0.4492075 | 0.2145366 | 2.0938500 | 0.2463311 | 0.2835234 | 0.8688212
7 0.3951808 | 0.2308742 | 1.7116720 | 0.2283038 | 0.3032204 | 0.7529304
8 0.5074222 | 0.1998071 | 2.5395600 | 0.2652512 | 0.2648241 | 1.0016130
9 0.8490405 | 0.4145961 | 2.0478740 | 0.4828268 | 0.5571122 | 0.8666599

9T



TABLE 3 NUMBER OF INCORRECTLY LEARNED SETS ON THE GRID BOUNDARY

CONDITION 1

CONDITION 2

§§ K=5 K=9 K=5 K=9

A« Z | LARN LERN LARN LERN LARN LERN LARN LERN
L 4 5 1 8 1 3 4 11
1-2 2 5 2 7 1 5 1 13
1-3 1 5 6 10 2 5 8 12
-6 | 3 6 9 10 6 11 20 26
1-5 14 15 25 25 15 14 26 26
2-6 1 10 3 16 0 4 1 11
2-7 [} 7 13 4 6 7 13
2-8 3 8 5 13 2 10 6 i leea
2-9 7 11 9 18 6 10 13 19
3-6 2 12 8 15 2 6 4 16
3-7 0 9 4 19 0 9 3 15
3-8 3 13 10 16 2 7 4 13
39| .8 14 10 21 5 14 1 23
TOTAL| 50 120 98 191 46 104 108 205

Lc
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4 PERFORMANCE INDICES FOR CONDITION 1

=1 KeS5 K=9

235 FIXED- FIXZD- FIXED- FIXED-

=2 FREE BOUNDED | QUANTIZED LAY LEN QUANTIZED e A Ly
1-1 | 4.4519747 | 4.6760632 | 6.1106370 | 6.2207673 | 6.2207673 | 4.9921990 | 4.992:990 | 4.9921990
1-2 | 4.5013914 | 4.7090902 | 5.9691791 | 6.3540898 | 6.2207673 | 4.9846682 | 5.0892173 | 6.5601948
1-3 | 4.6531649 | 4.8070325 | 6.0103131 | 6.2207673 | 6.2207673 | 5.1608747 | 5.2126928 | 6.5601948
1-4 | 715079.33 | 9.1708926 | 10.557323 | 6.2207673 | 6.2207673 | 9.4454831 | 4.992200C | 5.2867373
1-5 | 5.8844292 | 5.8844292 | 9.5654211 | 6.2207673 | 7.0400880 | 6.1290573 | 5.2126928 | 5.8160306
2-6 | 4.5517828°| 4.6117812 | 4.8695703 | 4.8695703 | 4.8695703 | 4.8695703 | 4.8695703 | 5.9426855
2-7 | 4.8004273 | 4.8004273 | 5.5931641 | 4.8695703 | 8.9823047 | 4.9600195 | 4.9600195 | 4.8695703
2-8 | 4.8132765 | 4.7864689 | 4.8695703 | 4.8695703 | 8.6693359 | 5.2368848 | 5.2368848 | 5.9426855
2-9 | 65334764. | 10.435745 | 11.873711 | 5.5931641 | 4.8695703 | 10.441006 | 4.8695703 | 6.5863476
3-6 | 5.0070006 | 4.9064164 | 6.1079473 | 5.9524361 | 10.689633 | 5.3276671 | 5.0186118 | 6.5163609
3-7 | 4.6600914 | 4.6600914 | 5.9524361 | 5.9524361 | 10.689633 | 5.0186118 | 5.0186118 | 7.6088591
3-8 | 6.1920680 | 5.7112098 | 7.6081326 | 7.6081326 | 10.104486 | 6.7481958 | 6.5163609 | 14.747823
3-9 |281998760. | 8.8255262 | 11.370411 | 5.9524361 | 10.689633 | 9.4246295 | 5.3339149 | 7.6088591

(Multiply all values by 10*)

8T



TABLE 5 PERFORMANCE INDICES FOR CONDITION 2

; j K=5 K=9
HEEEE A AR
1-1 10.652208 10.652208 10.739136 10.739136 10.739136 10.739136 10.739136 | 10.739136
1-2 10.676504 10.676504 10.739136 10.739136 10.739136 10.739136 10.739136 10.739136
1-3 10.771583 10.771583 10.739136 10.739136 10.739136 10.739136 10.739136 10.739136 °
1-4 | 23.849813 | 21.863010 | 46.638666 | 10.739136 | 10.739136 | 46.638666 | 10.739136 | 10.739136
1-5 | 11.177938 11.177938 10.739136 10.739136 10.739136 11.177420 11.177420 10.739136
2-6 | 10f671340 I 10. 671340 15.540703 13.736972 15.540703 11.705210 11.387266 11.387266
2-7 10.791525 10.791525 15.789219 13.736972 15.540703 | 11.983990 11.387266 11.387266
2-8 | 10.810313 | 10.810313 | 13.551739 | 15.540703 | 15.540703 | 11.452744 | 11.452744 | 11.452744
2-9 796.98002 45.247660 40.227500 | 13.736972 15.560’03 44,664253 11.387266 ‘11.387266
3-6 10.854839 10.854839 16.353739 18.062188 18.062188 172.138742 12.097313 | 12.097313
3-7 10.692168 10.692168 16.353739 18.062188 | 18.062188 11.746322 12.097313 12.097313
3-8 11.343090 11.343090 17.684409 18.062188 18.062188 | 12.098742 11.660995 11.660995
3-9 928.98095 40.368934 41.693656 18.062188 18.062188 38.064325 12.097313 12.097313

(Multiply ali velues by 10%)

6T
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Appendix A

A finite, stochastic automaton is used as the controller to make con=-
trol decisions among K admissible actions for each of L control situations.
Let S 3 denote the j-th control situation. Consider that the outputs and
the internal states of thj.s automaton are identical, and the automaton is
characterized by the stochastic matrix P(n) = ”Pi P (n)!l!, where

- Fj j(n) = the probability that u(n) = uy
is the optimal decision for

x(n) € SJ. at time n< (a1)
and

Epij(n) » WO - W ak, Bxir o, (a2)

i=1

Unlike many proposed automata model [10], this corresponds to a state
probability matrix, not a state transition matrix. The elements are rein-
forced during learning as directed by the learning algorithm.

Each of the L columns represents an independent learning experiment.
Classifying x(n) into S 5 determines which experiment is being performed.
Generate R from a uniform distribution on the unit interval, and the con-

trol decision is: Chooseu(n) = uy for an i satisfying

i-1 18
) Py gRg ) P(n) (a3)
r=1 r=1

Learning occurs as a result of a succession of reinforcements, and is
evident in P(n) when one probability in each column tends toward one, the
others toward zero. Only one of the L experiments is in cperation at a
given time, the one determined by the present state. Using a subgoal, the
present state is the initial condition for the optimization. If the grid
is sufficiently fine to assure that any state will move between sets for a
any allowed control action, then, it is reasonable to assume that the
occurrence of any state in a given set is equally likely. Therefore, suc-
cessive trials differ because of th'e random variable X The assumption
is not strictly valid with a coarse grid unless measurement noise or
environmental factors are present.

In order to define the reinforcement learning algroithm, let the

subgoal be
SG(n) = x’ (n#1)Gx(n#1) +au® (o)t (ak)

TIt satisfies the subgoal conditions (i) and (ii) in Section IV provided

G is chosen appropriately.
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At time nT, the state z(n) is sampled and classified in SJ. A controli de-
cision is made that u(n) = up based on thé current probabilities in the
J-th column of P(n) in Equation (Al). The subgoal in Equation (A3) evalu-
ates this decision one control interval later, comparing it to the past
history of choices in this control situation, and rates it as being better
(or worse) than other choices. Then the probability of making this choice
thesnext time this control situation is encountered is positively (or
negatively) reinforced.

The algorithm here is an exact duplication of Reference 1 . It is
briefly presented here for a description of the reported experiments.
To compare to the past history, the subgoal is normalized and the mini-~

mization is converted to an equivalent maxdimization by introducing

x’ (n)Gx(n) - SG(n)

A

dIJ(n) = Max(x’ (n)Gx(n), x' (n+1)Gx(n#1)] + au?na.x (a5)
The instantaneous evaluations dij (n) are used to form estimates Eij (n)
of the value of each decision, averaging over x € Sj.

e a = +
gty - BT D Ty (16)
: IJ
dij(n) = dij(n-l) all other i,J (A7)

CU(n) is the number of timesthas been chosen in §; and is increased
each time.t The linear reinforcement is performed only on the J-th column,
as follows:

Pi(n#1) =g, Py (n) + (-8,) 1, (u;58) (a8)
where

1 for i =M (positive reinforcement)
Ap(u;s85) = (49)
0 for M ;@ i=1eee,K (negative reinforcement)

The learning parameter
8, = 1.0 - 0.5 [§,:(n) - dp-(n) (a10)

depends on

Gyy(m) = maxd 5 n) : (an1)

T1n the systems similated CIJ(n) is increased up to a maximum of 9. After
this, the estimates are weighted averages, emphasizing the latest 9
trials. :
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d ) = m'éw(n) (a12)
the largest and next largest, or equivalently, the best and next best
choices in SJ.- This provides reinforcement which is dependent upon the
relative superiority of one action, 0 < en < 1. Section V describes how

to initialize the estimators and counters in the controller.
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Ob OAHOW KIACCE AZANTUBHLYX (CAiOOBYYJANL/XCH) CICT.wh

JOoEnaz #a 4-u BCECOW3HOM COBEHEHMM MO &BTOMATHUECI Jiy
yADEBIer 1w

B.A.Axy6oBuy

D COOTBETCTBUM C HPHURATON TEpidHONUDAER OJA€H 1185:BATD aizil—
TUBHOL CHCTEMy, 3aKOH (QYHKIMOHUDPOBAHMA KOTODPOW MEHAeTCA B 3abU-—
CHMOCTHM OT MPMOODPETAEMOTO OHHT%; CucreMe cooOwaeTCAd B KAKOU-TAGO
Bume MHYopManus o "HeymaudocTu" ' 'ymauHoCcTU" ee MOBEXEHUR MO OT-
HOWEHU K HEKOTOPOMy 1IeNeBOMy yClOBMW. CyuweCcTBEHHO MDU 3TOM,YTO
onpeneneHHNe XapaKTEePUCTUKU CPEIH M CUCTEMH, 3 TaKke, BO3MOXZHO,
HEKOTODHE MapaMeTpH L eneBOr0 YCHOBUA HEMU3BECTHH KOHCTDYKTODY, -
OHUM MOTYT OHTH NOHMU M3 HEKOTOPOrO Kiracca JV1 .AnanTuBHag cuc-
reMa (AC) HasWBaeTCA pasyMHoOli B Kaacce JV[ , €CIu Ana nwdoro ue-
J€BOTO yCNOBMA ¥ NIOOHX XAPAKTEPUCTUK 3TOrO KJIAacCa HACTYMaeT MO-
MEHT, [OCJE KOTODOr'O 1eNeBOE YCIOBUE HAYMHAET BCErZa BHMONHATHCH.
B nmoznazge npuBOZMTCA TOYHAA, (HOPMAIU30BAHHAA MOCTAHOBKA MpOCTEli-
Iero BapuaHTa 3anZayu MOCTPOEHUA MO 3aXAHHOKY KIACCY [VL CUCTEMH,
Da3yMHO{ B 3TOM KIacCe, a TaKKe MpU pALe MPEANONOZEHMIi- pemeHue
3T0L TOYHO MOCTABIEHHO# 3anmauu., Pe3ynbraTh MANNCTPUPYHTCA MaTe-
MaTUYECKM CTUNA30BAHHHNMU MPUMEDAMU MPOCTEHIUX CUCTEM, ' pasyMHuX"
B yKa3aHHOM, BECHMa YCIOBHOM CMHCIE.

Apyrue MeTOAH MOCTPOEHMA ALaMTABENX CACYEM, CBA3AHHHWE, B OCHOL-
HOM, C MCIOJ/H30BAHMEN MHTEMATUYECKOTO ANMANETAa CTUXACTUYECKOMN
aMiipOKcuMaL M, MOpesioxeHy H.3.LHTKUHEM [1] .5 paoorTe [{] nse-
ETCA YaKse OCWMpPHAA NUTepaTypa MO TEODUX aZaAMTMBHHX CUCTEM.

1°.ToyHas MOCTAHOBEKA 3BI2YU. bynem CY4TaTh, YTO BpEMsA t

MpUHAMaET 3HaAUYEHId 't = O) i, 2 g .BENUUMHE XNeHsaouuecs

(BooOme roBops) BO BpeMeH: UyNeu HA3JBATH MEPEMEHHHMU, @ BENMUULHH,



36

3HAYEHUA KOTODHX GUKCMDOBAHN INA ZAHHOL CUCTEMH (U,ClEZOEarelsb-
HO, HE MEHAKNTCA BO BpPEMEHM); mapaMerpamu.Cpenu napauerpoB SHAs—
1uM TaK HA3uBAaeMHE BApbUpYyEMHe MapaMerph $ s KOTOpDHE ¥OTyT
IDUHMMATE JHONE 3HAYEHU U3 HEKOTODOTO 3a43aHHOTFO MHOXECTEHA M
flpu arou ;’ //sd// -MHOT'O¥ eDHH BeKTOp.(BHZIGHBHL‘K
3TUX Mapauerpos HUEET CIenyouuy CMHCIH.5aubilDYEMuMUM HA3HBAWTCA
Te MapaMeTpH, KOTODHE MOL'yT MEHATBCA OT 3KCMNEpUMEHTa K 3KCMepu-
MEHTYy, ¥ 3HaY°ure KOTODHX 3apaHee KOHCTPYKTODPY HeuU3BeCcTHO.Knacc
M moaToMy OyzeT onpenensaTh Kaacc 3azay, "pewmaeMwx" azanTuB-
HOM CMCTEMO}i).3a7aHHOE MHOEECTBO HEKOTODHX 37E€MEHTOB z oyznewm
0{03Hayarh yepes {2; .3iHayenue nepeMeliHoil Z B MOMEHT f

OyzneuM 0003HAYATH Z .Byneu cuiTaTh 3amadibMU MHOXECTBA

{x} {A; {6; {u} n noznexaumuM OlMpenciedHun (B COOTBETCTBUL

G yClOBUAMM, CQOPUYNMPOBAHHHMM HUXE) MHOXECTBO {T‘( ,ane-
MEHTH KOTODHWX HA3WBATCA Tak: oL -BHEWHUE KOODPZUHATH AC,

P e e e
b -cperna, 6 -cetcopy, U ~-ynpaBsueue, E -TAKTUKE.,
flycTs 3an2Ha (QYHKUMA ﬁ{x /5 g) co 3HayeHueM O-

uny I, Ha3WBaeuMasg CUrHAZOM BKNpUEHUs LeNeBOT0 yCHOBUA, a TaKKe
ReleCTBEHHAA QYHKIUA F/&'é g) ueneBuu ycnoBued (LIY) Oyzeu

Ha3WBATH yCNOBUB: C""ﬂ{- /lf-t,ét,s) ={ roF/a'HI‘ ¢4J,§°)70
«{ Byzmeu rosopurs, uro Ly BHIONHEHO B MOMEHT
t+{ ., ecuu Mdoﬂé=£ MF/%,,I,J_!,_{,?))O/
1160 /llfzo . (Ormernmy, dTO /Ué =0 ~ o3Hayaer, 1o

CymecTBY, YTO LeleBOe yClOBde HE MOCTAENEHO).liereBoe ycloBie

yKa3aHioro TMMa GyZeu HA3WBaTh ONHOWATOBHM.OnHowarosoe LJ,0yny-—
e ———

Yy MOCTABIEHO B MOMEHT f ,LONiHO ONTH BHIMOJNHEHO B ClleRyiolui

MOMEHT f“_{ .0THOCKUTEABHO MHOTIOHATOBHX I E1EBHX YyC/iOBUkL CH.HiHES

paszeln 6°.

SyneM CU#TATh 3ALAHHMNMU: CEHCODHOE ypamewe%%
M
ét = G'(xh S+, g) #)



37

(onpenengpilee TO, 4TC "BuauT" AC), MCTORHOE yDABAEHKE

%= X%, 4, §) (2)

(onpenensnmee ABMieHue AC), a Takke ypaBHEHUE U3MEHEHUS CPenH

"Sé-ﬁ{:;f[z ,44/§)' : (3)

MoanexyT onpezeneHEw cleAyomue "ypaBHeHus uosra" AC:

= 1B G h o T (4)
Turt= T(6;,6044.%) . ' (5)
[lpu 3azaHHNX Q",,/ ‘8"/ c-ro 1 ypaBuenua (I)-(5) nosBonsnt

IOCNe0BaTe 1FHO HAJTU 3HAUEHUA BCEX YKA3AHHNX MEPEMEHHNX BO BCE
XOLEHTH Bpeueﬂﬁ.npn 3TOM /A Kaxzoro Z‘r_/,.? Ly Oyzer
BYONHEHO MaM HeT. [lomuepKHeM, UTO MpaBWe 4acTH ypaBHeHu# (I)-(3)
(3 ornuuue oT ypaBHeHu# (4),(5)) 3aBUcAT, BOOOME rOBOPA, OT BapLi-
OyeMHX MapaMerpoB.l3MeHeHHe BapHUPYEMHX MapaMerpoB $€M
c3HAYaeT U3UEHEHME 3a7auM MO BHMOMHEHMD LENeBOTO yCIOBMA MM
A3MeHeHUe YCNOBUHt, MPU KOTODHX pemaeTc QUKCUPOBAHHAA aanaqa.,(lﬁa-
ueneHB@ MOTODHOrO M CEHCOPHHX ypaBHEeHMiI O3HAYAET W3MEHEHHE B MpO-
1ecce 3cHayaTauuu xapakrTepucTux AC, usameHeHue QyHKL M /5//U,F

-
4MEeT MeCTO MpM M3MeHEeHUM 3azay, pemaeumnx AC).HavanbHne 3HAYEHUA
30/40, go MOT'yT TaKke 33BUCETH OT BAapHUPYEMHX MapauMeTpoB.

ECNM OmpefeneHo BCe yxaaa'ﬂaoe BHIE, PO OyZeM roBOpuTh, 4yro AC

3anaHa.AC HaswWBaeTCA pay3MHO}# B KiaacCe 3azay M s ECIU ZNfA Jio-
e et i ——

SHX 3HAUEHM!l BADBMDYEMHNX MApaMeTpoB sé M RajizeTcs wouent 2,
N———— e P e T S
raxoii, Wro 11A BCEX £ > £y OyZer BHIONHEHO 1[6NEeBOE
yCIOBie M"Céz@n,l,{ IpK ‘f),z‘o x),
T N

llocne Bcex 3Tux GQOPMANBHNX OMpeZeNeHUit UOXHO TOYHO MOCTABUTH
3a7ayy O MoCTpoeHuu "pasyuHoit”" (B ZOCTATOYHO YCAOBHOM M OUpaHU-

x)IuedoBaHue Z'é.f &/u/f npu t >/Z‘o MOXET OHTH OTGPOWLEHO
0o, OZHAKO, MO pAAYy COOGpaXeHMUli OUEHB YZOOHO, M,KDOME TOTO,

OHO aBTOMATHYECKU BHMONHAETCA ANA MNONYYEHHOI'O DEHMEeHHUA.
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YEeHHOM CMHCIE) CHUCTEMH.ITa 3azaya COCTOAT B MocrpoeHuu (Mo 3a-

" JaHHOMY Knaccy M M 3aTaHHHM @ymcuuﬂu U /‘ 6]( ,S' )ypaB-
Aesul mMosra (4),(5), Takux, 4ToOH AC cmana pasyMHOL CHUCTeMOlt B
knacce 3anay /A (pasyuso# B ykasaHHOM BHmE CMHCIE).

29, 0cH0BHHE MPEZMONOXEHAS U OCHOBHOH peaynsrar. byzem 0603-

HayaTh 4Yepes ,Pn 3BKJUZOBO MPOCTPAHCTBO pasuepRocTH /2 .llpea-
MONOEUM, YTO @; -3auxﬂyroe OrpaHuYeHHOe MHOZECTBO HEKOTO-
poro Qh) § //6;4 /’ §=1 .ByieM cuurars BHMONHEHHHMHE CIEAYi-
WMe YETHDPE yCIOBUA: '

(I)MoxHO BBeCTM HOBHE yMpaBleHUA 7 ,rz-— {V} -OT'paH44YeHHO
MHOXECTBO HEKOTOPOTO Pq ) V= // /d { »TaK, urO ZI:Z//V)
OZHO3HAYHHE PYHKUUM U4 Tak, yro LY B MOMEHT f'/f 3aBEA0MO

BHIIOLHEHO, €CHIU BHMOJIHEHH ﬁr HepaBeHCTB

G )-$E1<E;, 44K e

rie 8 ~MapaMeTpH, C?_{, ek -IUHEHHO HEe3aBUCUMHE U3IBECTHHE
d = Al

Bexropu A "f’ (’/‘zhsz“t"‘zu, g) HEKO

TOpHE QYHA UM yKABAHHHX ﬂGI‘yHeHTOB.

(1).CymecTByer QyHKuuUg = V /6 é’) HasWBaeMaf

AZleaN bHEM anaBneﬂueu, raxaﬂ, 4TO AAR MOOHX xéI/Jé u ?EM
npu Vt [6, g) BHMONHEHO (H) C 3aMeHOoit

8} HAa KAX4e-Nuso £*< 8 . [lpu arou B (I)6 %*1' ivd

OMnpeJennrTCH cornacao PCTECTBGHHOM elnoykKe COOTHONBHKH

7012, A, 8) U=Ule), Ty oy =X (2,14, 8) 8100 Sl 51, 8)

(il){axosy O €M JuiM yopasieddd | auaqeua Ef’t' MOEET ObTh

BHpa®eHO yeDes Vt"ﬁ.élo_t*i ,T. € ‘ft (‘Q@.ﬁlu)

e ~HEKOTODHE (Y HKLUM.
(I¥). /-I:H BCEX géM 0€ {5; CyHecTBynT 'EV/,s- u
|V (6‘€)/Zeom Ve 8| < TN

Jlioacuin arir : 'IDGZ{'[OJIOE.GH ug.JcnoBue (I) oaﬂaqaer, YTO, BO-MEOBHX,
LY rpebvyer, uroCy '"4TO-TO OT YEro—-TO OTAAYANOCH ZOCTATOHHO Mano",
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K,BO-BTOPHX, YTYOOH 3TO "4TO-TO" JNMHE[iHO 3ABMCENO OT HOBHX ynpaE-—
neuuit. YcnoBwe (1), rpy6o roBops, DPAaBHOCWIBHO MPUHLUMMUATBHOM
BO3MOXHOCYTM peuleRus 3aZaud. (HemocpezcTBeg¥0 BOCMONH30BATHCA
yupaBaeHUed Vé:vn(_ﬁ't,E) , DasyMeercda, HEBO3MOXEHO,
TaK EAK HeM3BECTHN INAUEWM7 BapBUDYEMNX MApiMETDOB 3? ).Ye-
noBue (H) TpeGyer, UTBOH OUMOKA B UOMEHT t uoraa OHTH M3Mepe-
Ha MO ZAHHHM B MOMEHTH f R f-}_{ .Jcnosue (I¥) mpek-
TUYECKR HE OTPaHMUYHTENbHO.

Teopeua I. [Ipu Bunonwesud ycnosuii (I)-(I¥) MOTy® GHTH MOC—

TDOE HH eHMg HO3TE uTOGH [OAYYEHHAR BJANTHBHAS CHCTE—
ua craja pasyummo# B knacce sazay M

Jloka3aTeabCTBO 3TON TEOPEMH KOHCTDPYKTWUBHO: [PM ZOKA3aTENLCTRE

1J01y9aerTca Mpomexypa COCTaBIEKMA ypaBHEWMi uUO3ra azamTUBHOM CHUC—
TeuH, Da3yMHOf B Kiacce ’V' .

B MpUBOZMMHX HMEE ZABYX MDPOCTHX, HO TUMHYKHX MDPKMEpax azalTHE-
HHX CKCTeM ONMymeHH (4TOOH HE 3ArpOMOXZATH U3NOREHUE) BTODOCTE-
MeHHHe zerand.MoXHO MOKa3aTh, YTO ZANA 3TUX MPUMEPOB, BHMONHEHH
ycnoBus (I)-(IY¥).loarouy, cormackio Teopeue I, MOryT OHTH MOCTPO-—
€HH ypaBHEHUSA uoar;":ucreu, TaK, YTOOH 3TH CHCTEMH CTalXM DalyMHH-—
MU B'yxasaauux HUXe Kraccax 3azad,J D2BHEEME X03Ta ITUX CKCTEM
00CTDPOEIH; OHM HE Nyds0IRTCA 3XECH Tuil KaAK, BO-ligybdi, Ziid
3TOrO TEEGOBANOCH OH 3HAUXTENBHO ULNEE AETANHHOE OMACAHHME ITUX
Mpu:£epoB, M TAK KaK, BO—BTODHX,yDABHEHMT WO3rA 3TUX CKCTEM HLEOT
ZOCTATOYHO T'DOMO3IKME BifZ.

30, AzanrusHas cucrena "Kysaeuur" (H). EICuHMUM KOODA.IHATEHM
{ SBIADTCH a'-//Z / , THe 2  —XOUNTEKCHOE YHCIO

(/3144) (olpenenfAnNee AEXAPTOZH KOOPAHHATH _{)‘a "kypcoro#" yrorx ‘f’ -

("suehqnmuiacﬂ B npepenax O £ (/<9f- ) ompenenser op¥eE-
Tanup K, Cpeza A OTOhﬂeC'BnHETCF C KOM[Zerc:uME uzenoM, § (koopzi-
ESTH 1enu), //5/.\ .ducno 15 -Bapbifpy eMHil mapauerp.
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Cucreuoit xoopnuaaTiOyz{eu d@3:BATH CUCTEMY C LEHTPOL B TOUYKE
Z » MOBEPHyTYI HA yrol V" ‘IiBH_ZIHT OpP#EHTUD B HAUaJIE HEMoA-—
BUAHOY CUCTEMH KOOp_ZlMHaT-H- uensb. Touaee, CeHcopaMi
6=I'¢,’%§mﬁﬂﬁmrc;q CiELylL4e BENHYMHH, CBA3AHHHE C KOOpZUHATA-
’u-u Lﬁn;izpneﬁmpa B CUCTEME KOODHMHAT KY3HCUMKA:
So=0(1214V)", Yoz ang2~ ¥, §=8(12-51+)", Y= ¥4 [5-2)- ¥.
3necs é")ﬂ,l’)o —MapaMeTpH.BEXEHUE KY3HEYUKA OCYy—
mecTBiAeTCA Tax. Kyaﬂeqnx [TOBOPaYuBaeTCA Ha Yyroja ft , 3aTex

TpHTaeT Ha pacCTOAHUE ¢£ .HOBTOHy ynpasleHUAMU ABIAANTCH

U=//f£/f¢// , 8 YDABHEHMA TBUAGHMA UMENT Bun_):ff ."g*ﬁ)

z;‘,#[:z;f*l , sT'Te Zf_,fl:zé*;é%p‘:{ﬁ*fé)l

8CNH TOABKO /théb .Ecnu /ztf/ >/l (4ro o3Hauasr,

YTO KYy3HEYUK "XOUeT BHMDHTHYTH U3 Kpyra /2/4[; ),T0

Zé*f onpezengerca 42 TCTOBUA "IpUNUMNAHUA" K CTeHKe /Z/-—-[J

#nu "orpaxenua" (MO HEKOTOPONMY 38KOHY) OT 3TOff CTeREM.CUrHAN

BKTOYEHUA U.y:/gf_ =1, ecam /Zt- Sé/>,_£ W My=0

ecau /?.é -—Aéj 45 .l cocToudT B TPEOOBAHUA MOJMATH LA B Cile-

Iyomuii MOMEHT, ECHNM OHA Lejfyac He MoifMaHa: ecnu/ﬁlé ='.l

7O /zt4£-5£*£/<£. (ducio & -napauerp, §<Z; ).Ta-

UM 00pas3ouM, (cyaﬁew;z(onmeﬂ npur'ﬂ:y;b B 6 —OKPECTHOCTH TO¥

TOYXK, PAE OKARETCA B CAEAYOMUI MOMEHT ue:‘x-s.llenb BYIUT ODUEHTUD

W Ky3Heuuxa, U ee MepeyemeHue 3aBUCAT OT TOrO, IAe OHA UX BUAHT.

Tpexnomoxiu, YTO 1EAE He o0pamaeT BHUMAHME HA ODPUEHTALNO KY3HEUU—

Ka: Aé*‘t: S{Abéé-zt,g) .3necs §€M - BaphU-

PyeMHil BEKTOPHHI MapaueTp,Ecau uend mojiMaHa B HEKOTOQHH MOMEHT
(/;’[_. :0) , TO B CHENyOWNUA MOMEHT B Kpyre /A/SA

MOSg371A€TCA KBA3UCAyYakEHNM O00Pa3oOM HOBAg Lelb C TEeM Re 3aKOHOM

Y HRL MO HHMPOBAHUA. TOCKONBKY 1E€Nb BAZUT NuLb OPDAEHTUD, a HE CBA3AH—

EYH C He# CUCTENYy KOODIUHAT, TO @yHKuMHS[A,M/,g)
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ZONXHA VZI,OBJIBTBOpHTB CIeLyoUeMy yCIOBUb:
S/e‘xé Q W,g) e‘xﬁg/AMg) , e X -np-
0oe BemecTBEHHOE YH#Cclo.Kpoue TOro, OyZeu CuATarTh, 4YTO (QYHKUUH

S’ U ee MPOU3BOZHHE noRﬁ S, yMJ,RZMy’”W OTr'PaHUYEHH
npu JA1<Ls , ESIW <AL PaBHOMEDHO MO tEM
[ipu 3TUX YCNOBUAX BHMONHEHH mpexmonoxedus (I)-(I¥) paaneﬁ 82
U, CIeKoBaTeNbHO, MOTYT OHTH MPCTPOEHH YDPABHEHUA MO3ra, TaK,yTol
cucweua_K_ cTana pasyMHO# B yKa3aHHOM Knacce 3azadv.

Pasyuuocrs 3TOf#f cUCTEMHN O3HAYAET, YTO AAA ANGOT'O PUKCUDOBAH-
HOrO THMa neix (T.e. AAA N0OOTO PUKCUDOBAHHOTO ?GM )Ky3HE-
YMK B MPOLECCE NPecnefoBaHus OXHOA LEeNM WIU,MOEET SHTH, HECKOIDb-
KX Leneit KaK OH BHACHAET ANA Ce0d BO3MOXHYD DEAKLUD Leau 3T0-
ro TUMA U C HEKOTOPOTO MOXEHTA HAYUHAET JOBHTH NNOYH Lelb 3TOrO
TUNA 3a OLUA TakT. Ecnd mocne 3TOro MOABAAETCA LENb APYroro
Tuna ( C HOBHM 33KOHOM QYyHKI{MOHMDOLAHUA,T.Es C NIOOHM ZADYTMM

geM ),ro, €CTECTBEHHO, KY3HEUMK CHAYala He CMOEEeT MOoiuaTh
HOBYD LleAb 3@ OZMH TaKT.OZHAKO, B MpOLECCE MpecleZoBaHUA LBEEI
3TOr0 THUMA OH "UBYUUT" MX pEaKIuw, HAUHET BEPHO MpEAyrazNBarTh
OPHXOK LEeNd X C HEKOTOPOTO MOMEHTA HAYHeT JOBUTH NHOYH LEenb BTO-
DOr0 TUMA 33 OZUH TAKT,

YKaszaH:0e Ccauz000yueHUe Ky3HeuuKa OyZeT MMETh MecTO ANfA ANOHX

Lenew Kuacca M

anrussEag cucreMa "raas-pyka", (TP) .BHEWAUMU KOODAMHATEMI
I‘P ABASETCA apa KOMMIEKCHNX YiCel ?, Z' »CBAA3BAHHHNX COOTHO-
segunn 2= 4 /2" | = =L’ , TZe Z>0/ L'>0  -sapru-
pyewse mapauerps.(Berron Z -"mreyo", BEKTOD {2- Z') -
"mpexnneuyse”, a2 TOUKA Z' "voaeu pyku™). Cpeua OTOXIECTBIAETCA
C 11ap0ji KOMMNEKCHHX UYicel ,5 /5” By //5 A /"‘

/A”/<Z Z’é\' .31€ecs é:; -1apauerp, é" -BaphUOYeuNil napa-

1o
vern, ucna A, A onpenensnT KOHuW oTnezKa "oOmexra'; KOTODHil



42

"Bugur" I'P .ilycrs"rnas" 4axoZUTCA B TOUKE 2 , (KOMMIEKCHOE
T
-/ ¢l W
qucno @& -napawerp).TP "Bugmur" rouxy £ ,A,5 .TouHee,

nyors cencopaux ssamntes O=NG Y &IV LW, rne
4‘:5\[/ZL01+1)J;'.%005/2L5)' é’:l V/;- ;’W{’onpeuenﬂmca
HATOTAYHEN 0ODA3ON M0 /S:,é” Rt ThiG 5)0, V>0 -
mapaMeTpH.llycTs _'"_, - 7:*0:1, 00pa3oBat Hi rmeq;u c (p;xcuponamzuu
HanpaBleHueM, Hampudep, f:M?Z U _‘_I_J -yron Mmexnmy

JPONONKEHUEM MAevya W npexnneuss.dBuxedue [P ocymecTBAAETCHA ycTa-
-—

HOBKOi 3aJaHHHX 3HAUYEHUD L/ M ‘P .Ciegosareisbdo, %W—
. =06'% 22l S0 oY) e
yapaBleHudd, a Na 5 L e e -4OTODHHE
]
ypaBaeHuA. CuTHAN BKIDYeHus LJ: _£=.f ,ecnn/zl—stllzk
u/gé'—-O p) ecnu /Zé'-x.’sé/<§ ny: ecnn/{{‘:;{

ro/ZJ*{-S’;/<E_, .Takuu o6pasou, ajanTuBHas cucrema [P AONKHA
CIEenUTH xoauouz'“pyxn" 3a TOYKOit ,5’ , (OpefyrannBas ee
MONOXeHUe B CAeLylmui uoueHT.Byzeu cuurars, urs Y6Bexr"
Af///sé', AZ// "BAZMT" NMDB KOHEU pyKU Z; sTe€ay 4TO
YDA3HEHUT HU3WEHEHUA CPEeJH WMeeT BUX ,Jé*.{:S[/S{,?;, ';‘),
1pHyeu cpyaxuuaSuueer apoussozuue o A Jé’, 7/n,3£1,..--, an Zt'
U BMECTO C 3TUMU MPOU3BOAHHMU OTDAHUYEHA DABHOMEDHO MO géM
KOTZa Aé/ /"t’l Zt MEeHANTCA B yxaaaﬂb-:ux BHUE
npenenax.lpu 3TUX YCNOBYAX BHMONHEHH MpeAmoNoOXsHus paszena 3°,
U, CNen0BATENbHO, MOTyT OHTH (TOCTDOEHH YDABHEHUS MO3ra Tak,4YTolH
cxcrexa [P, crazma pasyMHOil B Kaa:ice M

{ak ¥ BHwe, PA3YyUHOCTH 3T0H CHCTEMH 03HzYaeT, 4YTO IaAH AnOOro
DUKCAPOB2HHOTO 3aKOHA ZIBUEHUs 00BEKTa H3 Kiacca M
cucreua [P #alonnAasd 3a ABUMEHHMEM OGBEKTA u €0 DEaKLUAMU Ha
MpAONUXADMYNCE DYKYy HAUUHAET MPEAYraZHBaTh CIEAYOLEe MONOHEHUE
00BEKTa U HAYIHAET,KaK U TpeGyercdA, "nA0BATH" Toqxxj:T.e.yCTaﬂaB—
N4BaTh KOHEl pyKL!ZI'BEOHPGCTHOCTL TOJi TOYKM, B KGTOpyl MOMazer B
cnenyiomuk MOMEHT To;xailﬂpzq U3'UEHSHUM 32XOHA ABUREHUA 06BHEKTR

cucrema I'P wawuyaeT caMa "mepsyyusareCcA’, U N0CAE KOHEYHOTO MPO-

~—
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HEeEYTHA BDEMEHU O0YYEHUA CHOBA HBEYUHEET MPaBiUNEHO npeavrans-
BaTs» [eaxuun 00BEETA ¥ NOBUTHE TOUKY A’ .JD0 cauoolyuetue
MMEeT HecTOo INfA NnOHX 3aKOHOB IBYXEHUS O0DEKTa M3 Kiuacca ” .

50.8KCH8DMM8HTH Ha 2B, JoxasaTenbCTBO Teopemy I, Kax O=a0

OT¥eYeHO BHIIE, KOHCTDYKTUBHO: MPU BHIONHEHUM yclhoBuit (I)-(I¥)
yKa3yBaeTcAa MpoLelypa ypaBHEHMA u03ra.BuecTe 'c TeuM OCTaETCA
OTKDHTHM BOMPOC O ANUTENBHOCTU BPEMEHU OCyUeHUA ‘fo B obieM
Cnyyae BDAL MU HOTYT OHTH MONYyYEHH TOUYHNWE OLEHKM yucna fo »
Ecnu Ou 3Haqeﬂuﬂ‘fo OKa3alUuCh uYpe3BHYajiHO OONBMUMU B DEEAE-
HHY CIy4YadX, TO LEHHOCTH MOCTPOEHHWX YyDABHEHUI MO3ra Ouna OH
COMHUT=NBHOf,. N9 TOro, YTOOW ONPEZAENUTH 3HAYEHUE fo B peanb-
HHX Cny4yasX, 8 Takxe ZAA TOrO, YTOOW ONDEZeNuThH BIUSHUE DAZAUY~
HHX MapauerTpoB HA BpeMd OOyUeHUs OHJO MPOBENEHO MOZEeNlUPOBAHUE

Ha 3Bl azanTUBHHX cucTeM TUla "ry3Heuuk" ans L=/5+500,

é= 121072 £/, =0,06%+0,002 .Knace M

cozepxan oT 20 7o 40 BapbUPYyEMWX [MApaMeTpOB.Ky3HEUdK cuuTancs
OGJUYEHHHN B MOMEHT t , ECIU OH NOBUM NWOYH KBA3UCHY ialiHbM
006pa3o MOABIANMYNCH Uenb 328 OZUH TakKT (4YTO U TpeGyerTcsd) AAA M-
Goro t B HHTEpPBANE toéféfo""/oq. 3Haye-
HAS BpEMEH# OOYYeHUd fo 0K83a7MUCh BIOJIHE YZOBAETBODATENDH—
HHMM, Ecnu, ZAA HArAfIHOCTU, CUUTATH, YTO OAMH TAKT ANUTCHA OLHY
CEKYyHLV, TO BpEuA oqueauatyysuequxa U3MEHANOCH INH DISNUYHNX
=) sHAUSHMR NepaueTPOs B MpefeNaX OT O4HOW MUEYTH 40 HECKOIB-
KUX 4acos.

6°.4ekoTooHe 3aveuarus.  I)MeTOZMKA MOCTDOEHUA yDABHEHMUA MO3-—

ra amanTUSBHHX CHUCTed ¢ OMMCAUHYMM BHWE ONHOWArOoLwMU LY mepeHocur-
Cs B pAze CnyyaeB Ha wiorowaroswe LY.[leneBoe ycnoBae HAsWBAETCH
MHCIOWUATOENM, eCN¥ @KUC OHO CES3HBAET nepeueunuel%,41¥

ANs HECHONBKEYZ MO0MEHTOB BuyeMeHK, 5ud0, €CNH OHO, GYyZYYU MOCT3BIEHO

I
E HOMEHT TON&EHC GHTH BHIONHEHO B HEKOTODHE MOMEHT t >t_
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Tciu, #H20pdMEP, BBECTH OTUDAFWYEHdR H3 CXODCCTH MNEPefRUXerxs
Ky3HETI#Ka HId £a CKOPOCTZ (epeMemeH#s Miaeya I (OpeAnneysd, a Tak-
¥e 3au4eHUTS TpeCOBaHME (0HMATH ielb B cienymmuﬂ wouenr ted
Toe60BaHMEM CYmECT30aHHT MOUEHTa 't'7”t, ANA KOTOPOT'G n1eddb Jy-
Jer noiuara (B MPEXHHMX CUHCNAx), TO MONyYyaerca uxzoromarox@e LY,
‘llezeBye yCnoZxA 3TOrD TUMA MODYT OHNTH CHOBA CBEJEHN [ OZHOWATOBHU,
CMUIICT KOTOJHX 32KN0YaeTCA B GPABZIBHOM MPETICKA3a7UK MOBEIEHHS
UEAN B caeAyomui uoueAr. Ang cucTeM ¢ Y 3rTOoro runa':orjm OuTh
TOCTROSHY yDABHEHHs uo3ra, TaxK, YJ00HW 3TH CHCTEMH CTallM Da3yjuH=Mi
3 7Xa3aH#OM BHTE CMHCIE.

dozHD, OZHAKO, MDEBECTU MDUNMEDPH 2JHCTEM C MIOrOHMAroBHuMI (
R3ze ¢ oxzHOomaroBsMM) UY ANA KOTODHX, XOTA U YAAETCA CBECTH 3ara-—
Yy TOCTDOEHMT JPABHSHYI U03r@ K HSKOTODHM MaTeuaTrygCHRAM zaanyaM,
80 pemedde 3TUX 22737 OCTALTCH HEUIBECTHWN,

2)B naszenax 2°,3°,4° ownu czenauw cauwe o6mue apeITONCHATHE O
xnacce fﬂ JHa cawoyu neas cpermuee mjevs .0;7gelils CUABIO SI3HCUT
oT 005Beua Kiracaza ]!t .Hax mpaBuno, cpeaHee 3peuA O0yHEHUA {:o
yBen:14BaeT@S C yEBeLMUYSHUEM Xracca P4,r.e., TOYHEE,C ;BEIAMoHISY
F45712 BashUDyEUHX MapauerpoB.Takiy 0GDa3oM, €CIM CUCTSuH f\’

" | (
i ’\ -Da3yMHHe, COOTBETCTBEHHO, B Klaccax P4 u hq g THitIe
| 1 !

Kuacce P1 COOTBETCTBYET 0OJee TUNOXOMY xlAaccy 3ared ( M :>P4
TO TXEXEZNX B CDSAHEM, An6yn 3ajauyy ¥3 00l1ee ¥y3iOro x1a Jg/luo“ee
paayuEas” cusreua PC pemaer uenneuce, yer "MeHee nasyuiaa Ci
zaua"?féax PRCUUPSHUYN aganysADYSHIAX BO3MOXUOCTSHt Kak OH MOABNSETCA
42X0m0pas ReDenuTeN5H0CTE). BuCKa3saHO0e YTEED.LASENe, BINOYSY, I0TyC-
KaeT DAA SOHI0YCHHE.

2)5 pastere I° y a1g mpuwepor paszenor 30,40 woar amenricsEc

NET =

SHCTEM Acnaed OMA pewarTd ONHOEDSMSHHC IBe 3aZ3YH: 2aTawy 38T
a1

BX323KiLI i IarRGYy BHPAOCTKM CATHAAC3 YIpaABACHHT ANA OCyuecT2aenud
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p4zaTh 3TX 387344 paa;anbﬁo);donqepﬁuau, 4T0 pGWCHAS GEWE 4320
BTOPOi 3aZadqm MPencTaBaderT CEeDBhEe3HxEe TPYIHOCTH.PACCUMOTDUM, H2IINi=
uUep, 3alayy pellaeMyn MO3roM cucreuu_gg B Clyuyae, KOTZa Nenb ke-
norzuxHa,. (H MONOKEHUE NEd KOxeT OHTH DA3NUYHEM). 3aZaia, Taruau
0Gpa3ou, COCTOMT B CO3ZAHUM ONPEAENEHHO COBOKYMHOCTYM CATHANOB
Zld TOro, YTOOW MEepeMecTHTh KOHEell DYyKM B 3aJaHHYyD TOUXy.HOZHO
HarafALHO TDPELCTaBUTh cele k pyuex (k=204?d;ronoaeﬂnj KOTOD" X
onpereNs¥T HEKOTO yO TaKTUKY.[IDM QUKCUDOBAHHOM MONOKEHUM 2TAX Dy-—
YEK OCY#eCTBAAETCH HEKOTOPOE NBUAEHME, W 3TO ABUKEHUE 3B3UCHT OT
TOro, 4YTO BUAMUT INa3,CymeCTBYOT TaKke MONOKEHUI DYUEK, [DK KOTO-
PHX OCyLEeCTBIAETCA BEPHOE IBUEEHHE, T.€,DyKa NOEUT KOHIOM Z'
TOUKY 5' s e On 3Ta TOYKA S' HE HAXOZUN2Ch.ZTH
"BeoHwe" MONOZEHUR PyuYEK 3aBACAT, OLHLKO, OT DPAAA HEMU3BECTHHY
MO3Ty (AKTODOB, B Y&CTHOCTHM, OT IJIMH TN6YA ¥ MPeANneybs (ABIIP-
miXcd, [0 yCI1O0BUN, Baph:ipyeMwMM Iapamerpauyu),.3azaya Mo3ra -
HauT¥ 3T4 BEDHEHWE MOJNOZEHUR DyUEK.I(lOCIE TOrO K2KX IABUKEHUE OCYHECT—
BIANOCH, B uosr'lg MOCTyNaeT AHOOPUALUR O BenuurHe omusxy, (Tnas
BITUT TOYKY -6' i KOHEL PyKHM 55' ).llo aTuu AaugHHM RO3T AOA-
®EH UBNEHYTD NOACEEHHER ‘( . DYYeK.3aTew OCYyLeCTBAAETCA HOBOE
1RiLigHNe ¥ HOBOE i3 eurHue [OJOXEHAA SyueK.llocle TOro, Kak pyua
"cxparuna" TOYLNY 5' NpOLECC [POLONEAETCHA CHOBA AAA #0-
BODC CXONHOTO MOMOLEHHS DYKM, d HOBOTO MONOKEHUT TOUKY 5' .
PasyusocTs ciucrexy I'P B paccMarpuBaedoOM KiaccCe Pﬂ EGPBI-
YDeUEY ManausTnOB ogzéqaef, YTO MOCNE KOHEUHOTI'O YUCNAA MOMHTOK
203r HaliTeT BepHYE [TONOXEHURH DyueKk (BEDPHjL TAKTUHY), DU KOTODHX
nocie NOS3NSEUT Leau é' B 0004 MECTe DYKa M3 INOOrO

Tono¥euad nnaay (32 ONEH TAKT) NeneMewnaeTCA MDsBMABHC, 'cxBaThH-
J 4

!
Bag" XOHUOY 51' TOYRY A . (Pa3yueerca TouEa O  gorZ-

48 OWTH B IUEZENSY KOSsrasMocTi),lIDi #3MeHeHMd LAWY NAeda ® Gpel-

17euEq UILUGHANTCA BEPHHE [iONOXeHUs DYYex i nocCle #COHEYHOTO UuicCha
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TORHTOX uO3l CHOBA X HAXOZAT.
Jna om4CaEHOTO Bule xaacca 3agay A O0TcyTcOBOBAnNa HE0G-
XOXMMOCTh MDABANBHOLO MDEeLCiasadyui.d3 G0Nge IAUDOKIX 313ccax M 3
. xorza "oosexr" 4=/MA, ol B MepeMeuaerca, HeOUXOMKMO
MDerCra’sHAe ero monoxeHdud.040 Teyw Oojec 4200X0ZuMO, €CHH O0BEKT
pearupyeT #a IpuCuuzedxe Jyrd. #3J0XEH:0e BhHUE 03:a9asT, 4YTO B
paMKax yrasaHdoi 3 paszene 4% amealM3aLUA HOKET OHTD [ICCTDOEH
uWOZr T2, IT00H CHCTBM&E pemana "ceua" 3Ce samauxd yKasaHHOIO

TUna.

liruposaukas nureparypa.
I luaexas 7.3, - Ajamrandd, OOyUeHue ¥ CaHoo0yueH4e
B 5BTOMATUYECHEHX CACTEUAX.ABTOMATMUKA

u reneMexadura, T.27, B I, I%6.
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ON THE ALGORITHM OF LEARNING WITH
ACCUMULATION OF EXPERIENCE IN OPTIMUM
CONTROL

Ing. Dr. Stefan PETRAS
Assistant Professor
INSTITUTE OF ENGINEERING

CYBERNETICS
SLOVAK ACADEMY OF SCIENCE
Bratislava
Czechoslovakia

1., INTRODUCTION

In solving problems of optimum control with incomplete infor-
mation on the controlled object there arises the question of
how to gain an appropriate algorithm, Hitherto known control
algorithms based on the deterministic principle, are not sui-
table, especially when the object is multidimensional and
subject to perturbations. In such cases stochastic methods

are adequate, based on the principle of the theory of learning.

In my paper 1 wich to deal with some new aspects of the algo-
rithm of learning that would consider the entire hispory or
part of the history of learning as a sequential Markhovian
phenomenon of the kth order, I should like to refer to the
particularity of such a phenomenon that can be looked upon as
a matingal of semimartingal phenomenon provided that certain
assumptions are satisfied.

2. THE MATHEMATICAL FORMULATION OF THE PROBLEM
The mathematical formulation of the optimum control of quasi-
-stationary phenomena is defined as follows:

Assume that the optimum control /Fig. 1/ given by a purpose
function, is of the form

Q = Q(%) (1)
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where Q is a scalar function indepenaent on t
X is the vector of the controlled quantity X1sXgeece X0

The task of optimum control is to determine such a vector of
the controlled quantity u, that the corresponding vector
§7xi.x§.....x;/ may satisfy the relation

sup Q = Q= Q(x*) = () (2)
where X°€X.

Let the chosen algorithm be discrete and given by the recur-
rent relation

£N+1 & ;N + A;N"‘l (3)
where

o qr o < o)
aiVt! - (4)

af e (&) =i

where N = 1,2,...
a is the scalar step length
g is the realization of the random unity vector.

The realization of the unity random vector will depend on the
probability p(ﬁ“) of the storage parameter i“. This probabili-
ty will vary according to the amount of experience accumula-
tion., If the result of the test proves to be succesful, proba-
bility p(#) will grow and reversely. Already R.F.Arnold ! has
pointed out that the optimal strategy of the learning process
depends not only on the immediate success or failure but on
the entire history.

A 7
What is the substance of this assertion?

1. An arbitrary learning and simultaneously optimal system must
have controlling signals - a control in arbitrary time t, de-
termined on the basis of all observations gained uptill this
time t.

2, The concept information gained uptill time t" must be
explained.
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As a matter of fact two interesting cases may occur:

a/ when the procesées in question are essentially ergodic,
hence such phenomenon can be considered as a simple Markhovian
process, as a sequential string, i.e.

evolution, the future of which depends solely on its behaviour
in a given moment of time, i.e. is independent on the behaviour
of the system in the past. Graphically this means as it is
shown in Fig. 2, where (:) determines the state of the system
or the direction of the random vector, respectively, [ ] de-
termines the performed test in the relevant step.

It can be seen from the abovesaid that the subsequent step is
immediately determined only by the immediate state, i.e. for
example by the kth state, if the k+1 step is determined.

Simple sequential Markhovian processes are defined among others
by conditioned probabilities

P{g’(t)GA‘ ,g(tl). §(t3)seees §(tn)] = P{g(t)u | §(tn)]

for t1< tz < eoe <tn<t;

b/ another learning process is, however, also possible. It gi-
ves, in my opinion, a much truer picture of the actual process
of learning, i.e. the working or operational step is determi-
ned by information from the preceding step, e.g. a complicated
Markhovian process, for instance of the kth order with comple-
te linkages, It is true that it has been rather difficult in
concrete cases to analytically express e.g. the transfer time
for the system from one state into another, on the other hand
the state or the step can be very expediently expressed by
means of the Bayesian decision. The graphical representation
is given in Fig. 3 and the four-state process shown in Fig. 4.

Stochastic processes with complete linkage rapresent such pro-
cesses, in which the conditioned probability of the subsequent
states depends or all preceding states, in our case the subse-
quent step is dotermined by all preceding sSteps.

P {g’(t)u ' £Cey) §(25),00e, g(tn)}
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If a finite Markhovian process of the kth order is in question,
or if a finite number of steps is assumed, then the complex
Markhovian process can be expressed by an ordinary Markhovian
process having, however, a greater number of states.

Another approach to the solution of this problem was dealt
with by authors [2](5][7].

In my opinion the realization of the random vector will, among
others, depend on the conditioned probability

p(w) = p('g*ll wg, wg-l....,wi) (5)
where 0 = p(w) =1.

The conditioned probability according to Bayes is given by
the relation

p(w N+1, Bldess® ;)

(). p(edo ol [

where p(w¥+1) and p( 1 wi....,wn) is the dpriori probability
and p( i.wﬁ,..., Wis wg;:z at known valu:i of wl,wi,...,wg is
the function of only Wi that is L(wN )

This function is a probable function and permits the applica=-

tion of the maximal aposteriorial probability principle consis-
ting in the fact that such value of w¥+1, is most probable for
which the function of probability L(wi ) has a maximum,

f+1

The increment of the purpose function
AQ¥*L = o(g1) - o(5Y) (1)
is looked upon as the measure of success.

It has been said that the realization of §-w111 depend on the
probability

pN+1 N+1 1
Py ‘P('i l"l:"x) (8)

and
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N+1 _ _N o R i N
w5 =w, - 0 sign I_Axi . AOQ

N7

-

where J >0 is the parameter of learning speed, or

N+l _ _/_N+1
P =P% )

and :
L "? = Uf“[ p('g*llwg'w];'l,...,wi)] sign [Axl: . AQN}

2

It can be seen that the determination of optimum control at a
given algorithm by the method of learning with the accumula-
tion of experience is, as a matter of fact, the determiration
of such random séquence Q(il). Q(iz)..... Q(ik), which conver-
ges to Q(X*) , or to its close neighbourhood, respectively.

The sequence of random values Q(il), Q(iz),..., Q(ik) is the
function of the random sequance of vectors having the form

=3+ 2zl

R=xlear? =3+ a8l s a7

@S 00 90 OGPPSO PP OONSOTRS NSRS (10)
gl gk LA o0 Al e L, e o]

where x° is the initial vector.

However, the increments of the separate vectors AsiJ are
functions of probability, i.e.

o8 = E(s{) = E [5(n] )]

| Yo (11)
axi = £ [p(w [ w2, 0 )]
respectively,

i=1,2,,..,n
J = 12, e i kel

In addition to the relation (8) and (9), respectively, refer-
red to above, the algorithm of learning can be applied both
as shown in [6].
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3. THE SOLUTION OF THE PROBLEM AS A MARTINGAL PROCESS

If our system and the process are such that the relation

M [ 'Q(i-’),} < o0

. and " (12)
u [ o)) < o=
respectively,

J = 1.2.o.o.k+1

holds and if it is tried to investigate the process from the
integral point of view, that is to find how the probability P
of such a complex phenomenom is distributed, then it is found
that such process is a martingal one.

According to relation (10) one can put down [4]

P, [ i.xi....,xi*l] [¢3xi(x1) ‘3’1(‘1'x e

1 1 2 k+1
5 Axi* (o xls coendy )] (13)

where i = 1,2,...,0.

Let n = k+1, then by relation (10) and (11) we can put down
[ xi,xi.....x§+1] = P1 (xi - x:) 1( ti - xi) e eeos o
(L) wr‘vw*l o) = o} (ax}).

k+1 k+1

e ) () T ) s T[]
=1

k+1 e
= PJ [f”[ "1"" XY wjl:)]] i=1.2.-.-.n (14)
j=1
When turning now to the conditioned probabilities, obtain
k+1

Pi[ x%,xi,...,xk*l] = —Tr-Pg(xi |x£'1.....xi) (15)
J:l -
i=12,...,n.

A special case occurs if the phenomenon is Markhovian, then



k+1
Pi[.xi. i.....xi*l] = ;U:- Pg (xg ,xi-l) (16)

By means of relations (10) and (16) we can put down the mathe-
matical hope of the purpose function

ufo (| ) s ufe(& &) vufolad? L)) an

The first term of equation (17) is

H{Q(x§|x:)J = I[Q(x:)}

The second term of the equation is

M [Q(Axiﬂ‘, x: )} = 0.

When zkxk+l will not depend on x:. i.e. when £3x§+

= f“*l[pk*l] s fk*l[p(w“*ll 'k.,,,,wl )] will not be the

function of z!x{. that is that the conditioned probability
will not alter at the change of x1 to :*1.

1-

In such case

wfo( )} -
TE )

with probability 1.

1]
=
=
o
~
e
N
ed

(18)

[[]
o
—
2o
~

By generalizing the relations given above, we obtain

u {Q(xi*ll R ] )] = q(} ) (19)
with the probability 1, for i = 1,2,...,n.

It can be said that the algorithm of optimum control of the
steady state process, expressed by the method of learning by
experience accumulation is a martingal process if the follo-
wing conditions are satisfied E

1/ n{]o(xg)]} = oo
o (R e s o) = 5l
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3/ H{Q(Ax‘i‘” Fals. oo o] )} =0

In the enclosure to the paper i give the proof of the conver-
gence of the solution similarly as it is introduced in [9].

4. PRACTICAL RESULTS

The methods hitherto applied and this one were verified and
mutually compared with the purpose function being generally
of the form,

S 2
e
Q= Cy od=1

i=1
or the concrete model, being of the form

-[0.6(x; - 2)% + 0,8(x, - 2)

+

Q(xl,xz,xs,x4,x5) =2,3 0
+ (x5 -2)% +1,2(x, -3)% +0,7(xg - 2,5)2) v 3 o-[0,9(x;-4)+

+0,7(xy = 4)% + L1(xy - 5)% + 1,3(x, - 4% + 0,8(x5 - 4,5)%]

This function has two extremums in point x = 2rs X, = 24 Xy =
= 2; x, = 3 Xy = 21,50 01 k™ 2,3, The second extremum is in

point x; = 4; x5 = 4; x4 = 5; x, = 4; x5 = 4,5, Q@ - = 3.
In Table 1 the results of the test are given.

Test 1 presents the classical method of a random test, the
course of which is in Fig. 5.

Test 2 presents the method of random test with punishment,
the course of which is in Fig. 6.

Test 3 presents the method of random test with the choice
of the optimal result. The course is given in Fig. 7.

Test 4, 5 and 6 presents the method of random search with
learning and with the uniform law of probability
change. The course is in Fig. S. The parameter of
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learning speed Jd” and the magnitude of step "a" ha-
ve changed.

Test 7, 8 and 9 presents the method of random search with
learning and experience accumulation as a complex
process. The course is in Fig. 9. The parameter of
learning speed and the magnitude of step "a" were
changing.

It can be seen from the figures that the algorithm of learning
with the accumulation of experience is one applicable both for
relatively sophisticated multi-parameter systems.

APPENDIX A 1
CONVERGENCE OF THE MARTINGAL PROCESS

Let the algorithm of optimmm control be given by the relation

L(Fe1) | (N) _ o £ §(N) (A.1)

where ay = magnitude of step
Kk - normalizing coefficient
EN = random vector -

if fx i8 the unity random vector, then SN = 1
(1)

x is chosen arbitrarily.

Let the following assumption be satisfied

Zan=oo,Za§.<oo. ay >0 (4.2)
N=1 N=1
l(g(“)lx(”,....x("))=ch“”+m(“) (A.3)

where 0 =cy =(C <= oo
m(N) is the systematic error

FN) is the gradient of function Q(x) in point x(N)
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aQ Q
A ( )

Qxl an
£ ( n §(N " I ""‘w))é"l Sul™ (A.4)
where " §(N) " is the standard of the random vector
oQ oo
Y ay|s® <o) L )= (a.3)
N=1 N=1 N
D ( §(N),x(l).....x(1‘))<°° (A.6)

I claim that this process is a martingal or semimartingal one,
respectively and the iterative process converges to the extre-
mum with probability 1,

Proof

notation: the scalar product will denote

a/ £ x:35 P
82q
b/ A(x) matrizx -———— H i J = 1.2....,11.
axiéixj
Procedure
Distribute Q(x(N+1)) into the Taylor series

afx™D) < q(xM) - _°r1¢_<T!_N_ 4 vM), FM
N 1 R YR B, olgh el
_ aN'A"N v . §(N) 4 N[N i ” g(n)llz

Introduce conditioned probabilities

M[Q(x“+1, x(l).....x(N)) ]é Q(x(N)) - —:‘?—{:— {[M ( €(N)I x(lz.

) m'(")] . xx(g(n)' W, M) b %‘s_"‘aﬁ }
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o) (s [

°N

2
. 4.(!) o l(§(n), x'(l)....,x(n) ) >+ —;1!— ‘1‘2

Due to the fact that H “2 i8s nonnegative and Cauchy-Bu-
Jjanovsky ‘s inequality holds, it follows that

ufo(z®™D | 1), M) 2 (=™ ) JEH [2F) ]
> lu(g(ﬂ)’ x(l)....,x(n)), “ ;-‘!'i KK, < q(,(NJ) & 1_‘;_1:7 y'(N)Il'

‘/5';12! " f(N) ’ ' Yovaa ™ ;-]!‘f- xlgzsq(,(l)) @
- V-‘_lrr!‘c; ﬂ'(l), *z-lf— KK,

due to (A.4).

We see that this last term can be substituted thus

oo
o). 5 e e
K=N

K=N
then we can write
,,(,(Nu)l,(l)m”x(n)) = z(F)

(1)

If the considerations for all z and x
ried out, then

l(z(ml)! z(l).....z(N))é (N)

(1) . L)

, are car-

this inequality forms a semimartingal a this converges with
probability 1 to the extremum, that means that

u(z" )< ... ;u(z(l)) = oo
hence (A.T)
M [Q(x("))] < ©0
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From this convergence ensues also the limitation Q(x(N)) with

probability 1.

It remains to be proved that

P{ tia  o(xV) = Qmin} w. p. L.

N—c0

Since x is limited Q( (V)‘ is also limited and it is assumed
that Q(x(N)) is cont1nuous, then both ‘§7(N ﬁ is a limited
quantity, hence “ V”‘ ﬂ B.

1f (A.3) are satisfied, then it follows from (A.5) that

M (ﬂ {(N) “2‘ X(l).o--.x(N)) < o3Q , then y can always be

chosen such that

0<a fa‘fx =A < 00

Then

M,Q( 2(F+1))] £ (1 .__'xw)] = o(zM) - ‘i:!fu 4 N

2
P \ a )
ou(é'(?‘/{x(l)'“ (N))b*"‘gz’—,‘ﬂ(x(n)>- N!Kr{{V(N).

2
(g P+ a®) by x ik, ;_N_' <a(x™) . _8_“1{1!1‘3;_ o[,

[0 0] - g 2 om0 Jonf

K

2
ABa X
N I} o =12 oy

il - i

If putting down for all N

it will still hold
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i‘x"’x . H (&) ”2_4_ ci ag ¥ u V~K)}lf'2 28
K k=1

where °x =C 14

due to the inequality of (A.3) since g
K=1

aK = co must be

2

| e® | —o

the 3rd term of the expression (A.8) = co , because

K

T L e

K=1 N

the 4th term of the expression (A.8) < oo, because Zai <o
=1

the 1st term of the expression (A.8)< oo , because
u[o(x'F)] = oo

i.e. we obtain the convergence of the sequance
quadratic. This ensures a sufficient sequence Y7(Nx
convergence to O with probability 1,

(N)
Ving)

in mean
of the

Since Q(x) is a continuous function and converges the sequence
Q(x(N)) to the limit with probability 1 we obtain

N)
Pl lim Q x( = : — 1
However, the problem remains unsolved, if N is finite, that
means the question arises when to finish the process on the
computer.,
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TABLE 1

Nr.

NUMBER
OF STEPS

COORDINATES
OF EXTREMUM

VALUE OF
EXTREMUM

NOTE

613

Xy = 2,014567
'z - 2,001217
ay= 200731
%= 2,08521
Xg= 2,4859%

2,29721

STABLE
STEP

Y= 509139
Ny= 2,

I;- 1,”“6
X = 30047
Agm 24783

229647

94x 25

Xy- m”
xn= 196528
iy = 190942
X, = 300112
X5 = 24592

2,29487

427

Xy = ',‘
N u
Xe 22
Xem J=
Xs= 25

1,943

a=01
b=02

165

=19
Xym 2,1
I;- 2:1
Xa )1
x5= 27

215741

a=01
b= 033

171

xy= 2,116
Xy= 1,9287
NHe 2,1233
P /L 2,’9“
X5 = 2,6396

2,20169

as= 0,05
b= 033

x= 29
ne 2,’
Ny 22

| = 31

xs= 2,8

192682

a=008
b=025

2= 2,05
Xy 2,05
= 2,25
X = 3,05
Xg = 275

20547

as 0:08
b= 033

Xym 2,95
Xy = 1,95
He 2,“
X, = 3,05
Xy = 2,75

2,1557

as= 0,07
b= 045
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ON THE ERGODICITY AND DYNAMIC BEHAVIOR OF
FINITE-STATE MARKOV CHAINS

H. H. Yeh* J. T. Tou **
I. Introduction

It has long been recognized that Markov chains can serve as
useful mathematical models in social science as well as in biological
science, especially in the area of learning control theories. Recently,
extensive efforts have been devoted to the investigations of stochastic
automata as learning models in engineering systems involving artificial
intelligence, which make use of the Markov chain theory in one way or
another. - A s a matter of fact, it has been well established that
a stochastic finite automaton is representable by a finite-state Markov

chain, and vice versa-4

In the synthesis of learning systems, one of
the basic requirements is that the system should steadily improve its
performance while it gains information through the experience of
operating on the environment of which it has little a priori knowledge.
This means that the learning section of the system should, as its
experience increases, eventually reach a best possible probability dis-
tribution of the output states which minimizes the expected loss or
penalty, or maximizes the expedience, as in the nomenclature of
references, o according to some performance criterion. When
the learning behavior is described by a Markov chzin, this means

that the chain must be ergodic so that the learning system will reach

*Department of Electrical Engineering, University of Kentucky,
Lexington, Kentucky, U.S.A.

**Department of Electrical Engineering, University of Florida
Gainesville, Florida, U.S.A.
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a best final probability distribution of the output states regardless

of the initial distribution which is selected arbitrarily by the designer
with insufficient a priori knowledge of the media or object on which the
learning system operates.

Furthermore, in an engineering system, what is important is
not only the asymptotical property of the chain when time or operation
step approaches infinity, but also the dynamic behavior of the system
before it reaches the steady state. This includes the rate of convergence
to the steady state, the extent of possible misbehavior during the transient,
and sometimes the monotonicity of convergence, etc.

There has been well established relationship between the
asymptotic properties of a finite-state Markov chain and the eigenvalues
of its state transition probability matrix. 8 + It can be shown that aﬁ
irreducible finite state Markov chain is ergodic if and only if ) =1 is
the only eigenvalue with modulus 1 of the state transition probability
matrix. If there exist other eigenvalues of modulus 1, then they are
necessarily k-th roots of 1, for some positive integer k. In this case
the chain is periodic with period k. There is indeed mathematical
elegance in this theorem. Nevertheless, this knowledge is of little
practical utility for detecting the asymptotic behavior of a Markov
chain in engineering applications since it is often difficult to find a!l the
eigenvalues of a matrix.

¢ Some authors maintain that a necessary and sufficient condition
of the ergodicity of a finite-state harnogeneous Markov chain is that
the chain is fully regular. F This means that the chain has only one
minimal closed set of states. If transition from the i-th state to the j-th
state is possible at the m-th step, tgen the common factor of the set of
m's is one for each pair ij in the closed set. The relation between full
regularity and ergodicity gives some insight into the behavior of an
ergodic Markov chain, but it is of little use in testing the ergodicity of
the chain however.

There also exist other methods suitable in engineering practice
to determine whether a particular class :)f finite~state Markov chain is

e rgodic. However, besides being restrictive in applicability,
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these methods give no information about the convergence rate and fall
short of geometrical interpretation of the dynamic behavior of a chain
in the state space, which is actually the learning behavior of a system
involving an equivalent stochastic automaton.

This paper analyzes the dynamic behavior of ergodic finite-
state Markov chains in the finite dimensional linear space. The notion
of the norms of vectors and matrices and the principle of contraction
mapping are employed in this analysis which provides insight into the
learning behavior of an equivalent stochastic automaton. As a result,

a measure of the convergence rate is made possible. An ergodicity
test procedure of general nature also results from this analysis. From
this test procedure various test criteria which include many tests given
in the literature 3 as special cases are derived. Onme criterion is
shown to be both necessary and sufficient.

O. The Finite-State Homogeneous Markov Chain

Formal definitions of Markov chains can be found in many text-
books. In this paper it suffices to say that an r-state Markov chain is
completely defined by the relation

x(n+1) = Px(n) (1)
where x(n) is the n-th step probability distribution vector (or simply
probability vector) of dimension r, whose i-th component xi(n) is the
probability of the chain being in the i-th state; P is rxr transition
(probability) matrix whose element pij is the probability of transition
from the j-th state to the i-th state. If P is independent of n, the chain
is said to be stationary or homogeneous. Only homogeneous chain is of
interest in this study. The components of x(n) are non-negative and
their sum is equal to one; the elements of P are non-negative and each
column sum is equal to one. Any square matrix with this property is
called stochastic (or Markov). Hence the product of any two stochastic
matrices is again a stochastic matrix. In the ensuing discussion,
capital letters E and S denote sets and space; A, B, 2 and _Cidenote rxr
square matrices; lower-case bold-face letters denote r-dimensional
column vectors; superscrift t denotes the transpose of column vector

or matrix; i, j, k, m, n, and r denote positive integers; and lower-case
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letters denote real constants.
Let it be defined that a homogeneous Markov chain with r states

is ergodic if real numbers me "2’ ceey "r exist, such that foranyi, j,

(n)

o iz 2)

n -eo
(n)
j
a finite-state homogeneous chain is ergodic, if and only if

limxi(n) =m

where Py is the ij element of the matrix P". Itis readily seen that

i (3)
n -o
independent of the initial value x; (0) fori=1, 2, ¢es, r« The probability
vector p whose components are U ﬂ’z. seer T is called the stationary
probability vector. Equation (3) suggests that an equivalent definition
of an ergodic Markov chain is that the sequence
x(0), x(1), «oey X(R), sese (4)
converges to p independently of x(0).
The analysis of the behavior of sequence (4) in r-dimensional
linear space starts in the next section with an algebraic treatment of
the Markov chain.

III. Inducement of Transition Matrix on Invariant Subspace

Let E be the r-dimensional Euclidean space. The probability
vector x is a point on the hyperplane Sl, represented by

. § = (= e'x =1) (5)
where e is the r-dimensional row-vector, every element of which
is one. The set of points in Sl with non-negative coordinates will be
denoted by Sl+. Since P is a stochastic matrix, it is easily seen that
Sl and Sl+ are invariant under the transformation represented by P.
That is to say, for every x cSl (or x e Sl+)' Px again belongs to
Sl (or Sl+). . It can be shown that for any constant c, Sc which is defined
by

S,= (rey =c) (6)

is also an invariant under transformation P. To see this, let y(0) be

an arbitrary vector in Sc. andlety (1) =03 X(O). Then
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T r T r b <
Ty, )= % p y (0) =L (0 p
i=1 1 =151 U ja1 4 qm ¥

T

=L y(0)=c

=1

Hence y(1) is again in Sc. Of special ix;terelt to the following development
is the set So for ¢ = 0. This set forms a subspace in E since it is a
hyperplane passing through the origin.

A linear transformation is called a linear operator if the image
of the transformation is again contained in its domain. Thus the trans
formation P on E is a linear operator, and by restricting the domain
of the definition of P on So, a linear operation go on So is induced.
This linear operator is defined by

P *EG 30 R (7)
However, 20 is different from P since its damain is on So. not on E.
I.ct_!(l) = 21(0) and 1(0) € So. Since y(0) satisfies
r

T y(0 =0 (8)
i=1

the i-th component of y(1) can be put in the following form by using (8):

r

y,(1) = jEl (11j -a) YJ(O) (9)

for any real number a,. Thus the induced operator 20 on S° is found

to be an rxr matrix whose ij element is pi‘1 - a,e It is worth noting that

1.
there are infinitely many matrices representing _l:o.
Consider the sequence of (4) where x(n) € Sl+ for all n. The

sequence satisfies (1). Thus, by iteration,

x(n4l) - x(n) = P¥[x(n-k+1) - x(n-k)] (10)
Let

ax(n) & x(n+1) - x(n) (11)
Then

Ax(n) = Pk Ax(n-k) (12)

Since j(n) is in So for all n,
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Kk
&(n) = (B"), &xin-k) (13)
where (gk)o is the induced operator of _lfk on So. The i, j element of
(P%), is found by analogy with (9) to be

Py 1
where pij(k) is the ij element of _Ifk.
IV. Ergodic Chain as Contraction Mapping

Let a norm be chosen for the matrix (_P_‘k)o. Let the vector
norm of Ax be constructed such that the given matrix norm is consistent
with ite (That this can be done for any given matrix norm has been
shown in the literature. 12) Then it follows frcm (13) that

|| axta) ||| @5 |1°] ]| im0 | | (14)

It will be shown in the sequel that if a norm of a matrix of the induced
operator (l“k)o can be found such that

e, 1] = & <1 1s)

for some positive integer k, then sequence (4) converges to a limit x(=)
independent of x(0). In this connection, it is worth noting that convergence
in every other normm. Hence in proving convergence, it suffice to choose
any norm for convenience.

Substituting (15) into (14) gives

|faxtm) || < o || atmk) || (e
Let m, n), n,, By ’ and nz' be chosen such that
n= nlk * n, (17)
n+m=n-1'k+nz’ Y (18)
nl'g n, (19)
n,, nz‘ <k (20)

Then
X(n+m)-x(n) = l"nlkk(nl 'k-n:l khz’)'ﬁ(nz)]

= (P, 1 in; %-n, ktn, ") - x(n,)] (21)

By the definition of norm, (15) and (21) give



75

k i .
| | X(ntm)-x(n)| |<oL || x(n, “k-n kin, )-x(n,)||

k ) » b4
<g'! [l Ii(nz )'E(nz)l | +1 li(nz +k)'£(nz )|+
+| li(nl 'k-n1 k+n2 ')-E(nl ‘k-n

L K, k) || ]

<&*|| x(n, ) -x(n,)||

k 22 n5l
40" 1| | x(n, #)-xtn, ) || (1464 .. +o™1 TP
nlk Gn' k . ,
<oV ||zt V-xin )| | + 5| |xtn, " H)-xtn, ]|
-0
where n, ° > n, has been assumed since n, * = n, is an obvious case.
1 1 1 1
Thus for every ¢ > 0 there exists an integer N (¢) such that
||3c_(n+m) - E(n) | | <e¢ for all n > N(e) « (22)

Hence it is seen that (4) is a Cauchy sequence. Since the normed
Euclidean space is complete, sequence (4) converges to a limit x(e) in
the norm. It is apparent that this sequence also converges to the
limit x(«) in the ordinary sense. That is, every component of x(n)
approaches the corresponding component of x(») in the limit, This is
because that the norm function is continucus. However, the proof is
by no means trivial. 12 Furthermore, by virtue of the continuity of
the transformation P
P x(w) = Plim x(n) = 1lim P x(n)
n —- o nN-eo
= lim x(nt+l) = x(w)
N—e®
Thus the limit x(«) is a stationary probability vector.
More can be said about the limit 5(-). That is, the existence
of x(w) under the condition (15) is unique. For if there exist x(w) and

x’(=) in §_ such that P x(e) = x(w) and Px () = x’(e), then
|2t “() 1= || B® x(0)-B (=)
= || B xte)-x (0|
= 1@, xte) x|

<0 xte)=x (=]



76

Hence ”5(-)-_15'(-)” =0, which implies x(=) = x {=). Obviously, x(=)
is identified with the stationary probability vector p in Section II.
It is interesting to note that for any homogeneous finite-state
Markov chain there exists a stationary probability distribution. This
is readily inferred from a well known classical theorem on non-
negative matrices due to Perron and Froebenius. (For a new proof see
referencels). This classical theorem states that, for an irreducible
non-negative matrix A, there exists a positive eigenvalue )\ which is no
less than the modulus of any other eigenvalue of A, and that corresponding
to )\ there exists an eigenvector of positive components, and this ) is the
only eigenvalue of A which has a corresponding eigenvector of positive
components. However, the absolute probability distribution approaches a
unique stationary distribution asymptotically only when the chain is ergodic.
The principle of contraction mapping gives (15) as a sufficient con-
dition for the ergodicity and describes the manner in which an ergodic
chain converges to the stationary distribution under this condition. It will
be clear in the subsequent development that condition (15) is also
necessary for some k.

V. Determining the Ergodicity and the Rate of Convergence

In order to show that a finite-state Markov chain is ergodic, it
suffices to show that the matrix (_}f)o has a norm which is less than 1 for
some k. A norm of a matrix cannot be less than the modulus of an
eigenvalue of the matrix. For, if \ is an eigenvalue of a matrix Aand y an
eigenvector corresponding to ), then Ay = 1y and it follows that

IR 11= AL 12l < 11 A1)

Therefore
x| < |1 A]] (23)

In fact, (23) can also be proved without invoking the consistency condition
between the vector norm and the matrix norm. re In making a test for
ergodicity, it is desired to find the smallest possible norm of (_E}()o. The-
oretically, the norm of a matrix can be made as closed as possible to

the largest value of the modulii of all eigenvalues, which has been narned

spectral radium. =g However, practical methods for constructing such

norms are avilable only for matrices with non-negative elements. For
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(gk)o, in general, the best can be done is to construct the norm to be
as close as possible to the spectral radius of (gt)0 . (Here and in
the sequel, the absolute value symbol is applied to a matrix or vector
to signify the replacement of each element by its absolute value. )

Two norms which serve this purpose are the g-norm and the g - norm.
They are defined as follows: Let Gbe a diagonal matrix whose diagonal
elemants are positive numbers By» By cver 8- The g-norm of a

vector x is defined as the maxdmum modulus of the elements _(_}._ch_: i.e.,

A
Lk T l_x*_l (24)
-9
Subordinate to the vector g-norm defined by
A
1241 =111Af2l|g (25)

where g is the vector whose i-th component is 8;° The vector g “-norm is

defined
LAt
llxllg 2 '] (26)

The matrix g *-norm which is subordinate to the vector g’-norm is

141" 2114121 1g @0
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A mumerical method of computing g such that the g-norm of an irreducible
matrix A is as close as possible to the spectral radius of the non-negative
matrixl_é] is available in the literature. 2 Reducible matrices can be
treated by separate manipulation of the submatrices of the original matrix
after proper permutations. An alternative way 14 of finding such a g-
vector is to successively transform an arbitrarily selected vector of posi-

tive elements by the non~negative matrix‘é’; i,e., if

x;___lé‘g; g— =Bl_&‘; s":lélx”--o

then

|24 21|l | g -24| 4 g -2 -+

The lower bound of this sequence is the spectral radius of|£.|
The latter method is much simpler in cdmputation. However, when the
diagonal elements oﬂé[are all zero, there will be no guarantee that the
sequence will definitely reach its lower bound.

Comparison of (25) with (27) shows that the g “-norm of a matrix
Ais just the g-norm of the transpose of A. It also follows from (25) that
the g-norm of a matrix A is the largest row sum of the nonnegative matrix

_G_:l |A| G. Moreover, the largest column sum of this matrix is the g°’-

norm of A, with the g vector defined as g = [-1-. -1-. Ao & J.
- g g, g,

-1
Thus either the largest row sumn or the largest column sum of G |_§|g

is a norm of A,
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After a chain is shown to be ergodic, the rate of convergence can
be determined by the smallest norm found for (Ek)o. If a norm of (gk)

is found satisfying (15), then
[l - | o] xtm) - 2| (28)

This means that the rate of decrease of the ''distance'’ between the present
probability vector and the stationary probability vector is at least 100

(1- d’k) percent after k steps of operation. If a g-norm for (Ek)o is found
satisfying (15), then ma.xlxi(n+k) - ‘rTi |/gi is no greater than ok times max
|x (n) - m, |/g In particular if g = e, then the maximum of the absolute
value or the components of the vector x - p is reduced by at least 100(1 -0 )
percent for every k steps. On the other hand, if a g'-norm is found satis-
fying (15), then the projection of the vector |£(n+k) - £| on g is no greater
than ':k times the projection of the vector |§(n) - BI on g. Again Uk marks
the rate of convergence. When g = e, then the sum of the absolute value of
the components of the error vector x - p is reduced by at least 100 (1 - ck)
percent after every k steps. Hence in the analysis of a finite-state homo-
geneous Markov chain it is desirable not only to know that a chain is ergo-
dic, but also the smallest possible g-norm or g'-norm, or both, of (gk)o

for some g.

A Test Procedure

From the foregoing discussion a test for the ergodicity and conver-
gence rate of a chain with transition probability matrix P can be summar-
ized as follows.

(A)’ Form (Bk)o = [le (k)

- ai] from Bk by assigning a,. Trial may be
started from K = 1. The choice of a, is aimed at the minimum norm for
(B

(B) Choose r positive integers 8,» 8 -8, such that the g- norm of (P )
(the maximum row sum of G~ |(P ) |G) or the g'-norm of (P ) (the maxi-
mum row sum of G ’(P ) ItG) is less than one. If this can be done then

the chain is ergodic. The positive numbers gl, Byt g, may be chosen

by insyection.

(C) If such a g-vector cannot be easilv found by inspection, the numerical

method proposed in Theorem 4.7 of reference 12 of finding a g vector
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which gives the smallest possible g-norm or g'-norm of (lf_k)o may be em-
ployed or, alternatively, the g vector may be chosen as
k
2= (29, [Te (29)
Example 1. As an illustration of the above procedure, consider a

Markov chain with transition probability matrix

"o 0.3 0 0.2 o |
0.5 0 0 0 0
P=]o0.5 0.7 0 0 0.5
0 0 < 0.4 0 0.5
0 0 0.6~ 0.8 B

Tryk=1, al's the third element of the i-th row. Then

[0 i 0 0.2 oy
0.5 0 0 0 0
|P |= 0.5 0.7 0 0 0.5
-0
0.4 0.4 0 0.4 0.1
0.6 0.6 0 0.2 0.6
g = |e = Col [0.5 0.5 1.7 1.3 2. o]
P |e
g =|p|%- 001[0.41 0.25 1.6 i ¥ 2 oe]
Ple
g iR |3e = Col[O.Z99 0.205 1.41 0.918 1.856]
Pl e

It is seen that every element of g'"'

is less than the corresponding element
of g''. Hence the chain is ergodic. The g-norm of the matrix Eo using
g'' as the g vector is the maximum ratio of the elements of g''' to the cor-

responding elements of g'' i. e.,

2 _ 0.299 0.205 1.41 0.918 1.856}
“—o”g“'mgo.u' ovas’ | “1e)’ - “1.12 v .'e6

0.901
However, if the calculation of g vector is carried on further, i.e.,

4
g()

(5)
£ = Col [o. 196 0.123 1.028 0.62 1.35]

=C°1[o.z4s 0.15 1.221 0.754 1.6]

£ = col [0.161 0.098 0.86  0.511 1.126]
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then it is found that
2l g = 0868 || 101 = 0,844, ||, [| (51 = 0,28

Hence it is known that not only the chain is ergodic, but that the ''distance"
between x and p when measured in terms of g-norm with the g vector taken
as g (5), is reduced at least 100 (1 - 0. 838) = 16. 2 percent after each step.

Theoretically the smallest norm of Eo for an ergodic chain is the
maximum of the modulii of the eigenvalues of P, excluding the eigenvalue
X = 1. This is because that the only eigenvalue with modulus 1 is the sim-
ple eigenvalue A = 1 and the projection of the operator P on So along p has
all the rest of the eigenvalues of P. (Note that So and the subspace spanned
by p are two invariant subspaces spanning E.) However, there is no prac-
tical method available for computing all the eigenvalues of a general P
matrix. The scheme given in the present paper offers a way of computing
a near-minimum norm for (Ek)o, for a chosen set of ai.

The test procedure is fairly general. Note that no such restriction
as reducibility has been imposed on the transition probability matrix. The
matrix (gk)o can always be made irreducible by choosing a, even if Bk is
reducible. When used as ergodicity test, the versatility of this method lies
in the freedom of choosing a,. In the following development various test
criteria of ergodicity are obtained by exercising this freedom. Among these
criteria there is a netI:essary and sufficient condition which requires little
computation. Hence to determine whether a finite-state homogeneous
Markov chain is ergodic, the criteria obtained in the following paragraphs
are more convenient and effective than the general procedure. However
after the ergodicity is détermined, the above procedure may be followed

to determine the rate of convergence.

Some Criteria o.f Ergodicity

Let a. be the smallest of the elements in the i-th row of the matrix
1
: L ’
Bk for some k. Then it follows that (E') is non-negative and the sum of

the j-th column of (Ek)o is

i=1 Pij i izl j
k
Note that this is the g'-norm of (P )o with g = e. Hence if
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r k

£ min p.(. ) #0 (30)
i=l  j 1

then the chain is ergodic. Furthermore, (30) is also a necessary condition

. for the chain to be ergodic by virtue of (2). The proof is trivial. There-

fore the following criterion is concluded:

Criterion 1. A finite-state homogeneous Markov chain with probability
transition matrix P is ergodic if and only if there exists a positive integer
k =l
= such that P has at least one row not containing zero elements. More-
3 Cps n m
over, ifor any positive n>k, P has at least one row not containing zero

elements.

Example 2. The Markov chain with transition probability matrix

o COW LR Y
0.4 0 Qe 1-10¢ 1 40
Pl Tove i ~9- Lotmnap
0 0 Fegr wl g
[ o0 0 pr 4t 40 )

. i S :
is ergodic since the fourth row of P~ is readily seen to have no zero ele-
ment. Note that the chain is reducible with two transient states.

In general, a chain with a probability transition matrix of the form

O aadly SroRabilig ina
oW R FwopM 10 & =
TSRS S g e
e e e (1) L

f > S e [}

where x denotes non-zero elements, is not ergodic since 24 has the same
form as B, i.e., pij(“ is zero whenever pij is sero. Thus the chain is
periodic with period 4.

From the above examples a corollary can readily be concluded that
ergcedicity of a finite state homogeneous Markov chain is determined by the
form of the transition matrix. It has nothing to do with the numerical val-
ues of the elements of the matrix.

It is sometimes possible to investigate the ergodicity of a Markov

chain without having to exhibit a k-step transition matrix P, even if P has

zero in each row. L.et a, be the smallest non-zero element of the i-th
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B,
-0

Criterion 2.
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Since each column sum of P is one,

Then the g'-norm oflg_ol with g = e is the maximum column sum of

the following criterion is derived:

Replace the non-zero elements of Pby the negative of the

smallest non-zero elements of the row, and the zero elements by the

smallest non-zero

tive, the chain is ergodic.

element of the row. Then, if each column sum is nega-

rix:

Example 3. Consider the transition probability matrix
Fo. 1, o1 A b
% 0 0 gLt 59
P= XS 0 0.2 0/$3 0.5
0 ERe05 0 032 0
[0.4 04 05 0 0.5
Using Criterion 2 one obtains the following ma;:
ER e et e 0k
0.2 0.2 0.2 -0.2 0.2
-0.2 0.2 -0.2 -0.2 ~-0.2
0.2 =0.2 0.2 -0.2 -0.4
0L 4 04 DiEw 0 0. 5

Since each cokumn sum of this matrix is negative,

Let a, be the largest element of the i-th row.

non-positive and the j-th column sum of‘_Po| is

i=1
Criterion 3. If
T el r
S - max P, d
=1 § g
then the chain is. ergodic. .
Exambple 4. Let
bois oY 0.2, [ 83
0.6 0. 30 0.6
B oo 0 eu2es0
0 0.7 0.6 0.1
| 0 0 0 0

o SR RS ~S
g N

—

the chain is ergodic.

It follows that P is
o

r r r
%, . -a.)|= X 5 stp.. )= vt 35 rna oS
(pxg ax)‘ i=1 (al Pu) i=1 jx le

(31)
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The ergodicity of this chain is determined at once using (31), i.e.,

r
£ rmax pij=0.3+0.6+0.2+0.7+0.l=l.9<Z

i=1 J
For the next criterion, let a, = pij for a fixed j, all i. Then the

j-th column of 20 is zero. Let gj be arbitrarily large. Then every
element in the j-row of g- 1I_P_o| G is negligibly small and every element

in the j-th column of G—1|P |G is zero.
& S1=
*
Criterion 4. Let a, = p,.. for some fixed j, andi = 1, 2., s Leth |
—_— i ij =3
be the matrix obtained from deleting the j-th row and j-th column of ‘Bo| 4
*
If a g-norm or g'-norm of Igol is found to be less than 1, the chain is
ergodic.

Example 5. Let

o 0 0 0.2 0.4'\

0.4 O 0:2 | 1083, 0
p= |o 0.3 O 0.3 0.4

0.6 0,701,048 -9 0

0 0 0 o8- ©

and a, be the fourth element of the i-th row. Then

0.2 0.2 0.2 O 0.2
0.1 0.3 0.1 0 0.3
|P|= 0.3 0 0.3 0 0.1
b o]
0.6 0.7 0.8 O 0.2
forz=#ro.2 ¥ 920 "8 0.2
=
x
0. 2% <027, 10.22 2
0.1 0.3 0.1 0.3
P 5
\—ul 0 0.3 0.1
o2} i 10: 2R MO 0.2
L

This chain is ergodic since both the maximum row sum and the maximum
column sum of ‘E-o‘* are less than 1.
VI. Conclusion
When a norm of the induced transition matrix on the invariant sub-

space So whose normal is (1, 1,...) is found to be less than one the Markov

chain is ergodic and operates as a contraction ma;ping on subspace S
[)
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Theoretically the smallest possible norm of the induced transition matrix

is less than one for an ergodic chain because A = 1 is the only eigenvalue of
the transition matrix with modulus one and all other eigenvalues have modulii
less than one. Hence if a finite-state homogeneous markov chain is ergodic
it is a contraction mapping on So' The norm of the induced transition prob-
ability matrix serves as a pessimistic estimation of the convergence rate.

A general test procedure is summarized for determining the
ergodicity and convergence rate of a finite-state homogeneous Markov chain.
A necessary and sufficient condition for ergodicity is derived from this
procedure together with other ergodicity criteria for special cases. It is
found that ergodicity is determined by the form of the transition matrix

and has nothing to do with the numerical values of the elements of the matrix.
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STATISTICAL MIN-MAX DECISION METHODS AND
THEIR APPLICATION TO LEARNING CONTROL

Bunji KONDO and Shigeru ETHD
Faculty of Engineering, Kyoto Universif:y
Kyoto, Japan

1. Introduction
Recently, the application of the statistical decision method to learning
control systems has been advanced. However, most of works assume that the
probability distribution of the system parameters are kmown or partially kmown
1-5
a priori.
This paper deals with the case where we have little knowledge about the

statistical property of the system.

2. Statement of the problem
2-1 Preliminary

Consider the usual optimalizing control system with one control variable
(Fig.1). Optimal control input, which brings P.I. (performance index) to the
maximum point, is a function of disturbance Z . There may, however, be unob-
servable random disturbances. The optimal value of x may, therefore, be
thcught of as a random variable with a certain probability distribution
function?

Assume, for the sake of simplicity, that Z is one dimensional variable,
and denote the control input by d. Assume also that x, z and d take discrete
values. (If they are continuous quanti ties, they can be changed to discrete
quantities by appropriate quantization.)

The optimal control input can be determined by the statistical decision
method, as follows:

Optimal decision do(z .) when observed value of z is z5 is a d(z,) which
minimizes §(z.):

$zj) =L (x:,dZ)) P(X:/2j)
where L(xi, d(z.)) represents the loss associated with decision d-d(zj) when
1=x,, and P(xl./zj) is the conditional probability distribution. This optimal

J

decision is called a sinple Bayes solution.

However, P(xi/ z.) in many cases is not known beforehand. The control law
when P(xi/ zj) is constant but unknown is considered in what follows. Inciden-
tally, it is assumed that the past control experiences are tabulated as Table 1.

The t-i element L in Table 1 expresses the number of I=x, when 2=2,.



88

The problem now is how to evaluate d when z=z t is observed. Optimal deci-
sion do should be fixed in the light of Table 1. Here we assume that zy is sta-
tistically independent of zr(r % t). Then d0 can be evaluated only by using the
t-th row in Table 1. Finally the problem resolves itself into how to evaluate

+

d when data (mtl'mt2""’mtk) is given. For the sake of simplicity, suffix t
is ommitted in the following.

2-2 Statement of the problem
Let us state the problem all over again. We use the following notations:
X: discrete random variable with k different possible values xl,xz,...

d: decision. There are q different possible decisions dl'd2"" and dq.

m, : number of past observations that X=xi. s 132 nnal
n: sample size; n = m,
& R
= (ml'm2""’mk) : vector expression of sample (data)

M: set of m, whose element is expressed by ;

Lij: loss associated with the decision d::dj when X:xi
L=(r,
(xl)— sl probability of X=x, im 102 00enk

Q = 6, Q,...,B’.) : vector expression of probability distribution

function of X.
The problem is : Which of drdz"”'dq is to be taken when m is given?

] : loss matrix

The problem can be put this way, too: With what probability should we take dl,
dz,... and dq, when m is given?

Let us define the randomized decision function to solve the problem just
mentioned:? The randomized decision function means the aggregate of probability
/L; , with vhich d. is chosen in regard to each element m of M, where j =1,
20000, 2 Tl =1 and i =1,2,...,s. (5~km-/Cn)

Let us use the following two notation;;_:

. ! 2 g
EL (‘;CML,%M",?CL_G‘)
[71-] = ( 7;(1, 7_[,_1 ey 7_[3 ) : expression of decision function
The expected loss (risk) when decision d=d‘j is used, is:
T(J;Q)=91L1j+92|_2j+""+9an3' (2-1)

which corresponds to f(z ) in section 2-1.
The expected risk vhen decision funct:.on D ( [][] ) is used, is:

R(D; e)-zf Y(j,0)7h, Pun.;8) (2-2)

£=13=1
where P(m Q ) is the probability with which m is realized when the probability

distribution of X is Q e.:
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Pz ;0) =6" 6,2 ... Opr T (1-6,-62— "~ Bpy )m’an_,, (2-3)

where

n/ \
o = (2-3)

m myim,l mkl

We consider three cases according as the degree of knowledge about the
system:

Case 1 : Q is known,

Case 2 : § is unkmown but the a priori demsity of _0 e A(_Q) is knowm,
Case 3 : Even the a priori densicy function of § is unkmown or there is mo a
priori density function of 6 .

In case 1, optimal decision function i3 the simple Bayes solution referred
to in section 2-1. In case 2, the Bayes decision function may be used as the
optimal decision f unction?- 5

It occasionally happens in conventional systems that the a priori density
does not exist or is unkmown if it exists (case 3). The value of § leven in
this case can be estimated if there are emough past data to draw on — that is,
il n is large in number, Then the simple Bayes solution is obtainable. Bow-
ever, with insufficient data, it is proper to use the min-maxr decision function
defined in the next chapter.

3 Min-max decision function
3-1 Definitiona
Definition 1
Decision function Dm vhich satisfies the following inequality is called
the min-max decision functior; .
R R(D, 8 )< = R(D, 0 ) (3-1)

where D is an arbitrary decision function.

There can be many min-max decision functions which satisfy eq.(}-l). It
is clear that the optimal min-max decision function suggested in Difinition 2
is the best one, — if it exists.
Definition 2

The min-max decision function which satisfies the following inequality is
called the optimal min-mex decision function and is represented by Dom:

R(D,» 6 ) < R(D,, 6) for all @ (3-2)

where Dm is an arbitrary min-max decision function.

However, Dom' in meny cases, does not exist or, if it exists, is hard to
obtain directly. The following min-max decision function may, therfore, be a

handy alternative:
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Definition
The min-max decision function which satisfies the followirg inequality is

called a sub-optimal min-max decision function and is represented by D
"fgR (Dsm, 0)d8 < [, R(Dn, 8)d0=S(Dpm) (5-3)

where Dln is an arbitrary min-max decision function.

It is clear from these definitions that Dom’ if it exists, is always Dsm

Dsm is easier to handle than Dom and is dealt with in the folloving paragraphs.

The quantity S(D) is calculable as follows:
so) = fgR(D, 8)de

—ﬁf G 02 74, Pime; 0)de
-5 6,

l—
> T} ol TG , 0 25
M z W, 5 S r§,@)P(m;; §)dg
where K(m,j) —{ n'/(m»k) } L. L (m +1) (3=5)

3-2 Sub-optimal min-max decision function

Transform expected loss R into:

0,0 - £ 2 r( 8 0) i P €)

ﬁrq e)z 7y, P(mg; 8) (3-6)"
;m e)P(;,e D) (36)
where P(j,§,D) = 5 7C -P(me. 8) (3=7)

The right hand side of eq.(3-7) expresses the probability with which d,
(s taken in decision function D. In the light of eq.(2—-1), eq.(3—7) can be.J
transformed into: ;
R(0,8) = @'LEP : . (3-8)
where P = (2(1,8,0),P(2,8,D), ... (g, @,0))" (3-9)
z.q.(}-e) may be interpreted as follows by the theory of games Eq. (3-8)
expresses the expected loss of game [J( Q > 2y L L) where Q and P are mixed

strategies which player I and II can take, respectively, and L is a pay-off

matrix. Rewrite R(D,f) to E(4 ,P) and assume that ©* = ( A ;....,q:)
and P* = (PI,P' .,Pa) is the minimaxr solution of game /7. Then we get the

following theorem:
Theorem

Assume that Dm is a min-max decision function and also assume that
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R(D,, 0) takes its maximum value at § = @y. Then,

R(Lm. Om mgn m;x R(D, Q)

= m—én mex 6'LP=E@*P*) (3-10)

Sspecially R(Dm,g) has its maximum value at Q = O*.

The proof of this theorem is given in Appendix. The next colloraly follows
this theorem.
Colloraly
A miin-max decision function [I] satisfies the following equation.
¢2§'1 T, Pt 9% =P (3-11)
where @*, P* is the minimaxr solution of game [ and

g e =1 (3-17)
Generally, there are many solutions which satisfy eq.(}-ll). Some of them
are not min-max decision functions. It is observed in many examples that a
decision function which satisfies the condition (3-11) and minimizes S(D) is a
min-max decision function and, therefore, a sub—optimal min-max decision func-
tion. The following conjecture seems to be true by a physical consideration
though it is difficult to prove it mathematically.
Conjecture
The decision function [®] that minimiges the f ollowing S(D) under the

conditions (3 13) - (3-15) is a sub-optimal min-max decision function:

2‘1 P(m;; 6" Zi=P* (3-13)
‘.
where EL.E (W—gg,wzif"'/ﬁﬂi)
T 20 mi€M =12 F (3-14)
f Hh.=1 €M (3-15)
¥ s .
S(D) § P T, K (e, ) (3-16)

where g+ and P* is the minimax solution of the game n , and where K(mi,j) is
as given in eq.(3-5).

Note that eqs.(}-l}), (3-14) and (3-.15) are linear constraints about 751214,
and S(D) is also a linear function of 7(?& Therefore, the above sub-optimal
min-max decision function is soluble by linear programming technigue.

3-3 Simple examples

Ex.l L=/[025 g* = (1/21,3/21,11/21)F
(g7}
430 P* = (11/21,1/21, 9/21)
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The sub-optimal min-max decision functions in this example are shown in

Fig.2.
B2 L.jfol2 o* = (1/2,0,1/2)"
(2 0 2) ? .
210 P* = (1/2,0,1/2)°p + (0,1,0) (1-8)
= (p/2,1-8, a/z)T 0$B<1

In this case eq.(3-13) is expressible as follows:
ff P(m.;8%)%¢ =(B/2, 1-B, B/2)7
which can be transformed into the following two constraints:
S
5 1
LPomghymi-test
;}1 PCme; €°) 7 + 25 Plni; 6072 = |
t= L=
Dsm for Ex.2 are shown in Fig.3.
Ex.3 L=/014 o*
( 101 ) T
410

p* = (0,1,0)T

(1/4,0,3/8)Ta + (3/4,0,1/4) (1)
0 ac 1l

P(m; Q*) = 0 when m, in the data m is not zero, because ﬂ;: 0. There-

fore, eq. (3-13) is expressible as follows:

S PCmu, 0. my)T: 8 Ze=(0.1,0)7

=1
Then the solution of the above equation is
2 x |
7tm/=1 7C;_.;,’=7t{;!'=0
where m' is a vector whose 2nd component is zero, i.e., m' = ("‘11'0"“31)'

The other 7{;_ have no constraints. Dsm here is shown in Fig.4.

Ex4 L= (01 0+ = (1/2,1/2)%a + (0,1)T(1a) 0£ag1
P = (0,1)"
The min-max decision function is
Ta=1l TKh=0 for all m, for all n

3-4 Relaxed min-max decision functions

A min-max decision function is generally used when the statistical prop-

i ey i i

erty of the system is unknown. The more data there is, the more accurately the
property of the system can be estimated. When estimation can thus be accurately
made, is it all right to use min-max decision functions to the exclusion of all
other decision functions? In other words, do (sub-optimal) min-wax decision
functions all converge on the simple Bayes solution as n increases?

When there is only one solution to game [7( 7] TLaB ) Dsm's all converge

on the simple Bayes solutiza. This can be proved by using the "law of large
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numbers”. If there are two or more solutions to game n " Dsm'é, in some cases,
do not converge on the simple Bayes solution. (See Ex.3 and 4 in section 2.3.)

The rate of convergence of D sm's on the simple Bayes solution may, in some
cases, be very slow. It is desirable, in such cases, to relax the constraint
of min-maxr condition and bring the decision function into the (estimated)
simple Bayes solution by estimating Q 3

We revrite S(D) as follows:

L (L SO 1'-'2 _C;g, Lij (mey+1) (3-17)
(n+k-1)! n+k :-r L1t

If there is po constraint, [A] vhich minimizes S(D) is caluculable independ-
ently of r. Then 7C’Eris fixed 80 as to minimize the following equation:

s(D,r) = )_. f L 7l.’,n, (Mt ! /MR ) (3-18)
=(7t’, 72 -, E )L (MY, - ‘"‘"‘/nm)
When n increases, this solution coincides with the (estimated) simple_Bayes
solution DosB which is given by estimating O= mi/n (this is a most-likeli-

hood estimation of _9 ). The corollary in 3-3 tells us that a min-max decision
function needs to satisfy the following equation:

sice”, [x1)=P" (3-19)
Instead of this equation, use the following inequality:

1 §icet LR -P"| < () §=1.2, —. % (3-20)

SRR, T Y fice’, [WJ)—P,-‘s o (3-20)

where )‘ '(n) is a monotone increasing function, );(0) =0, and Y(N) = 1.

Ilhen the amount of data is small, fix x’ (n) at a suff:l.c:.ently small value.
Then eq. (}-20) is almost the same constraint as eq.(3-19). When n increases,

7L(n) should be increased also. Then the constraint for a min-maxr decision
functxon is relaxed and the decision function shifts to (estimeted) simple
Bayes solution DesB'

The decision function, which minimizes S(D) ir eq.(3-16) under the con-
straints of (3-14). (3-15) ‘and {3-20) in place of (3—13), is called a "relaxed
zin-zax decision function". This is also soluble by linear programming
technique.

Function )‘-(n? can be fixed in various ways. One way is by consulting
the value of S(Dsm) (wkhick is obtainable with the solution of linear program-
2ing) and of (Dess)' Generally, They decrease as n increases. For example,
@ner. the rete of decrease in S(st) is very small comwpzred with the rate of

(0]

t -
dzcrease ic S(D___ ). )‘:-(n‘v should te increased auickly tc 1.
s
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4, Conclusions
This paper has discussed the question of how to use the statistical deci-

sion method when the statistical properties of the system are not known. It
explains fully the technique of obtaining the sub-optimal min-max decision
function.

The decision mechamism in cases 1, 2 and 3 cited has the learning property
as follows: With Q known (as in case 1), there is no need for learning and,
therefore, no need for data., With )(f) given (as in case 2), the calculation
of the a posteriori probability density ofﬂ after g is observed, which is used
for obtaining Bayes decision function, corresponds to the learning of the sta-
tistical property of the system. In case 3, the learning property is included
in the mechaniam of minimizing S(D). Therefore, D_ which does not reduce 5(D)
even when n increases (See Ex.4), includes no learning property. In suck a

case, a relaxed min-max decision function is preferable.
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Appendix (Proof of Theorem)
¢ Assume that
B(D, 8,) > B(8*,B*) (&-1)
and also assume that D* is a decision function unade by
Khe'= B, for all m¢ M (&-2)

Substituting this relation into eq.(3-7) result: in:

P(3,0 ,0*) = P for all & FR=RTRoN ki (&=3)
and then

o R(D*, 6 ) = E(8 *,P*) (2-4)
Accordin‘tly

R(D_, 6) > " R(D*, 8 ) (4-5)

This contradicts the fact that Dm is a min-maxr decision function. Therefore;
R(D , B,) < E(9%2*) (2-6)
On the other hand,
R(D_, B) 2 R(D,, §*) = &7 12(8%)

> min @I = E(9*,P*) (a-7)
2
. R(D, Oa) 2 E(9*,R%) (&-8)

In conclusion,

R(Dm' ) = K 6%,p*) (4-9)
KNow for proof of the last part of the theorer.
Assume that @ is the set of @ * and assume that §,, -&@ . Then,

B12(8.)> 8x12(p*) 2 pripr (£-10)

This contradicts eq.(4-9). £&s a result, RkLm,_e ) kas its maxirum velue at

g - o
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> PLANT = P.I.} [

di{MMce(Z )

OBSERVATION
MECHANISHM

{ OPTINALIZER Je—

Flg.l Optimalizing Control System

xl xz eeo oo xi LI ) xk

z

4 mll m12 LN N X mli eeoeo mlk
22 m21 m22 eeocece ma eeoeo mzk
4 mtl mtz LI ) mti eoeoe mtk
4 mrl mr2 LN W Y mri . rk

Table 1 Data of Past Control Experiences
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My
1 i?t -i(o.z,o.o,o.e)
; .2 Tt= (0.7,0.3,0.0)

' 3
i{ ~7'\'- (1,0,0)

0 1My

7= (0.5,0.0,0.5)
7T = (0.9,0.0,0.1)

a1 /,7?: - (0.2,0.0,0.8)"] ..
N 47 = (0.9,0.0,0.1) |

2 'rr’a-‘li "t
5 My Hdata 5
(n=5)

cf. Estimated Bayes solution given by

estimating =(ul/ n,mz/ n,ms/ n)

Fig.2 D for Ex.l
sm
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K= 7o TC=(0.25, 0.75,0.0)

—‘ﬁ/ TC=(0.0,0.75,0,25)

Lt '.'ff s

4"1

The decision function to the sample on this
line is /U = 1.

e for Ex.3




