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REKOTOPHE BOIPOCH WIEHTHOMKAIMEA OEBEKTOB YIPABERHRA

C.A.AHucumMoB, H.C.PaficCuan
RHCTUTYT aBTOMATHKM M TEeleMEXAHHEN
(Texuudeckoft KuGEpHeTUKH)
MockBa
cccre
®.A.OBcensn
BuyucaurensHHt qeHTp Axanemur Hayx Apuanckoffi CCP
Epesasn
0.0.Xamm
HEcTHTyT Teopuu mHPOpMANKE M ABTOMATU3ARAE
Hpara
yCC?P

dnesTuduranus OoGBEKTOB yNpaBleHUS ABXHETCHA B HACTORMee® Bpe—

MA ofHOMl -#3° paxgefimux 3a%ay TEOpuwi 4 NPAKTKEM YRNPABECHAA M pag-
padoTie CTATMCTUYECKEX M AeTEePMUHUDOBAHHKX METOXOB PemcHME 3JIARAY
gaeHTudUKANER B NOCIEZHME IOAH JACNASTCA SHAUATENHHOE BEINARNE

(. Dpu 3TOM B CBASM C YCHOXHGHHWEM OCHEXTR YNIPABACHHA ¥ peEeHmneM
8ajay ynpaBIEHHA CIOXHHMA KOMITEKCAMH KPyr 3ajay pemaeMHX HpR
unenTuuranuy S8HAYUTENBLHO pacmupaerCA. Ecam B HayanpHuil mepaox
Op¥ MAieHTsPUKAUUM B OCHOBHOM ORpPEZENANMUCh HApaMEeTpPH 38AAHEOrO
ypapHeHuss o0bexra, TO B Hacrosmee BpeMf MECHTRQUEKANNE BREIIBET
OleEKYy TEeCHOTH CBS3M MEXZy BXOAHEMMM W BRHXCXHLEE NEpeMCHHLME, BA-
XOX/leHue ypaBHEHUA CBA3M U ee NapaMeTpoRB, KOXHISCTBCBHYD ORCHKY
CTeNeHM M30MOPHHOCTH MOAeRy peanbEQMYy OUBEETYy, Pa3padorIKY EOTo—
ZOB ZEKOMNO8uQuM, arperarupoBasus, ONEHXY CTEHEHN HEKNHeINOCTN

4 Zpe : .
B HacrosmeM AORIaZe B OCHOBHOM DACCMATPEBRUTCS BONpOCH
¥aeHTuduxkanBM cTOXacTUYEeCKUX OCHEKTOB, COCTABAADARX Goxssol
KA8CC CIOXHHX DEaNbHHX NPOM3BOZCTEEHHHX QPONEecCoB. loxyvyeurwo
pe3yabTaTH MOXHO paccMaTpuBaTh X8E 0600meHME pPO3yAHTaT0Os, HpPEBE-—
AeHEHX B “*7 npu uAeHTuduKanuu 7FE6TEPMUHEPOBAEEEX OFHOETOD, BXOX-
HHG ¥ BHXOAHHO MEpeuMeHHHEe, KOTOPHX ABIADTCH CXyvaflurmx JydEIasNm
MIM cayqafiEnMM BenuyuHauM. B Havase pacCuMATPABADTCS NOXHNE XA-
PaRTEpUCTUKH CTOXACTHYECKOro M XeTeRMUERDOBAHEOI0 OCLEKTa-YCEOB-
En@ (BHXOAHWX NEepeMeHHHX OTHOCMTEXBHO BXOAHHX) WNE COBMECTHHS
(2XoRHNX ¥ BHXOAHNX) MHOrOMepEHe UNOTHOCTR BEPOSTHOCTH. B CBEAM
C DPAKTHUYECEMMH TDJRHOCTAMM ONpEAFleHN? NONEMX XSDERTEPACTUR XAR



HeyraccoBCKUX pacnpezeileHkii paccuaTpuBaeTCA MX aMIPOKCALAILUA
npy NOKOMYM rayCCOBHX MIOTHOCTEH M NepTypOIUMOHHHX HHOI'OYAECHOMH.
Jlaree paccM3TpuBaBTCA MOMCHTHWE X8PAKTEPUCL KUKl CTOXACTMYECKIrO
O0ODCKT& ¥ BBOMMUTCA [IOHATUEC JNUHEUWHOCTH B cpejueM. B cpraua C
TEM, YTO NPHUMCHEHMC MOMEHTHUX XAPAKTCPUCTMK AaA ONMCAHKA CTOXA-
CTMUYCCKRX OCLEXTOB 1O AAUNLM KX HOPMANLHOMW JKCHAYaATRIMI MORCT
NPUMECCTH K HCBEp®HN DE3IyJHTATAM B Clyvyae, KOI'RQ yCnosHan Aucncp-
Cit BUXONHOR nmepeMCHHOY OTHOCHTCNLUO BAOANON I'CTecpOCKCRACTHUHA,
NpHBOAATCA PC3IYABTALH KCCACAOBAHMA CKenactTuycckiux Qynwiali.licene-
ROEAHKD ONEHOX AucicpceirosuuX Qyhiunit mocsawcia nocreansd 4¥acrh
Aoiianas B MpuioxcHuM NMPABOAMTCA HCKOTOPUC PE3yNLTATU AJNH MO~
MenTHLX GyHKuMA rayccosckkx pacnpeaescHulle

I. CroxucTuueckiie OGLCHTH W UX NONHHE xapaxTtepuctyuru. lon-
RO} YapaxTCpHUCTiKOR AMHUMKUCCKOIO GGLCHTA immxu'rcn oncparop A,
ceasusavmud Bxommue X u Buxomuwwe Y nepewcuiue: Y=Ax.
Boobuwe 3Ta CBsI3b MOEET 38LK3BATLCA YpabuCHECM O0LEKTA By=Cx
(B #u C - HeKuTOpuE OMNCPATORN), KOTOPUC BKRBMUBAJICHTHO ypaBHCHMO
y=Ax, A=87'C , €CIu cyuecrsyoT oncparop B,

OnepaTop A MORET paccMarTpuraThCA kay cayyahuui wuiu Hecny-
yaffuuft, ¥ B 3UBMCHMOCTM OT 3TOro O6DBEKTA NOAPAJNACTHOT COOTBET-
CTBEHHO HA CTOXAaCTHYECKMC M ACTEpRMlMpOEuHHuWE. Muave rosops,
BHyTpeRHME llapaucTpu oChcrkra (nanpruep, A8 Junclinodl crcreuu-
KO3 uuMeiTH AMHCHHOro RadxbepeHuManblLoro ypasienun) Moryr OuTh
cuyualinuuu vnu HeT. Kpowme Toro, LcciciuBaHue OGOMX TUINOB OCDLEK-
TUB MUXHO IIPUIOAMTL NPK cnydaﬂuux B ACTEpUBUAPOBAHALX BXORHUX
curnsnax X , T.€. MU NOJAYYACU, YTO K&EAHA TN OCBCKTA MORHO
MCCAEN0BATh B CBOY OYEPCAL B ABYX CNyya8AX B 38BMCMMOCTH OT TOrO,
CAyyalhuu Wiy HeT BHEMHue Bo3aclicTsuA. B sAanbHeflueM Mu GBOZEM
NpeRNONUECHAE O TOM, YTO cnepaTop A (BMA U NGpaMeTpH) HE 3aBu=
cuT OT BXORHOro ckriana X HM B BEFOATHOCTHON, Hi B (yHKUKO-
H4JIbHOM, HM B KaKOU-KOO ApYrOM CMHCNE, MIK MCH2E XECTKOE Tpe-
GoBalne - BUTORHEHRME 3TOr'0 YCAOBHMA XOTH O LAA EBXOAHWMX CHI'HANOB,
NEUBBAN4ZdWBX HCKOTUPOMY KNACCYy, HanpuMep, OrpaHMYCHHHXS [‘\‘x\"Zg.

Kpoxe Toro, 4 ar0 yzZe TOAbx0 M3 coolpaxeRs# yRoGcTERa,
CyA=u PACCMATPMBATH CAydYall OAHOMEPHHX BXOZOB M BHXoZcs X u Y,
rae x{tl=x; u Y(#)=Y; - xarwe 1o dysxumn (mpoueccH)
BpEUCill t » Choyuafinue mru RetT. llpenncnoxenue O HeaaBUCKMOCTH
Aor X; no3ponserT BEECTH NOHATME AMEENHOTO OGBEKTA KSK
o0r:iKTa, OfELalop KOTCPOro A AMHEEH R HE 38BMCHT OT BXOABOIO
BO3RCACTBiUA. ITik OCECNeYBAETCA BuMOJHEHME NpuUKNA Cynepno-
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auunu. MonHaa uacHTUOMKANUA eTEPMMHMPORAHHHX CHCTEM COCTOMT B
onpeAcicHiM BMAA ONcparopa A M ero napaNSTpoB Kax Haudonee noi-
HUX XAPAaKTEPHUCTKK CHCTEMH, T.K., 3Had A, MH MOzZEM OMpeCZenyib
OZHO3HAUHO BNXOA Y  npu noGou udsecTHoM Bxore X.

flonHaA WICHTHMQUKALUMA CTOXACTHYECKE X CMCTCSM COCTOXT B onpe-
AciCHiM BUAZA ollepaTopa A M ZUKOMOB DRCMPEACHEHMA CLO NMapaMerpow
(a ue cawix napaxeypos). OALAKO A3%Z€ NpPUM M3BCCTHOM OMEPATOLE A
OANO3IAYHO ONPUACHATH BuXOA Y  npu #3BCCTHOM BXOAC X Heas-
311, @ MOAHO TONLKO YKA3aTh pacnpeicleHue L npu AanHon X,
T.C. YCAUBNYD MIOTHOCTH BEpOATHOCTH I  orHOCWTENSHOX: Yﬂﬁvi)
KOTupast GYyACT 3AaBMCHTH OT BEPOSTHOCTHHX XapaKTEepMCLitX BHYTPEH-
HUX 113p2MeTPOB O00BEKTA. WACHTHDAKAUMA NO AQHHHM HOPMANBIOIO
GyHKYLOHIPOBANKA OCLEKTA M MOCHENYDGREC MCMOAb30BaHiue peaynsbra-
TOB KAEHTWUOMKQNMM CBOAKTCHA K auanuay XapaxXTCPUCTHK BHXOAHOTO
cariaaa Y npum ycacsum, YTo Ha BXOAC A€MCTBOBRAN BXOAHOW CHMr-
yan . [MonnoR xapakrTepicTikoft ABAACTCA Y(v/x). Cncro-~
BATANBHO 33AAYy MACHTMOMKAUMKM CTOXACTMYECKOH} CMCTOMH MOXHO dape-
JlendBb KaK 3a7ayy HAXOXZIEHMA YCHOBHO# MIOTHOCT M Y’/b&/ﬁk,&éSsl)
( So - nayano orcuyera), T.e. OnCpaTopa, MO3BONRNAEIO HAXORKTH
pacupcacncuuc BuUXOAAa Y¢ npu uasecTHO® BXoAHOH pcanmazan i

, 538 s 1, B cayvac AMCKpEeTHHX NMpoOLECCOB aHanoriyioit
xapaurcpncruxon Gyner W (Yn/2y,...,%n), B cusa ¢ atuM Boa-
HUKacT ponpoc Haxoxaeuns dynkuut YW {(Yn /x:,..., n)e  Henc-
cpeACcTBeHHOe BuuMcAeHMe Gynkumk Y [0 CTATMCTHYECKHM ZSHHUN
NpaKIuMyecku HEBOIUOEHO. [l03TOMY BA&EHU annpokcuMupyomie QUPMyNH.
Jlanplie MH NMPUBOAUM pe3ylAbTATH ANMPOKCHMALMM NMPM MOMONMM rayCcCoB=~
CKMX NAOTHOCTE# M nepTypCaUHOHHHR MHOrOUIEHOB. JlNT CTATHUYECKUX
O0BEKTOB NONHOM XapaKkTEpUCTMKOM GYAET AByMepHas nnowuocrbVQQJil

2. ANNpoKCUMAIMA CTATUCTMUYSCKUX pacnpezenexii

p 10 paccMaTpMBACTCA METOA NPUOANZEHUA CTATMCTHYECKHX K[i-
pux paccpezenenne ‘P(x) ynxumann  f(x)= B (x)[(z) , rae['(x)
rayccosckoe pacupeaenenne, Pp(x)= g o IEe - COOTBETCT-
ByoOiM 0o0pas3oM MojoCpaHiul uHorounes crenesu fL,

KoadduusenTds Q¢ 3TOro MHOrOWICHA CMPEACHANTCA M3 YCAO-

Bua: 2
J={ [?(x)-ﬂ(x)F(xJ]zerx= i, (2.1)

KOTOpPOE NPUBOXMT K ypanueaunn MOMEHTOB

m{x]= o Rllllefas " Tie =50, ey
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Szech u Huze vepea ML 0603HAYEHH MOMEHTH CTATHCTUYECKO-
ro pacnperexexus, a wepea M - MoMeHTH rayccoBckoro pacmpezele-
Eug. [puMen, 4TO BCe BCrpevanmMecs clydailiue Beauwuud X HOpMM~- -
POBAHHHE ¥ LEHTPUPOBAEHLE, B NPOTUBHOM CIyyae CAENAeM 3aMEHH

y= L= m Buscto X  Oyhem paccuarpxears U, Hcmons-
8yeM MeTC] NpLBENEHHNH B ANA QONPOKCMMANMM MONHHX Xapak-
TEPUCTUK CTOXACTMYECKOrO OGBexTa. EyAeM NpuOIuxaTh MBOrOMEDHHE
protsocth P (%e, ..., Xx)  dynxusmuu §(x,.. xd=P (2. 22,7,
rze [(®,..,«) = uHOrOMEDHOE raycCOBCKO® pacupeleleRke,
napaMeTpH KOTOpOro (MaT.OXRXaBMf, Aucnepcku ( y Hac Mm;=0,
6.=4) u KO3d¢EMEHTH KOppenfmu4) BHOPAHH Ha PGHOBaHME IQHHOTO
CTaTUCTHYECKOrO pacmpersienuf,a Pa(x., -,1‘-)= Ot ] 120" -
- COOTBETCTBYDMHM 00pa3oM HOAOCPaHHHH uaorbq ©H,
[, %) meer sua (@4 | ppe C=eonst.,Qlx,,-x)>0 - ksezpa-
TuyHaA Qopua. Kprrepu#t Ana HexoxzeHMA ko3dunmuenToB Q...
Gyzer asanoruues (2.1):

F=T T [l i, 2 ey demi (2.8)

.OB mpHMBOZMT K ypPaBHEHMEM MOMEHTOB, QHANOIrMYHHM (2.2)
.t”

mp.; ze]= I Tx -'ri" e T, 2. J.r.‘Z: ,/.w-'tvw “](3‘-‘*)

Ecax umu BoasMeM Ns2 » TO pemeHueM OyZeT P. (764,...,‘1'“)-4,
T.€o Mpy Ns$2 HaWIYyYDKM NpuCnyxeHueM nO Kpurepud (2.8)
Gyzer rayccosckoe pacnperenenue: (%, ..., %)=z, ..., 2.
PaccuoTpum cayvaf N =3, Ho mpexZe OpTOroHanuU3yeM BeXM=-

wey Xy TaK, YTOCH ‘sz --M[u.-u,-]: 0, 9o usBecTHuY
nponecc OpTOroHanu3anuus ;

u,gx‘, Uy =2y~ 'igz‘ll: Siee
Torza [ (u,,.. ,u.)el‘(u.) Llu),
# (2.4) npuser s mla}... “]r =, G I~M[-' ) Ml .08 3),

Pesenuen Torza dﬂef
P,{‘ll,,__.u.)=1+§ -§L{uf‘3“&)’%”’4"&4(";'_{)*‘,‘;”74“( u;% 2‘“ ’ (2.5)

- 3
rxe si=m[x.l - xo03(¢penuerr accumerpunx:,
megj= %m[u; u:] . m.-,-.=m[wz4;'4~].
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Iza N = 4 nonysum (BEanpuxep, AAS AByMepHOH uornocru)
Qu=1¢'£g*:10£ a~=°(}i'm‘.) Qn"{r‘:*mu) Qie* /£*2£J
Qu"(en?eu), “'-(5’2;“) a‘°=.g‘ a‘-"é‘" » Q1= ,Qa=My,,

Qvo= E" aﬂv""‘ 0343%"‘ 0:;—-%“)0;::[,

rze E ='£!§3‘l'3' - axneccX; E*’l&'-;l—'i&i e‘J .%m[u ?’/]
Qopuyms NpEMEHMMH NDU MANWX Si mg,Mijx, £i, £

NMepexon or dymkuuit {{Uus,...,usx) & Qyumuﬂu {lz;, %)
rpoMo320K. [TO3TOMYy B4 CAVYaA ZABYMEpHOM MIOTHOCTM MH NpuUBEAEY
Gopuyan AR KO3(XpuL 4eWTOB MHOroOYJNEHA P, ('xt,:rq_) s Te€e KOI'-
8 ¥, » X, Heuprorosampsd, C nmouomspn Gopuyx (n.s)

(2.6)

(ﬂ.g) ] noayvsmu: aao-'.'l Qieo5= Qu=Qop = 0

Q=T 3‘1;,&%31,; mywgfe2e) o _ta éﬁ +3Z,Jna -m“l( i)

0, = St~ [ Sl- "3 vumu - 3v.mg Qos = L 5’1 *3119’7_7u'31¢mu_
(1-¢s)? (i-va)?

a 1(2 gz 't‘urj*m;ﬂ‘ztamzfzumu 72:1)?’« Ou Mm'l'zﬂl "J.m“ ZL‘m'-'
({-vel - -3

B kauecTse annpoxcuuauuu YCIOBHHX MNOTHOCTER Y( 9/331, x)
MOXHO 6paTh QyHKOUM: {y ”&—‘-_u-l P‘-;x%ﬁx ;lf' I(;‘!lg;gb_,_.d , T.€o
anmpoKCIMuPoBaTh OTAENBHO QYHKIUM tP(y x‘,' ,x.) " 'Pix., ) Xx)
N0 M3NOXCHHOMY BHE® METOAY. [Ipu aTou nomvuaercs
Ple,, . )= If(y,z',,z.ldu, T.e. annpokcuumpya (Y, ...,%2x)
MH ORHOBDPEMCHHO anmapoKckuupyeu B P2, ... 00-) no Tomy
Ze KpPUTEpuD, TaK YTO AOCTATOYHO HaUTX f(s 98‘,... xe),
8.MoNCHTHYS XapaxTepMCTMRM K JUHERHOCTH B CPSIHEM. B Heko-
TOPHX JPAKTMYECKHMX CIYYaAX BMECTO YCIOBHHX MJIOTHOCTEd WOXHO
OTLaHNYUTHCA MEHEE MOAHHMH, HO 6ONEe YAOOHHMH, YCIOBRHMH MO—
MEHTHHMM XapaKTEPUCTMKAMM M B YACTHOCTH, yCIOBHHM MaTeMaTRye-
CKUM OXUZIBRMEM BuXoJa oruocnrenao sxona M(9./¢s,S<S<4)
B HenpepusHOM Cayuae 8 M (Yn/Zy, ... :rn) B RUCKPETHOM
Chay4se,
9Tu ycnoBHHe MaTeMaTHYECKHEe ORHAQHUA paccuarpnnanrcx npu
ADOHX E uny /2 ROOHX QZU) widk %] u onpezerfanTCA
HEKOTOpHM ONepaTOpoOM B TakuM o0pasoM, 4YTO




MIye /25,505 Ssd)=B,%s B HENpEpUBHOM CIYTae, (3.1)
M Y./x,,..., 2.)=8{x,,...,2n} B ZMCKpeTHOM CNyyae.
Beezeu cirexyogee onpezexchue: cucremy 5 Hasoneu Nu-

HellHo? B cpeAreM, ecay oneparop B niHceH, T.6. YCNOBHOE MaTeua-
THYCCKOE OxkAaHME NMHEHHO 3aBUCMT OT BXOAA. OHA3NDAETCA, YTO
9TO0 ofipeAcleHilc ABNACTCH €CTECTBCHHMM PACUMPENKCM KIACCUYCCKO~
ro onpeaeneHua aunerocru. AolcTBuTCABHO, FAR HUHEHHHX cUCTCM
onepaTop B GyxeT uMETh BUR

M(y‘/.f;,sods %) ;K(! s)az(:)ds
WE Myl mn)—AK‘ 2, (3.2)

Inf nuaelHUX ACTEPMUHMDORAHHHX CHCT(!M OYACY MMETDH:
H(l)=x W, s)els)ds

e 9..=‘Z‘a W, 2.

(3.3)
Herpyaro Buzerhb, 4TO ecny punondaerca (8.2), TO Bumon-

RAercA M (3.2). B cawou pene, B (8.2) Y /é) OAHOIHBYHO onpe--
aenserca suavennmuy 0:(S), So< S<s# , B anauur
Yl=Hlv/rs, % s st), Toc. uu nonyvacu (3.2) npuueu Wild=Kli,s).
. AHanoryyso B RCKPETHOK cnyuac. OGpaTHO X€ HEBOPHO, T.Ke JH)
# x(s) B obueu clydac CpHi3aHW BEPOSTHOCTHBEN 00pa3c:i. Taxul
oGpa3ou gopuyna (3.3) ABnficTCR uacrTHuM ciayyaew Gopuyar (3.2),
KOrZa Yy, u Is cbA3aNK ORMO3LAYHON 3aBuCrMOCTDHD.l0:TORy
onpcnencrre nudHeknHocTn (3.2) Gonee mupoxoe, uci (3.3)e OyiK-
unn K (4,5) B (3.2) nuanerca oGoGueHneu BecoBOR d, HKUMM W(",s)
ZNA AGTESpUUHIPOBAMHNX CHCTEM, MO3IOMY €C MOEHO HA3bdTh OCPEL=—
Hennoft nccopoR ¢yuxukre# croxacrryecko#t cucremu, YTOOH BURCHUTH
cunca repxria "ocpexueHnaa®, paccyorTpxiu oCHec ypanﬁeam arRei-
HOI'O CTOXaCTHYECKOrO OGLBKT& B BHUAGS

Yy=Qx:= ; Kl s)xls)ds .

n L] |

Fi Sa=faWizis (8-4)

zrces JS(4ys) yam ¥y, ..., %n - cayuailuze Syuxuus, T.k. onepa-

Top A- cayuafuufl, B cuny CZETGHMHGPO NPERICIVZCHHUS O HE3aBUCH~

vectit A o 22 na (3.4) nomyuru
Mluefes, soes < )= f’%(ls)x(rzds

3.5)
M {9./9:‘, ,2n)= Z: UC . o (8.5)
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CpasuuBasn (§__5) ¢ (8.2), us BumMM, uTO
ku:"'—' JC“:S)'
Ki=%: (i24,...,n) (3.6)

T.Co KH,S) - ABNAeTCA cpenuﬁu 3naveHueM BecOBOH caywaftHOH
pynxuu ZIC(!,.S) CTOXBCTHYECKOff CHCTEMH.
SaueT:iM, YTO BCAKAfA IuMHe#lFafg cUCTeMa HABIAETCHA B JuHeiiHOHt
B cpeaHeM (ecnu A He 3aBiCUT OT X ), oGpaTHOE Xe HEBEpHO.
Axa Haxoxiemua ocpenHenHod Becosoft dynmuus K ({,s)
MOXHO NCAB30BATHCS MaBeCTEHM ypaBHeHueM Bunepa-Xonga,koTopoe
nonyyaercs us (3. 4)

Ree(Ls)= f X, r}Ruft.S)wa KlhehRale,s)dz . (3.7

QYHKUMA K u. S) , Haxoznuuag K3 (3.7), Zae? HaM HEKYR "cpen—
HOP® MoZenh DeanbHOro O0BeRTa. HacKONbKO xopoma 3Ta MOXENb
MOXHO CYZAMTH OTYACTH IO BTOPO# YCIOBHOM MOMEETHOM XapakTepu-
CTHKE, VCIOBHOM ZMCnepcum %(Ht /-2‘-’:, So€Ss ,{)

e Dn/z,, ... ,2n).

Ha Gase ycnopahx uouenmux XapaKTepPUCTHK MOCTPOEHH AUCIEPCUOH-
HHe MeTOZH CcaydafEux QvHKIuft £
NycTh, Hanpuuep, MMEEM OCBEKT Sl!)- K(bs)x[r)isw/(/:ﬂm;.
31y KnaccuyecKyD CXeMy C moMexo# Ulf)  MOXHO paccuaTpuBaTh
KaK "mynsmuft® croxacruueckuft o0beKT, omepaTop KOTOporo A

- cnyvaftuuit, auHefEnll HeopHopoAuhfte Cnyvalisuif nmapamerp onepa-
ropa A V({) Dpeanozaraercs,OCHYHO HE3aBACAQUM OT a(s).
Toraa M(Ye/%s, SosS $4)= fxa,s)z(s)d: +myll)= 82(s),

Ecan Mmy(¢)=0 , 70 oGosian Z(&)=M(Y%/zs,Ses5< )
noaywaeM OCHYHYD ,88NKCH ZeTepMUHMpOBaHHOH nuHefiHO#t Mozenm
oovexra: Z({)= Ku,s)z{dds.

4, Regacruqecxaa dyExnus u ee csoficrea. [pu upenrugu-~

Kanuu OCBEKTa OrPAHMYMTHCA TONBKO ONpeAeNeHUEM NMEPBHX YCAOBHHX
M Ge3yCIOBHHX MOMEHTBNX (YHKUM#l MOXHO TOIHKO B TOM ClydYae,Kor-
aa ycmoszas xucnepcus D (Ye /xs) rouockenacruuna. lpu HeBHMOmHE-
HHMH BTOrO TpeGOBaHMA HOPMMDOBAHHAA KOPPENANMOHHAA, HOPMUpOBaH-
Ban gucmepcuomas Ty (45) m  Zve(4,s) Qymaun xapaxrepu-
3YDT CTeNeHb CBA3M BLXOZHOR nepemeHBROR 9[1} x Bxozsoft Z(s)

C omuGKO#, KOTOpagR TeM Gorbme, YeM "MeHee IOMOCRemacTHyHa"™

D (v:./xs). MoxBo mokasars, wro  Zwe({,s)  xycaropa,
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Ha BXOZE KOTOPOro. AeHCTBYeT rayccoB NPORECC, CTENeHb CBASK
Y({) u x(s) nr% 10GMX womenroB Bpemeru ¥ @ m S5
XapaKTepuayer MeHee TOUHO, ueM  Jwx (#,5) xsmanparopa c Tem
xe BXozoM. CBOEro posaa npeienbHNM ABIAETCA, Hanpuuep, cayvaf,
xorna Y(f) w x(s) Baxozarcs » neesAOHOpMANBHOM KOPPEN MM

« llpu aTOM M Yoell,s) =u e (4, 5) TOXZecT-
BEHHO DaBHH HYID, XOTR MCCHefyeuuc MPONECCH 3aBMUCHMH. Jaf
onpeAeneHs A BENMUMHN OMMOKM MDU HCMONB3OBanMM  Lyx (¥, S)

u Puvx (4s) B C1yyae HENoCIOAHCTBA YCAOBHOR AMCnepCuu
BBelEeM GQyHKIUD

T[%(ye/-‘c:)-M{%(yo/xdﬂzglfx;)dx, %

? {[,S =z 'Z‘; - |
i T [ 9)-Mltsl 2] gulsdds (4.1)

M Ha30BEeM ee B3auMHOH# ckezacTuveckod ¢yHkuued ciryvapHux mporec-
cop  Yl4) u x(s).

PaccuoTpuM OCHOBHHE CBO#CTBA BBeACHHOro onpeaenenua. I. Baamm-
Ham ckeAacTuveckas gyuxuua neeur B nperenax O € Tyl s)s< .
LeftcTBuUTENBHO

a) Wa (4.I) caenyer, uro Jyx{({,5)20.

06oanauuu yepes (Y /%s) - ycnoBHyo MIOTHOCTL BEPOATEO-
ctu  Y({) ornocurennHo X(S).

6) Lna Koka3aTexbCTBA }’yr_{(IS)Si BO3NOAb3yeMCA HEPABEHCTBOM

2

£[ 1 (s M) Wtstegds] g, (m) des >
i (4.2)

21 T,; (92 - M (s/2) Pl )% g, fes) e,

KOTOpOe CTAHOBMUTCH OYEBKHHM, €CIM yuYeCThb, YTO B JieBOf vyacTh
(4.2) 3anucaHo 3HaucHue D (.94/ » 8 B NpaBoft - TONBLKO YaCTH
Aucnepcuu ‘:1({) . HepaBeHncTBo (4.2), OYEBHAHO, MOXET BHMOX-
HATBHCA AMIb B Ciayyae

0

S (93 . Ml(y‘))"?(y‘/zx)dy‘ }_I{yf‘ﬁz{yl/tl)) P{yf/xl’)dyf ) (_-‘ 3)
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e ucnonpayercs ¥ anBOIMIOI HUXEe Z0Kal3aTeNbCTBe

po
( 1(34) M{‘D(&k/x:)]) ?’(94/.1‘:)3,(1:} d.‘l( d’l‘; >
T [ F (98- M-l feads ] es) dcs >

> T[T (st - Mise/ed- M) WV«/)&)@J}J@M@:

(4.4)

2. Baauubas CKeZacTHYeCKAR QYHKIMA paBHA HYNO TONBLKO B CIyYae,

korna  Uwx (£,5)  wnu  Qux (4, 5] touHo xapaxrepuaynr cremens
CBA3M CIyyalfiHuX Apoleccos Yt B x(s). leficTBu-
rensuo us (4.I) creayer, WTO JFuyell)s)-Onpu

a) 9 (9&/&?_9): M{ﬁfw/‘r;hcom{_

= YCIOBME FOMOCKENRCTMYHOCTH

6) D(ve/2s5)= 0 - ycnoske GYHEMHMOHANBHOM
ceasu nponeccos  Y(4) m z(s).

8. BsauMmHag CxezacTUYecKas QYHKUMA AOCTHraeT MaKCUMANBHOTO
sHaveHud, Koria Ly (4,s s) (3 cnyuae auselinoit cBS*E mpomeccos

yi¢) = :c(s)) ue Ty, s) (B caywae auueiinoff cmaan, mpouec-

cos Y4} x w(s)) pasas ByED. '

JeHdcTBUTENBRO U3BECTHO , 9TO B OCmEM cuyvae

D(9e)=DEMU/f + M{DLse /25 (:5)

HO B pacCMaTpPUBAEMOM QAaCTHOM CRyYae

7 (94)=M{%(34/1°9)} ! (4.6)
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Ha (4.6) caemyer, uro anamesareap B (4.I) nmocruraer cpoero
Mil:iaMANbHOTO 3HaYeHHA., Eciu yyecTh Tarze, uTO QyHKyuA (Y% /x;)
nozoxuTenpHasn gpu aon6ou X (s) s TO HETpYyAKO nmoka3arh, YTO
YACIUTENb OPH DTOM AOCTHrAET CBOEro MAaKCUMANBHOIO 3HAYEHMA,

4, Yeu TecHee aaBucuMH cayuairwe mpoueccs Y (¢) u Z(s),
TeM Ooiblle 3HAYSHME 79,(((,5) W B npejele CKONBb YIOAHO Mano
oTauyaercsa oT I, ecad mpu ITOM yx ((,s): & .

Takuu oGpasoM, BaamuHaa CreAacTuyeckas QyHrxnua ABnfAeTcCH
HeOoOXOoAuMOft XapaKrepuCTAKOR npy MACHTHUPUKAN MK CTOXJCTMYECCKUX
OGBEKTOB,

llps uccrenoBaHuy cayvyaltHoro npouecca x(-") BO3RMX3eT
ananoruMyHas 3ajaya OLEHKM TOYHOCTH iCMONH30BRHHA 6r'0 asTOKOppa-
JNAUMOHHON M aBTOAMCIEPCHOHHOH (yHELZM B KAYCCTBC XATAKTEDUCTRKM
TECHOTH CBA3Ue Takyn OUCHKY RACT aBTOCKeAACTHyecKand yuKLHA

cayuafinoro npouecca L (5):
oo

Y (o8] ([otefr-Mtesed]g tedz, 17
b 4 S‘ o2 3 :-Ll-:
' { [oxs,-M o )-Hf 2 0 ) s

(4.7)

00 _oucukax zucnepcuonubx dyswiuufle JAnaA ueneft umxeHTUduxauuu
npu onpeneaeHuMM xapakTEPUCTUK: CBA3M MEXAY BXOXAHuMM JC ']
BUXOZHHMM Y CHUIHBJaNM, OUEHKE CTENeHW HEIMHERHOCTH, CKezacTuy-
HOCTH M AP. MCNONB3YDTCA B3aUMHHE KODpEJNAUMOHHHE Ryxe u au-
cnepcuonnne Qve  QyHzoum "9 B cBA3u C 3THM BO3HMUKAET
Bonpoc o6 oueHrax 3TuX GyHkuu#h M3 IKCNEpPuMEHTANBHHX HaHHHX. Kax
M3BECTHO, @y Ayume XapaKkTepu3yeT CBASh MEEXY CHyualHHMH
pemqiseawn, veu Kvxe . OIHako B- GONBUMUCTBE CAYYacB BEPHO
cnenymeuee: yeM CIOXHee XapaKTCPUCTMKA 3aBMCMMOCTA (TO eCTh uey
nyyme XapaKTEPUCTHKA OMMCHBAET BABMUCMMOCTD MEXAV CAyYallEHMA Be-
AMYnHauMu), TEM XYEe CXOAMTCR ee omnedxa (TO ecTh TeM GOxbme XOAX-
Ha OuUTh BHOOpKA, YTOOH C TOWN X€é TOWHOCTHD 3NNPOKCMMUDOBATE 3Ty
XapaKTe PUCTHUKY ).

llycts peayaprTaTauy HaCnoAeHuR 3a cCaAyvaliEHME BERUIUHAMH

X x Y OyAyT napx (xl,yt), ey (Zn,¥4). CocToATenLEYD
M HCCMELIEHHYD oueHky A& Ryoe  HaXoZuM OO QOpMyZe




i(:t. EN9%:-9)
Ry = - n=1

-x.. wl éx: g‘ i Y:
rae “n ) n
BercrBeHHo 118 X u Y,

Ing nonyueHus oueHkd O vx  MOXHO NMpuMEHATH ABA METOAA.
OGHYHO MH MPOM3BOAMM IPyNRMPOBKY AHHHX B MHTepBaaW mo XL,
TO ecTh pa3CusaeM aHavenua L no K  uHTepmaram, B Kaz-
AOMY MHTEPBANY MOCTABMM B COOTBETCTBME Cpeflee aHaueHue X,
B 9TOM MHTepBale. COOTBETCTREHHO MoNyuud 4 paaCuenne J  Ha

K orpynou: Y  npusamnesur U-4 rpynne, ecnu cooTeT-

creyouea JC  npuHamneEuT L-MY uarepsany. TakuM oGpasoM,
MH rpynnupyeM Y B Tacauuy: ?'.". 'y'"' 1-oa
TpYNe MOXHO MOCTABMTE B COOTBETCTEHE’ rpynnonoe cpenuee
Y;=%£2%J  Kag u3BecTHo, OHO ABIRETCA COCTOATENBHOM ¥ HECMETEH-
HOM OHEHKOW ANA WATEMATHYECKOro OZMAAHMA &  npu ycnoBam, 9TO
OH mpusapnexnr L-¥ rpymne, TO ecTh Mpi ycaosum X . JAs

- BHOOpOuUHHE CpenXHue COooT-

dyukoun  Oye B KauecTse COCTOﬁTelehQﬂ U Hecueneton oueniu
MOEHO OPage BeNUTUHY Oyz = Z Bi(5-5) « 20 f:r?.t
rae = Z "‘1’9) - oueuzfa nonuoﬂ zxucnepcmi 3,

~ OUeHKa nucnepcnu Y B 1-4 rpynae.

OnHBKO MOEHO NMPHUMEHATH M, APYyroff eToX AnA OUEHKM RACmEep-
cHOHHOM GYHKIIMM, KOTOPHY OCHOBAH HA MPEZMOIOREHUM MCHOTOHHOCTH
perpeccur Y nmo. XL (3T0 nNpeAnOnOzZEHMS BUMOXHAETCA AIA
auHeiiHON perpeccuu). JlokaanBaeTCA CIERYOMAA TeOpeMa: ecru
XiSHs.. €80 U (2,94, (%2,¥3), ..., (xn,gn.) - H3MepeHHHe
AakHue, TO Budopoquaﬂ OleHKA ANA HOPMUPOBAHHOI'O KOPPEJ AMOHHO-
fo oruomenusn 'Zyx B Clyuae HeyOuBawifeff perpeccud paBHa:

2 _ 2l - fd)
Lyz = 2:(9‘ Z%)z

rze Ans Qymmu j(:t ) HMEDT MECTO COOTHOMEHMA:
{

e =41, K in K
= mi

Kive= wa{ ik x’Z 9,,.\ .f Y , £=ird,ie2,.

-

¢ mak? ¢ maK?
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[ipuncxenue
MoueHTE raycCOBCKUX pacnpexcneruit

Nyers X x 8 CEA3aBH rayccoscxof mjoTHocThD. 0603HE-
YiiM COEMECTHYD I'ayCCCBCKYD NAOTHOCTH 4epes 2 s ORBCi'epHHE-
qepes . )
KoxAO0 noxasarb, YTO AJNA 3TOro CIyyafd MMEDT MeCTO CIeAyD-
WME COOTHOWGHMSA.
I. Jlna MOMGHTOB OX;HOMEPHOrO rayCCOBCKOI'O pacmpeneneRMA
EMeeT MecTO pexkyppeTHas opuyna:

M (=" =nes Mlz"*) + me M ("),

(l'I-I)

B camou zexe: M (2" Inei= nﬁ'z Sx 9. (x)d’f"&;jg,(z)d(m").

FuTerpupyeM no yacrau:

ne’:!"l(m" t)= 6',;[23 9. (z)l X:x:" '(x)dz]=6‘z S:c"” ”’*‘ggcxjdz_
-Sac" ‘g, )z mxSe: "9, (x)dee = M (™) - meM ("),

2. lua KoBapuanmuM KMeeM

Ryrx =nRwM(57). (1.2)
Zecrsurensso  Ry~z =M (4"x) -maM (¥7) =
= ML5"M (/)] -mM{8")=M[5 Tmer tasZatsmi]-me Ml
= B [M(sm) - mgM ()],

orcoaa B cuny (0.I) caexyer (II.2)
B sacruectu, ecak My=0, To
0 - neu N=2K

9“t (2K ﬂ“Rx’ -2 neu l!-‘-'zk-i (n‘s)
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3, Ecau Mx=My=0C, To

M(m 3“ 1) M{xzxt ze v O.
M(x" “) i }x" e le, u)dxds

Sauena X Ha "l' Y wa ~-Y aaér:

M(szyze 1)8_ S zk ze 41;”(r y)a’:r.o’y_

"'f le:uyu ‘{t,(r,v)dzefy--j‘i[ 2*y'¢t) , orkyna caenyer (M.4)

Hanpiu (M.4)

4, Ecan Me=My=0, 6x=6y=1, To:

M(z9®) =M (x*9)= 37z, (1.5)
: M (1:152);' i + 21:‘4’

(M.8)
Mt y*)=Mxo?)= 3+ 4225,
] : (0.7)
‘.M(l,-‘l Hs)z s'zzy + G”Li,

(ﬂ.a)
(N.5) cneayer ua (NM.3) npu I =3 ( =2).
MlockonbKy yclOBHOE pacnpeaeiexue ‘r’m ( S/ OyZeT rayc-
COBCKMM C napaMeTpaMu Uxey -g-x-x u 6yy{-i, ,T0
(M.I) maA yCAOBHHX MOMEHTOB 3aNmMmeTcCs TaK:

(5= (1- ) H5™ i+ 2 S M el ey

5 Hac Gx=6y=4,
orcoza ™M (9¥/x)= 'sz, xte(1- ”Li,)
M (93/.‘2'.) Z(I‘IIJ)M(y/I,* z:yxMny) zr‘,x "321)(1 Zrzl

Torza noayunu (II. 6)

Merd)= M[TzM(Hl/x)]—ﬁ 2o+ 8-10)= 1+ 22.,,
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®opuyzr (0.7) ¥ (0.8) oueBrAHH

M {IqHz)=M[$HM(9zf-ﬁ)]=i5ZL +3(1~TL}=3 +122%,
M@ P)=MEPMA)= 157 9, (1-18,)= 912, + B2, .
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SENSIBILIZING INPUT AND IDENTIFICATION

. by
André Rault, Roger Pouliquen, Jaccues Richalet

National High School of Aeronautics, Research
Centre for Automation, Paris, France

INTRODUCTION

Theoretic automation has attained a high level /optiniza-
tion, adaptation, .../ while for control engineers more and
more important are practical problems of identification and
simulation of real processes.

Identification by means of a mathematicel model has been
rainly considered as a problex of parameter optimization /3/:
a certain functional representing a distence between the iden-
tified system and the seeking model,was to be nirimized. The
distance may be a distance between structural parameters or
a distance between system’s ard model’s states. It will be
shown how the identification based on the distance betwecn
structural parzmeters i.e., on a structural distance, results
in simple algorithms describing decisions on paransters varia-
tion in the parameter-space, Considering, on the other hand,
the identification based on the states distance we suggest to
embose an informational aspect, in contrary to some methods
not complying the whole information contained in measurement
data /4/. We'll show how the sensibility coefficients introdu-
ced by Tomovic /5/ enable to measure a quantity of information
contained in experimental data related to one,; definsd parame-
ter.

We shall state relations between quantities identified and
sensibility coefficients, Finally, a sensibility index provi-
ding a measure of the information partitition will be definad.
The index enables to determine inputs called spherezing, which
uniformly designate the information, as well as inputs called
sensibilizing which concentrate the information on a chosen
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parasmeter. Practical examples will be added.

2. IDENRIFICATION BY A MODZT M2THOD

2+.1s Problem of identification

Consider a dynamic system given by a famlily of responses
for knovn inputs. The problem is to determine a mathematical
nodel of the system, in virtue of the responses. Another terms,
in order to identify a certzin system, we shall compare its
output to the output of e muthematical model actuated by the
same iﬂput; A "distance" betwesn the system and the model can
be defined as a_distunce between states, or as a stiuctural
distance, In the first case, the distance is expressed by a
functional of a difference betvieen system and model outputs,
vnile in the sccond one - by a functional of a difference be-
tween nodel and system parsmeters. A minimization of the distan-
ce terminates the identification procedure. i

Diiferent aspects of identification by the model method
os well oo terminology used were presenbted by Richalet /1/

However, we chull eunphazice a foct of the great impoirtan-
ce for the identification proccdure: the main effect of dicstur-~

vances affecting the iden”ificution procees results in shift-
ing of a minimum point with regoxd to a nominal point lying
inzide a certuin igo—error dowain, Dotermiiing of whis worain
is -0 m2in goal of the identification. Each method resulting
in a point insteczd of the domain is just an academic one, with
no practicel valiaity /2/.

It will be siown that the identificatilon problen is not
strictly a nonlincaxr p?ogramming problem as one could suppose.
Wren considering the structural distance, a szecial alsgorithm
vwill be prescntedes If thae stule - distarce is under investi-
wetlon, then the identification and sensibility erz icterrete -
tvdes T.i3 relationchip will enable us for a better undarstand-
ins of the problen. i

ZeZe !'02ecl representation

We shall restrict cur conecideratiors to linear stationa-
ry syctems, althoagh the odel method can be in use regardless
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to the type of plant, We may consider continous and discretg
models as well, depending on the kind of data and on the
tools in use. When utilizing a continous model, a transfer
function between the system output SM (t) and its inrut

e (t)
By (p) n & ,
- (P\= H (p) = %o ay Pi/%_—_o bd pd where m¢ n; (1)

serves as the system representation:

A discrete model will be represented by & difference equation:
k k

E.M(n)sz ai~sn(n-1) + Z by e (n=3) @
7, i ;

2.3, Identification based on the structural distance

Corsider the discrete model described byEq.(2) . A plant

is described by the same eqution but with parameters ag ’
0. i
bd + The model-plant distance at any instant n is defined by

k

» e o
b2 (4 0-0) 0 2 0,0 5,)

Betweéen instants n and n+1 the parameters vary according
to a certain law to be determined; the law establishes the
idontification procedure,

Develop the time-variation of the distances

k 2 : ¥
D(n+1) - D(n) = %ﬂ [(Aai (n)) +2 Aal(n)' [ai(n) - G1J+
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k
+ %[(Abj (n)+ 2Ab (n) [b (n) = bd ]] @)

where Aa (n)
i

a (n+1) = a (n)
i i

and  Ab (n) b (a+1) - b (n)
J J J

This distance voriation is a function of the model end plant
parancters, where the last are unknown. The problem 8rising
now is to determine the law of the model parametsrs variation,
without a knowledge of the plent paramecters, while setisfying
the condition:

D (n) a4 when n —s oc
Dencte
'Aai (n) =G (Iﬂ < 8, (n - i)
(5)
A b:(n5 = x(n). e (n-1)
Then
2 4 5 k
D(.n+'1) -~ D(n) = x‘n)[izl 5, (n-1) + %zo e(n—ag+
= i
23 n - C (0 -
+ 2x (n) [E( %‘4 ai(n) E(n i)] (6)

wherc§/n) = s" (n) - so('r\)

The variation [D mn+1) =D (rD] is nscative or equaled to
zcro. The last one is a particular case when §(n) equals to zero
for the perameter x (m) introduced in Eq.(5) by the following
relztion Kk
[&(10 - Z ai (&) £(n - i)]

x(n’) = - i=

¥ 2 ) 2 (;')
?:1 gy OR=0)1 @ ‘T"‘:o e (n-3)
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This trief development shows there exists a possibility to
minimize the siructiiral distance by means of the unknown parane-~
ters variations. Furthermore let’s note that in the contrary to
classical mathods to be considered below, the method proposed
convergss progressively at each time-instant. Hence it better
suits to the real-time identification,

The mathod cen be easily generalized for riltivariable systems
reprasented by their impulse response, i.e. for systems with m
inputs and n outputss:

8 () = HE.g
vhere H is a matrix of dimension m x nmm, n correspondiang to the
considered instance, 8 is an 'm dimensional*vector and e is aa

n m dimensional vectors.

The identification by the structurzl distance permiis to de-
termine the decision law for parameters variation in the parame-
ter spaces.- We shall not discuss the resulting proovlem of compu-
tation algorithms a.nd. their applicaticnse. Instead we skall con-
sider tkhe more classlcal problea of identification by mearns of
a state-iistance.

No systematic law for paramster variation in the parameter-
space can be detecrnined theree Thus we?ll arply nonlinear program-—
ning methods, It will be shown, that utilization of the sensibili-
ty coefficients results in ¢ measure of the iaentification quality,
furthernore, it pernits to determine a minimization algorithm,

3. RELATION BETWESH IDSNTIFICATION AND SENSIBILITY

Consider the ideatification procedure shcwvm in Fig.1, where
a; end £ dencte the parameters and a difference between tha plant
output 8 and the model output sy, respectively. By sensitility
coefficients related to the parameter a;, for continous ard li-
near mnodels respectively, we shall call functions

2 s (¥) Ps (n)

) o e S 6 (0) = e

" day 8y T



22

A norm of the sensibility coefficient will be defined as

2
12 ()1 Vg S, ®) & o \\6 (n) };Gm

where H is the observation horizon,

Cleerly relation 28 o 5 holds.
° ay &y

Thus, the every parameter - variztion yields a variation of

the error between the model and the plant, directly proportional to
the sensibility coefficients.

Lect’s en error functional (state - distance) describing the
error surface be cf the fom

a2 2
= ) or C(E = n
C® Aé(t at ) g: € (n)

The claesical procedure permitting to reach a valley, results
in gradient computation at the given point of the surface. The gra-
dient ccxponents are

2 CE)
& £ G or 2C®
s f 2 £ () ai(t) at __'=§E 285;1(11)

o 31 H raal

The error-surface gradient depends directly on the model’s sensi-
bility coefficients. Hence a knowledge the coefficients yields
in description of the error-surfaces

The surface’s slope towards the valley, along one of the axis
in the parameter-spac2 is in proportion to the sensibility’ coeffi-~
cient. In particular, the greater the sensibility coefficient the
more evident the slope is. '

If the applied input Zc such that one of the sensibility coeffi-
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cients is much greater than others, then variations of the error-
surface along a direction corresponding to that paramster are gre-
ater than variations along other directions. It corresponds to the
long valley with a steep slope. We say that such the irpput genci-
bilize the given coefficient,

If all the sensibility coefficients are of the sam: value, thse
error-surface variations in nighbarhood of tho minimvm are the sa-
me along all directions. Then the surfaces of the equal error will
be of the Spheric form. We 98y the problem is spherical; it cor-
responds to the ideal cass of minirum ss2eking,

It would be of interest to constitute a measure for the para—
meters sensibilization in virtue of certein experiments. We shall
try to do it in the next paragraph;

4, SELSIBILIZATION MEASURELENT

We take a particular interest in an identification procecdure to
be fitted for a digitel computer. Thus, we chall consider a discre-
te model described by .the Eq. /2/. Pirst, it will be shown that
the sensibility coefficients computation for a discraste system with
one variablo amounts to solving of a sat of difference equations.

441, Sensibility coefficients of & discrete system

Lét,s there is given a recurrance input - output relation for
a system of order ki

4 e :
s{n) = %;_l.ais(n—i) +§=:O bde(n—ii) (8)

The sensibility coefficient 64(m)related to the parazeter a

satisfies the following sensibility equation resulting from the
partial difforential of the Zq. 8 for a,
k

si(n)azaigi(n—i) + s(n-i) (9)

i<
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4dd to (9) the following eguation

k

z (n) = Z ay-z(n-1) + s(m) (10)

i

It's easy to check /see Fig. 2 / that all sensibility coef-
fients referred to parareters 8y result from that equation
by neans of the relation:

Gi(n) = z(n-i)

8imiliary, the sensibility equation with regard to parameter

b;j is of the form

Y k A
Giw = S a 6y (2-1) +ef@- 1) (1)
i=

\
Instead, all sensibility coefficients G (n) for each time

* instant cen be derived by considerirng the sociated equation

k
u(n):Zai u(n-i) + e(n) (12)
i="
when kmowing G';j‘ (R)=u(n=-3). .

Considering (’IO) and (12) one can state that tLe system
equation (8) is equivilent to

s(_n\=Z b‘.j.-u(n-d) (15)
3=0

It' s easy to check the following relation for the first-
order sensibility coefficients:

6, (2-9) =6 (2-2 = s(a-3-x) (%) -

The second—order sensibility coefficients are given by
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2

E) 8 (n) = 6’ (n)
13
a&i 'aaj
S s () ) Dt il »
2 s {(n o G— " sz 3 G, ()
’()ta:]"c)ai 3l 'E)bj-'abk 3k

Sensibility equations for these ccefficients, as one can
check, ere given by the following recurrence equations

k
v () =% ai.t(n-i)i-Zz(n) (15)
i ,

w (n) =‘;=q ai-w(n-i) +u (n) (16)
whexrs

cv;m(mh t[n-(1+3)]
) A
G, (=) = wla-(1+3)]

end 6;1 = 0 from defirition ,

Thus, the five difference ecuations (10)) (12)) @3), -(15))
(16) describe the system and his sensibility coefficients of
thex first and second order. Utilizing this information, a mi-

nimum-point of the error surface and a sensibilizatvion measure
can be obtainad.
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4.2, The ssoond—order minimization prooedure

The prooedure to be roughly desoribed here, utilizes
the sensibility ooceffiolents oomputed above. ’

At the given point of the parameter-space the plant-
model distanoe is of value C /£ /. The distanoe variation
with aoouraoy to seoond-order terms 1s given by}

CIE/ .Z.;g_%fﬂ.Aai* Z‘—?;fﬂ——Ab

*3 2_.—1:-"" & a2 Z....L_c £ av? Z-—-/-—-lgifamim}

ey
d

e Z‘ ’bbi'bbj a biAb e Da 3 aiAbJ} .
d

where if C/L/ = Lg/n/
H

—"EL‘-Z Z £ 1t : G ms __c/_e_/. Zg/n/e'w

D%/6/0 255G 1oy Gsms D% £4
by oYy Z, d “/ YD a %E/n/s'@wwe'«;

02/ ¢ T N
ﬁ;{i—[ = 2> 6/ 5 y/os +E10f.G yyfnt

The equation /17/ oan be written in the following vector form

Oc/E/ =GT AP 4 -;-_Ar" - B-AP /18/
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where P is the parameter veotor with components

~

a; /1 &1 £ x/ end bJ/O L3 S/

G is a gradient veotor of the surface C/ &/ and B is a
matrix of the seoond-order sensibility ooceffioients.
We assume that the system is exaotly desoribed by its equationms,
the error-surface is unimodal,and that we ‘re searohing for the
surface ‘s minimum. It is necessary to determine the parameters
variation AP at the point C/ £/, suoh that AC/E/ is max-
imum. This is satisfied when - G = B AP. ]
Hence, it will be easy to move in the parameter-space aocor-
ding to the above rule, they determining by an iterative method,
the point oorresponding to the minimum C/ £ /.

However determining the minimum is not suffioient for
prsotioal identification. It is necessary to determine the
igso-error surfaoce, while a level of the error is to be stated
in virtue of the analysis of a noise disturbing ithe input-
output measurementse

4.3 Sensibilization index.

Theoretioally, at the minimum point of C/ &/ the eqution
Su/t/ - aolt/ holds, henoe an adjacent iso-er:zcr surfaoe
is given by )

Ac/E/ = B 4 AP | 79/

where A is obtained from B lmowing that £ /n/ = 0
Here diagonal_ elements of the matrix are of the form

25'12 /n/ or Z gj'z/n/ while other elements are
) -

given by: g

d )
S2Cymt €yms or Sy B s
H H

The elements of the matrix & oonsist of the first—order
sensibility ooceffiocients omnly. .



28

Aooording to our hypothesis, there exists an absolute
minimum, so the matrix A is positive defined. This 1s a case
we shall consider only. In vicinity of the minimum, the error-
surface oan be approximated by an ellipsoid desoribed by the
above gquadratic form. The matrix A is positive defined, 1t’s
eigenvalues are distinot, real and positive, while corres-
ponding eigenvectors are orthogonal and form an orthogonal
basis in the parameter-spacee.

In this basis, the ellipsoid is in reduced form; in
particular its diameters are inversly proportional to the
ocorresponding cigenvalues. Eccentriocity of the ellipsoid
can be desocribed by a ratio of the greatest eigenvalue 2!
to the smallest one 7)\.j thus Q-?-‘-‘—-

Am

As we have seen in paragraph 3, the eooantricity of the
iso- ¢ surface was desoribed by the parameters' sensibili-
zatione '

In practise, the eigen-values computation is often a
suphistiocated and everlasting prooess. Therefore we shall
defire the sensibilization index to be used for an upper
bound oZf ¢ -

let P and S be respectively a produot and a sum of the
eigenvalues. Thus we have

b”\u< S ; >\m> P

sn-1

where n is the parametsr-spaoce dimension.
Hence

L s?
T

Note that the sum of the eigenvalues equals to the trace
T of the matrix A, while the product equels to the determi-~
nant D of A.
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Utilizing this we shall define the sensibilization
index as:
n
\ (I )l
= |Log
0 e

The faotor n® 18 a normslizing ooeffiolent of suoh
a type, for which

i a i

nn D >

if the eigenvalues are equsl to each otner.

08 8 expresse y @ absolute value ol a
Since ¢ 1 d by the absolute value of

logarithm, @ 1s a positive funotional with a minimum
value equal to zero.

This sensibilization index performs two rolea.
First, when analyzing, the identifiocation problem, the index
will allow us to measure the oorresponding sensibility of the
coeffiolents.s Thus one oan determine if the analized experi-
ment 1s suffioient for a oorreot identifiocation.

Seoond, the sensibilization index i1s a funotional. Hence we
ocan use it in the parameter-space to determine "stheriging"”
inputs 1.6 the inputs which sensibilize or aim at sensibili-
zation of the all aystem's parameters simultancouslye

Given the identifiocation problem, after performing the
oharaoterisation and the approximate evaluation of the naminsl
point in the parameter-space, ons oan determine the spheriging
inputs by the nonlinear progrsmming. These inputs w1ll be used
in a next experiment aiming im improving of tuc initisl iden-
tifticatian. A

Determination of the suoch inputs presuppose, however, a
global knowledge of the identified system. Actually, the first
identification test generally results in the sensibilization
of osrtain parameters only. It would be in our interest to
deteraine inputs foousing informatiom on the one, ohosen para-
meter. Suoh an input will be called the input semsibilizing
a given parameter. ’
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S5¢ S3NSIRILIZING INMPUTS.

5.1 Definition

et aio be nominsl values of the parameters corresponding
to the identical outputs of the riant and the model, when
assuming a-perfect characterization.

At the nominal point we have:

~
.._‘J__C.Z_é_Z/ o . °
ey By gees By / =0 ¥ ay

We say, 1f the input e/t/ exists, it sensibilizes the pa-
rameter a4, when the following ocndition is satisfied:

,b s
-——L—lfazi E / 81""’810""83’"'811/ =0 Ad- ad for : ‘ i

It follows that %ﬂﬂ[ will be equal to zero when the
a . :
1 .
only condition a; = aio is satiLZied. Hence it results that
the sensibility with regard to the parameters ay / 3 £1/ is
weak when compared with the sens;bility relstive to the para-

meter a; Gai >> 6‘83 L

As we shall see, the last aspect of the definition of the
sensibilizing inputs is Jjust the one to be utilized in prac-
tioe. i

Consider a ;artioular cose of the system desocribed in the
three dimensionel parameter-space; it will allow us to make
apparent an effeot of the application of the sensibilizing
inputs. In viocinity of the hominal point the error-surface
is desoribed by the equation

¢/ £ /=4 /ay - 810/2 + B /a2-92°/ + 0/31-a1°/ /aa-a2°/
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where 2 ’a 2
A= J‘Ga1dt; Ba JG’azdt; c-f‘3'81 S'azdt
H ] H

_:g_c_[_f_[_ 24 /81-810/ +C /a, = 820/
a
1

If the input sensibilizes the parameter 8,y We shall
obtain:

_%Lé_l /a1°, ay/ = 0 li‘az and’ G'a1>> G'aa
84

thus 4 >> B
2 -
Hence it rasults C/a, —a,/ = 0 “QL a,

80 C = 0

or else f‘?f% Gl 8, 4% -0
H

For the sensibilizing input a, an equation of the errox
ellipse is of the form:

C/E/ = 4 /a1 - a1°/2 + 3B [a, - 02°/2

Thus the iso- § ourve in surroundings of the minimum has
axes parallel to the parameter-space axes.- From this ylelds
an important property: if an input sensibilizes the pardmeter
a4 the valley in the parameter-space 18 a line 8y = a1°'.

This is shown in Pig.3.

After all, the determination of the e /t/ satisfying the
definition above as well as the realizability oonditions and
the oonstraints resulting from the problem given, 1s praoti-
ocally imposeible. So we are abliged to enlarge our definition
as following: h
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An input will be called sensibilizing the parsmeter 8y

1f it maximalizes the <Lunctional
" m Eai m

In this way the iso- ¢ ourve size in the direction a,

will be minimized, but its axes will not necessarily be paral-
lel to the parameter-—space axese

In virtue of this definition, the rroocess of determination
of the sensibiliging input will be shown.

5.2« Exemple of the practicsl determinstion qf the
gensibilizing input for a resl problem.

Theoretical determination of the input e*/t/ maximigzing J
is the complex optimization problem, a solution of which is
praotically ‘unrealizable, as for the J computation the know-

ledge of the nominel point is necessary, which itself is the
" problem solution,

Thus the problem of the sensibilizing input determination
is theoretically unsolved. The praotical solution to be presen-
ted below is a pragmatic one taking into account physical oon-
straints§ it partially resolves some of the existing diffiocul-
ties.

The identification problem of the pitch chain of the heli-
copter Alouette III was considered. The cLaracoterization
based on the fly-mechaniocs equations has yielded in the model
transfer function between the rotor-plate angle © and the
stick angle ﬂ g of a proper fractivn form:

—QZBL - A*.m
ﬁ(p/ 1 +Cp + Dp° + Bp°

The helicopter Alouette III is pitoh-unstable and the first
tast cf g pneturel divergence / 4 = 0/ has a&llowed for & roizh
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identification of the denorzinatcr paramiters. Ecwever, the
sensibility of the coefficient C was very low; it resulited

in much geater uncertainty region for the parameter C than the
regions for the parameters D anéd 3.

Thus the test was insufficient and gave too less informa-
icn on the parameter C. It waes necessery, then, to determine
in virtue of the gathered data, an input sensibilizing the

parameter Ce

on account of the lack of knowledge on the parameters
A and B, the following equation was investigated:

@/t/ +c - 9’ /t/ +D - Q"/t/ + 5 - 'Q‘"/t/ =e /t/

Still, the ooefficients D and E are well known on the
ground of the experiments carried out with natural divergence.
Thus, it was in our interest to add such a constraint on the
soluticn fa,lt/ to "desensibilize™ D and E in a certain way.
The input for which © /t/ = 0 ana Gp/t/ = 0, 1s

unrealizable. However, we can progress in such a way, to pre-
gerve sensibiiity for the ratio D/E only. Impose the following
constraint:

9“#‘/, + B @"/t/ =0
Q/0/ = 0

It results in sensibilizing of the ratio D/B only.Indeed,
a familly of the admissible inputs will be given by:

O/ = oy /- B/ ucyt

where c1 and 02 are oonstants to be determined from a condition

that a funotional-

I = ' G;/t/'" acquires maximum
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From the nonlinear prcgramming it results far the maximum

Q/t/ = =0,6 /1 = e~ ¥/1,3/ + 0,26 ¢

Taking into account the ccnstraint imposed on (9 /t/, the
pitch equation reduces to the form 3

G/t +c G/t/ = e/t/

Adnitting for C an estimated valwe equal to -0,1 on the basis
02 the experiments carried out witk natural divergsnce, we shall
get the following equation for the sensibilizing input:

o/t) = 0,6 /1 - a~¥/113) _ -%z%- e ~¥/193_ 0,26/t-0,1/
: y {

llowvever, the input to be reaiized is in fact such, that

E /p/ U R E/p/
A+Ep

where A and B are unknowne.

Thus, e*/t/ is an output cf a first-order lag system with
the input e/t/. Considering the class of realizabtle inputs and
taking account of the fact resulting from experiments that
B j> A, the input Jyt/ of the form shown in Fige.4 was experi—
mentaly determined. Praotical realization of this input ylelded
positive results. To prove it, the iso—error curves for the input
corresponding to optional pilotage and for the sensibilizing
input were shown in Fig. 5 and Fig. 6, respectively.
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In a partiocular case of the identification of the tangage
ohein for the helicopter Alouette III, the determination of the
gsensibilizing input permitted to realize the identification,
difficult to carry out in a usual manner because of the system's
instability. / a precise identification of the initial conditions

would be necessary/

Generally, one oan ascertain that the concepts of the sensi-
bilizing input and of the spherizing input are completing together.

6. CONCLUSIONS

The advantage of the identification methods based on the struc-
tural distance results in simple algorithms determining displace-
ment laws in the parameter-space. The methods are of a partioular
use for the real-time identification.

The state—distance identification method directly relates to
the nonlinear programming,[ﬁ}.The method, however, does not 1lsad
to simple mathemstical formulas. Thus, a certain common sense and
a skeptioal attitude are necessary when considering identiZioation
algorithme aiming in the prodblem solving for arbitrary inputs. 1t
ia absolutely indispensable for the inputs to result in suoh
syatem's aocting or to accentuate such syatem'a properties which
themselves are the aim of the research. Hence the effective
identification problem does not rise as a funotional minimization
problem but as an informational problem.

It lookes, like for aoquising of the necessary information
the gensibilization index i1s an interesting oriterion. This is
because of the analysis problem and because of the determination
of the such input which results in uniform distribution of the
information, for all structural ooeffiolents i.e. the spherizing
input or in the concenorating of the information on the chosen
parameter i.e. the sensibilizing input.

Thus a progreés made when considering the identification
problem in the manner discussed above, is evident. i7e can
determine - the identification quality as well as to settle a
prospect for optimal experiments by preoising a nature of the
testing signals. 4
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PROCESS DYNAMIC IDENTIFICATICN BY THE
MULTISTEP METHCD
X. Menshex

Societé Controle Eziley
3¢ Bd Henri IV, Paris, France

I. INTRODUCTION

Tre step-response test,i.e. an experimental deriving of the
system step-response is a practical identification method wide-
ly used in industrial pfactice, rainly because of it simplici-
ty ané time-ecovncry. In wany cases it may stand for the fre-
queancy-domain analysis with a pretty good results. Still, <the
step-response test as well as the frequeacy aamlysis may need
e lot of research time when applied in ite simple fcrm.In prac-
tise, one is obliged to repeat the procedure many tixes to av-
erage results, especially when external disturbances are un-
neglectable. On the other way the repeating is necessary when
verifying process linearity hypothesis, by using steps with
two or three different magnitudes.

Thus,the step--esponse test may lead to a considerable loss
of time, if the process transient time To is large, i.e. in
thermal processes. If the experiment’s time interval T is de-
fined and bounded, the unit time To determines a total ad-
missible number of trials. But that’s just the main cumber of
the method: to keep calculations simple one should’nt repeat
triels with the frequency greater than 1/T°; coaversly,to get
zmore informetion durirg defined experiments ‘time, mnore trials
are necessary.

Last remark defines a goal of the multistep method: to deal
with a train of steps, nunber of which during some defined
time-interval is much greater than a possitle number of dis-
tinot steps, restricted by To time.

The multistep method represents generalizetion of the clas-
sical step-response test. The last obe should be treated as a
simplest case of the method. The step-response test 1requires
to put the process out of acticz for a larger time, while the
test s sensibility for external disturbances remains consider-
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able. The multistep method enables a beser utilization o tic
experiments ‘time-i.e. a greater accuracy during defined time-
-intervel.

This paper deals with general principles of the multistep
method and its computational aspects. A problem of choice of
proper control sequencess to simplify computations will be dis-
cusses. A strong relation existing between a computational pro-
cess in time dozuain and the discrete Fourier transform will be
presented. Last of all, a choice of multiple sequences for mul-
tivariable systems identification will be discussed. Actually
experiments on boilers in a thermal power station are carrying
into effect. The experimental results will be known, when pre-
senting this paper at the Congress.

II. THE NMULTISTEP METHOD

Consider a physical system with an input variable e(t) .
Let’s s8(t) be an output variable, which time response due to
e(t) 1is under investigation. We are concerned with the open
dynamic system, as well as with the closed-lodp control system,
which dynazic properties are to be ideatified. Let’s take a
train of sters with defined magnituie, applied at determined
time-ooments as a testing signal.

Suppose To is a uuit time, equal to the estimated trans-
ient time in the process. Suppose To is known. We can assume
that a priori limitation of the unit time is rather a qualita-
tive result issuening from our experience on the process.

T is an active time, i.e. the time interval during whieh
successive steps will be epplied.

A is an elementary -time~-interval. Choice of A depends on
the duration time of the transient processes. [& determines a
control step and an observation step. It determines a number
of points describirg the s8eexing procesa' response during
transient time.

Assvme that our process response is a step-response,rerre-
sented in discrete moments of time by 1 + (A/T) values.These
values, denoted by 15, 1,4, «.e) i (m = T/A ) constitute an

index sequence.
The point of the matter is an estimation of the index se-
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quence in some limited time. Furthermore, we assume that our
process has a limited static gain, as the identification of
processes with pure integration doesn’t create any consider-
able difficulties. We state ik = im for all k) B . Thus,
opne should make it sure the chosep unit time covers the total
transient interval.

Denote by en, €4y +eey €y (R = T/A ) a sequence of the in-
put signal levels,while by 8s8,9+++98y 8D acting sequence, i.
e. the sequence of increments applied at the process ipput dur-
ipg the experiment’s time T or so called active time. The each
increment can be determined by its amplitude (positive,or neg-
gative). Some of them may be equal to zero.

There exists a sequential relation ek=ek_1+ak.1f we choose
the ipitial level as the input signal’s reference level, we’ll
get ey =:E: ad; AT OSSN S e

Let‘s denote by 801849+++98y & Bequence of the signals ob-
served during the active time. We assume the kmowledge of the
initial stable state of the observed signal (related to the
reference level of the ipput signal). The values 8, represent
_deviations from this state.

We ‘11 assume now that a hypothesis on the system’s linear-
ity is valid, so the superpositioa principle can be used. Let
us note, that up to date this is the only one hypothesis suf-
ficiently general to practical applications in a broad variety
of problems met in industrial prgctice (except those cases
where a considerable nonlinearity does exist).Even if, for cer-
tain defined magnitudes' interval some nonlinearities will
occur (mainly due to curved process’ characteristics), the aim
of the ideptification procedure is the best possible approxima-
tion of the real process by a linear model, with sufficient
accuracy for the later processs’ control. ’

Let’s express the output signal at the moment k as a func-
tion of the control signal in current time and in the past

n-1

8 = Z iJ‘k—j +ep pio+ £p )
J=0

where E.k denotes ap effective error (unknown) at the moment
5% £k issues from many reasons: disturbances during measure-
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ment process, proceas ponlinearities, measurezent ipmaccuracies,
uncorrect estimation of the process trezn3ient tize.

The relation (1) is Jjust a discrete form (correspcndirg to
the particular signal were dealirg with) of the kmown equa-
tion z

T

o
8(t) = f 1(n) (%t - w)du + e(T = T) 1(T,) + &£(¥). (2)
0

here e(t) - time derivation of e(t). OUne should keep in mind
an assumption on the process fin!ts memory To_.

In each time moment we may compute the index sequence, taxt-
ing into account m equations of the form (1), corresponding
to moments k, k=1, ¢es, k-m+1 .

¥%e shall call it the local computation with index k . Each
local computation will be perforred using assumption on ‘errors
Ek equal to zero. Thus one can easy eliminate tals variable
from eq. {1).

A set of these linear equations can be written in vector
form

8(k) = B{k - 2m + 2)1 + e(k - m)iy (3)
with following notations
8(k) = (By_p,q7 *+*» Sg_q» 8,)° - the observation vector at

the moment k
1= (4, 40 «eor 1qs 10)' - the index vector

e(k - m) = (O op.qr oo O p s O )’
¢ 1

r "
8g-2m+2 ak-2m+3 see By me

H(k - 2m + 2) = ak‘?m+3 ak-?“*“ T ak-n.n+2

| fcemt w2 v %

s(k), 1, e(k - m) are column vectors with m components,
H(k - 2m + 2) - square matrix of dimension m , with well
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Imown structure. 3Such a matrix is called Hankel matrix 1 .Cne
can note it is symmetric so diagonalization is always possible.

If tne inverse of the matrix H(k - 2m + 2) exists,the loc-
al computation with index k can be performed. Considering
the measurement interval of lenght m one can derive the in-
dex seguence, using equation

£ = 5 (k- 2m + 2)(8(k) - e(k - m)iy) (%)

Wie streas on two important properties:

1) FPromz the first sight-seeing it lookes like the pumber of
reiations in the vector equation (3) is unsufficient to com-
pute the full index sequence. However, one can recognize that
if the number of values admitted for computation of the se-
quence is sufficient,, 1m will slightly differ from im—1‘ b 4
the solution (3) is possible, the result (eq. (4)) can be pre-
- sented by m relations of the form

3 = 0. 1’ soey n"1 (s)

15 = bd - Odim,

From the last one we may compute im » substituting 1m =

= imﬁ1 . Such a hypothesis is admissible if the length of the
adnitted unit time is large enough. Besides, one can recognize
that from the relation (5) for J = O yields a different meth-
od for computing 1m » true for most of the real systems.

2) It is evident that each local computation depends only
on the Hankel matrix inverse. If, Zfor.a defined measurement in-
terval the inverse of tke corresponding Hankel matrix doesn’t
exist, no information can be derived from that interval.

On the other hand, the each matrix H directly corresponds
to the applied control sequence. So, the information, one can
obtain from the measurement pesriod by means of many successive
local computations, depends on properties of the matrix H, is-
sued from the sequence a "

So the problem is not to content oneself with a choice of
arbitrary control sequence, but to improve a fact we have a
possibility of a free choice of the magnitudes ay s at least
irc a broad interval to obtain special sequences,such that cor-
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responding Eankel matriges axe invertible.

We emprasize that obtainirg of the local results depends
only on the coztroi sequence, not on the output measurements
quality. It’s evident however, that direct influence of the
measurements quality &s well as of the disturbance level on
the results dispersion does exist.

A rerresentation of the sequence a:j presents Fig. 1. It
expleins a tyre of Eankel matrix issuing from the sequence. As .
one may recognize, the sequerce can be expressed as a sequence
of the column vectors x(0), (1), ¢ee, X(N-m+1) with m coxz-
ponents Bio Biqy cece 8 0 q e Each vector =x(k) inclades
only cne new scalar variable, when compared with the previous
vector x(k - 1).

The choice of the sequerce a; rely on the following re-
mark: eachbf the vectors x(k) can be obtained by a 1linear
transformation on tie previous one. The tramnsformation is de-
scrivted by a square matrix A of dimension m , i.e.

! o 1 O «e0 O
x(k) =A x(k-1) 3 A= 1 (6)
dq dp Az e oAp ’

This cperator is regular when %, # O.

On the other hand, each Hankel matrix resulting from the ge-_
quence aj consists of m successive vectors. Linear inde=
pendence of the vectors guaranties- existence of the inverse of
the correeponding matrix H . One can always choose the only
one operator A such that a sequence of the m vectors

N\

x, Ax, Azx, ceey ‘m—1x (?)

constitutes a set of linear-independent vectors.

So, the control sequence should be determined in virtue of
the following: '

1) An inivial vector xX(0) = (&g, 84y +-ey & 4)°, called a
basic sequence which determines first 'zm incremeats of the
control sequence. i

2) A regular operatcr A in canonical form stated from (6).

The choice of the basic sequence will be made taking into
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account some restrictions, e.g.

- restrains on the steps magnitude,

- trend to enrich an identification signal in the fraguency
inﬁervai corresponding to anticipated use of the syssem's
dyoamic characteristics,

- basic fact, that A and x(0) capnot be chosen incdepend-
ently one after amother, whén demand for systems of type
(7) to be free.

If we assume for matrix A ©be diagonalizable, x(O0) must
be an integar lipesr combination o2 eigenvalues of the matrix.
A . Denoting them by Vas V9 eeey Yoy 8 condition for x(O)
will be

x(0) = Z4V4q + ZpVp 4+ eee + Z, V., Where 3z, £#0 for all i

Tt’s easy to recogpize a considerable simplification of the
computation issuing from such a control sequence: neverthless,
froa the considered measurement interval (of lenght m ), the
matrix inverse aiways concerns the ssme Fankel matrix, inde-~-
pendently of a pcwer bf the operator A (let’s pote that the
matTix 4 ipversion doesn’t create any troubles). This only
matrix is

2(0) = [x(O). A2{0); oaey A“‘""x(o)] (8)

Just a first matrix to be inverted is H(O). It consists of
m observations \

am_1. Bn, seey 82111-2

the last are to be inverted is a matrix
A(N - 20 + 2) = AN-28*2 gq) (9)

where N denotes the control sequence length.
This matrix corresponds to observations

S§-m+1? SH-ms2’ *°*? 5§
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A total pumber cf the index sequences obtained from the com-—
putation, demanding to irvert H(O) only, equals N - Zm + 3.

When N = o»pm, the punber "of these sequepnces equals
(p - 2)m + 3; while for the same observation period the clas-
8ical step-response method allows us to apply only n succes-
sive steps, distant for a time To ope from another, i.e. »
repetitions only are possible. For example, for m = 20, D = &
the multistep method equivalents to 43 steps while the classic
al method would allow for 4 only.

It may be proved that inversion of the matrix of type E(O)
doesn’t creat apny troubles. More precisely, the ipversion as-
sociates with the ipversiop of Vandermonde’s matrix. Ip fact,
consider a square matrix of dimension m

= [x, ix, 2%x, ..., AF“:] (10)

where the vector v and the operator A4 are given. If we as-
sume that A is regular, of the canonical form of (6) and
possesses distinct eigenvalues )1. )2. eeey A_, thep 1t cap
. be written in a known form

4 = vl (11)
where D = {)ﬂ, Apy seey Am} - diagonal matrix

-1 1 coe 1 W
}1 A2 ahe An

V= = Vandermonde matrix

AT AT Lo N

= <4
It yields
H= [x, VDV'1x, VDZV'11, ofete b > v 2| -
= v[’o Dy, Dz’o cesey Dm.17] (12)_

where y =V 'x = (Tqs Tos oo y..1)' (13)
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Cc the other hand, Statipg
Py = Iy (14)

wbere T = Tor Tqs oo ym_1} -‘diagonal natrix
and & = ( Aqks Ky eeey AgK)
equatior (12) will be

¢

b= Vg ags dpy oees a ] =" (15)

Thus, the matrix E has beep partitiored to a product of
matrices with krown ipverses. let us note, the regularity of
matrix H demsnds for the vector 7'11 to have no components
equalied to zero.

III. PARTICULAR, FUNDAMENTAL CASE

It seems like the simplest procedure for obtaining the con-
trol sequence rely upon a choice of the matrix A ip the form

of
0 1 o
oo \\ ] (16)

.
Qe Bl s oJ

We assume, for all of the future consideration that m 1is
even . Then det (A) = +1. Ope can check that A is an ortho-
gonal operator, sd AA" =1I .

Such a choice of the matrix A 1leads up to periodic con-
trol sequence with a period equal to the double unit time (see
Pig. 2). '

If a vector

X(0) = (1y Oy eeey 0)°
is applied as' the basic secuence, the problem reduces to the
classical step-respcnse method (a traip of steps with equal
magnitudes, while signs changing alterpatively).

For arbitrary basic sequence the matrix H(O) is of a known
form, easy to compute inverse. Before starting the computation,
let’s transform H(O) to the more familiar form, by a simple
colump displation °
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Fo . i
C(0) = H(0)-2 where Z = | / (17)
L4, ¥ :
Hence
c(0) = [L““ 2(0), +.-, A x(0), x(O)] (18)

F Booq G2 s By 85
b L Tl A
c(0) -?1 ‘a° ?3 .

L-‘m-2 “8p-3 *°* %

(19)

D eee

m=-1

The computation of the eigenvalues and eigenvectors of C(0)
is evident. Thus only final results will be presented.
First, note that the characteristic equation for 4 1is

km + 4 = 0 (w)
Denote different roots of the Eq. (20) by 21. 22. SN Xm.

The m of the eigenvalues of C(0O) will be expressed by vhe
relation 3 2

p 2 =
yk = am_,‘ + Akam-z + Ak&m_j + coe + Aﬁ 130 (21)
(k = 1, 2, scey m)
To each eigenvalue corresponds the eigenvector
Vg = f“v 7‘1" Aio ceey Aukl-“)‘ ‘(22)

It may be checked, that y, v, = C(O)-vk
Denote $

V= [vqe vor oo vl] (23)

where V represents a matrix composed from the eigenvectors



51

of C(0) . It results ticr
-1 y &
C(O) = VYV s Where Y = {y1’ y2| ceey ym} (4’*")

C(0) can rossess invers if and only if none of the eigen-
values Ty equals zero. This regularity ccodition defines at
the same time the validity conditiop for the basic seguence
x(0). The last conditicn can be formulated as follows:

" Let’s x(0) = (8ys 849 cevs am_1)' be a basic sequence. The
pecessary and sufficient condition for utilization of the se-
quence is that the set of algebraic equations:

¥ +1 =0
aozm'1 + a1z“‘2 + .ot 4=0 (25)

do pot possess any common roots.
If the condition (25) is satisfied, C'1(0) exists and e-
quals 1
e Doy~

Note that the inverse Vandermonde matrix can be ottained
easy. Thus a relaticn for v s particulary simple because

of particular values of the components of V. Io fact , it’'s
easy to check that

y! ,
Vi E yA'S $2?)

where V’ is tremsponese of V , Z is defined by Eq. (17).
Note that the eigemvalues of A are expressed by

Apyq = 2P (32K +1) T/m) , k=0, 1y euuy 51 (28)

and =
ket = Apx (29)

(where by denotes a complexe pumber, conjugate with A ).
' Prom Eq. (21) it also results

yk#1 7 ;;-k’ ke 0, 1, ccop =1 (30)
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On the other hand it’s easy to show tiaat the im7aras of C(O)
is a matrix of the same type than C(0). This properuy can’be
expre3sed by

[A“’ng). cees 4X(0), ::50)]°1 ]

- [0, ey (), wo)] (31)

The components of the vector u(0O) existing in the irverse
of C(0) can be expressed by compdrents of x(0). Stating

WO0) = (Ugs Uqs +ees Upq)’ (32)

the component u, is given by

2. m/2 Re ( ’)m—k-’]
AR sl . (33)

h=1 In' 7n

where In is given by £g. (21), Re (a) = real part of =& .
Thus the inverse of the matrix C{0) Lia expressed in a ex-
- plicit form. Therefore the direct inversion by a computer and,
consequently, considerable computation errors (especially when
dizension m 1is large) can be avoided.
To complete our considerations we 'll express the index vec-
tor in a direct form. To do this, consider once more the rma-

trix E(O0). Ibo fact, as Z2 = I, the Eq. (3) can result aa fol-

lowing °*
8(k) = B(k - 2n + 2)2°1 + o(k - m)1_ =
¢ =Hk-z14+2)2f+ek-mi; =
=Clk -2m+2)f+e(k-mty (38)
wkere . . v .
= 2L = (1gs L40 eoey 15 4) (35)
and
Cik - 2m + 2) = AK™23*2 g(q) (36)

Henc; we have

¢k - 20+ 2) =c0) ()52 4 A'=] (37)
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Because of

u’(0)
‘lo) A
o5 w-dirp S (38)
3°(0) Aa"\
where
4(0) = 2u{0) = (U 4y e-es Uqy V)~ (39)
we obtaip m scalar relations of the form
1, = 8°(0) (422l g(x) - o(k - m)i,) (40)

T, B B 1% ot e

wiere il is ap 1l-nt compopnent of the index vector. Remind
that Eq. (40) for 1 =0 and 1 =xm -1 permit to obtain
im . dctually the local computation with an 1nda¥ punber k (i.
e. tbe computation of the second comporent of the Eq. (40)) nev-

er results 11 but
Low tE 1

where Elk represants an 1l-th compopnent of the vecctor
¢k - 20 + 2)- §(k) (41)

E(k) = (Eemetr *oor Exqr E) ‘ - a vector with components
representing observation errors made in the considered measure-
ment interval (see Eq. (1)).

REMARE. It tan be shown that the particular ea3iness of the
presented computation sckteme results from a relationship exist-
ipg between the proposed method and the discrete Fourier trans-
form.

The method can be applied to identification of a discrete
"impulse” string describing a dynamic system.Noting that,let’s
come back to Eq. (1) '

B = 1o8 * g8 gt cee * i a8y * Sk * Ek
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Applying a recurrence formuia e = € q * 8 it’s possible
to evaluate 8y by the expression

By = g€ + Gy 4+ oo + Qe o+ £y F“z)

where
dy =iy <154 ‘(do = i) 545)

Ip particular, the sequence do, d1, ooy dm—1 is called a
discrete impulse string. The sequence ;i exactly represents a
discrete impulse response i(t). However, it doesn’t represent
exactly the contipncus impulsé response. The sequence d can
be treated rather as a modified representation of the discrete
index sequence.

Now, in place of the Eq. (1), copsider a new equation

m-1 ¢

=2 dyep 5+ &y (44)
.o .

assuming dj equals gero for all Jj> m .
The Eq. (34) admits the form

8(E) = Cg(k =~ 2m + 2)a + SFk) (45)
where d = (dg, Qg5 -oey dn_,l)’ (46)

The index e reminds of the fact that C comprises now two
ipput levels e:J ipstead of increment magnitudes aJ - Hence

Cy(0) = [1“““ 0(0)y ++es 4 ©(0), 0(0)] (47)

where »
e(0) = (&g, €45 =oo em_1)' (48)

The computation procedure aiming to compute the vector d
certainly remains the same as before. The application of these
new denotations allows, however, for a better presentation of
a parallels existing between the procedure and utilizatization
of the discrete PFourier tranaform.

let’s state a time sequence with fipited length
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Xgr Xqs cees Xp g Sm is event )

Mostly, the discrete Pourier transform of this sequence
forms a new sequence

TP T .
where m=-1

S DIES (9)
R ‘

Waexp (=320 /m), 2 =0, 1, eeey @1

Consider first the sequence

m=-1
X =) (W + 1)k (50)
0 2
It .represents a connection between the transformation of

the complex sequence kak/Z (in sense of the def. (49)) and
the 1eal sequence . ; :
Utilizing denotations (28) we 'l get

o G G AT : (51)

Thus we eap write over

ne1
) it % LI (52)
0

or ipn vector notationz :
u-
1 )- x- LR N} %-

. x (53)

X 2 “@-1
Ay A5 oo 24

- e00

where X = (Xg, Xqy «o-s X_q)  aDd X 3 (Zgs Xq cevs Xpq) e
Application of the def. (23) and Eq. (27) results in the
relationships Sk g

Is= nf'1z . (58) -

!-g-vx (55)

or
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The relation (55) states an analog: of the inverse Fourier

~ansform.

Consider now an oreration of the 'firite™ coxznvolution of
the formn appearing in Zq. (44). it can te represented by the
vector equation

e = Cd (56)
where C is of the form (47). :

Transforming both sides of the (56) ylelds

oV 'e = wvca = Vv ¢ xva (57)
or denoting D = oV 'é end 8 = mV s (58)

8 =v"cw (59)
;ut, according to Eg. (24), v ev

=Y end to Eq. (&1), an
each element of the diagonal matrix Y can be presented in
the form

7y = °0>‘3-+1 + 91'}\13:: + oo v 0 a0 3= 0,1,2,.00,01 SGO)

At lest, depnoting the transformation of the basic sequence
by :
E=av ' e0) (61)
it’s easy to check

m-1
= Xje1 By (62)

Eence, the vector equation (59) car be written ip a form of
the m 1ndependent scelar equAtions

)\JMD =EDy , §= O, g0 v tim=1 (63)

Considering Eq. (63) obne should remember,that in the trans-
formation (54) convdlution operation i1s substituted dy a usual
product, while S;j ipdicates for a time shift between output
and input sequences (pote that periodicity of the output be~



57

gins no more then in the (n = 1)th moment).

This property clarifies the computation easiness we have ob-
teined by a choice 0f the particular operator A ,ir the first
part of this paragraph. i1t's of a significant importarce howev-
er, that the gathered results are obtained on the base c¢f time-
-domain considerations ¢nly. Still, there exists a natural re-
lationship with the classical deconvolution method based ob %the
mathematically Jjustified application of the treansformetion con-
sidered.

IV. CHOICE OF T=EE XUITIPIE SEQUENCES

The multistep wetbod can be, withcut avy considerable diffi-
culties generalized for multiinput systems. Cur aim, as before
is to develop a method epmableing a better utilization of the
time provided for research. Increasing the frequency of the con-
trol signals applied to a given input, passive intervals are
narrcwed., Hence, the awaiting for ending of the research, Tre-~
garding these signals responses car be avoided, before starting
the new research concerning signals applied to other inputs,
Just such the awaiting is unavoided when using tLe step method.
We assume here, althought it’s not encugh that the computation
easiness will serve as a criterion for the control sequences
choice. :

Consider as an example, a system with two ibputs e1(t),ez(t)
affecting on the output s(t). Denote by d1 and dJ ° irpulse
sequences (in the sense of the condition (47)), describing the
system. We make ar assumptior on the equality of the unit time
for the both transient states considered, i.e. o, = oy .

The Eq. (44) will be

n-1

-1
il 22 1%
8y gzo: d:j °y-3 +Zo: cljek_j * Ek ‘\64,

The relation-{G4; Q;zxers from EqQ. (44) only by a greater
pumber of parameters to be identified. Denote by

a=[e@y, @]
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the vector of dimension 2m . Utilizing <for a local computa-
tiop with an index k , 2m observations corresponding to the
moments

k, k-1, k-2, ..., k-2m+1
we'll obtain a vector equation of type (45):

8(k) = Co(k - 4m + 2)d + £ (x) (65)

where s(k), E£(k) are vectors of dimension 2m, while C, is
a square matrix of dimension 2m. The matrix Ce will be de-
fined- however, when considering a relation existing between the
sequences

2
eg, °1' esey e} and eg, ef, cesy O

It’s easy to check that in order to give for the matrix Co
the form derived in item ITI, the relation should result.in

°§-m = e; and/or ei = e;#m (e6)

Thus we have two identical sequences shifted in time for a
pumber of intervals equaled m (the lead of 02 with regard
to e1 issues only from the particular choice of the vector
d ). Thus the application of the method depends on the initial
choice of the basic sequence e(0) of length 2m , with com-
ponents i

€0 €91 sces €3p 4
The sequence e1 expressed in a vector form (a8 indicated
ipn paragraph II) will be represented by the vectors

2
e(0), A e(0), A~ e(0), oeo
while for the séquence 63

A" o(0), A[a® o(0)], 22[a® &(0)], ...

where A 1is an operator of the form (16) with dimension 2m.
Evidently in these conditions we find the same computation

reductions we have found in the case of the one-input system.We'
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emrhasize the main goal of the choice we made, was to simplify
computations. However, we still have a greater pumber of the
degrees of freedom, as the only constraint given on the basic
sequence is the constraint of the form (25).

V. CONCIUSIORS

L

The paper prese®ts an identification method called "the mul-
tistep method". It geperalizes the classical step-response
method. The main advantage of the multistep method is a better
utilization of the bounded time designated for identification
research. Ap identification signal used is not an ordinary
step but a sequence of steps with defined magnitude,applied at
stated intervals. It has been showed, that a computation of
the observed signal (to get a required information on the tran-
sient properties) cab be considerably simplified if a proper
choice of the control signals with stated properties is made.
The computation doesn’t need a direct inversion of the matrix.
Hence results the computation reduction as well as significant
errors are avoided (particulary whep dealing with matrices of
a large dimension: from 10 to 30 for one input variable). Be-
sides, the proper sequence choice enables to accompliah" com-
putation based on the observed signal measurements,while elim-
ipating all singularities.Thus all conditions for a large num-
ber of the local computations are ensured.The pumber is justi-
fied mainly for a frequent affecting of the control signal on
the system input.

There wes no place to consider the problem of the statistic-
al estimation of the index or impulse sequences, based on the
successive local computations. We only note that the computa-
tion results can be of a greater value and of a more general
sense than a direct application of the global least squures
method to the total measurement accomplished during a research
time

® This work is a part of a broader research program  upder
patronage and support of the Fonds de la Recherche de la Dele-
gation Generale a la Recherche Scientifique et Technique ! “‘Au-
tomatisation®). \
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A THECRY CF PARAMETER TRACKING APPLIED TO
SLOWLY VARYING NONLIMEAR SYSTEMS

Boris Segerstihl
Automatic Control Iaboratory
Techniczal University, Helsinki, Finland

1. Definition of the system

1.1, Notations

Let i and J>i be integers and define /i,3/2{i,i+1,...,3}.
T is a given fixed integer and in the following we only
concider the limited time interval Me /0,7/.

A n-dirensioral signal is a mapping a:/1,n/xT— 1R ( IF is
the set of real numbers) whose values are called signal
elements and are denoted a4¢ 2 a(i,t). No difference is made
hatween a signal and its matrix and because of this we can
write

[B10 819 <-- °1TT
Pao-fer 2om 8273

18n 8p1 e+ Bpp

The signal value a, associated with a signal a is a
mapping at:/1,n/~iﬁ such that its matrix is

ey = (B¢ B¢ +or fnt]
(a superscript T on a mazfrix denotes transpose). Hence the
zatrix for a signal value a, is the t+1:th column in the
matrix for the signal a.

A restriction al/1,n/x/tq,%5/ /ty,t,/cT, called a signal
segment of a, is denoted by a 1t and its matrix is

7tq,t5/ _ : bt

a D\ [at133t1+13"':at2]‘

In cases where t1=0 we use the shorter notation at = a/o't/.
A tilde distinguishes a random variable from its values.

Fence & can be a random variable and x one of its values.
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1.2. Definition

Let U & onU1x...xUT be a given subset of :mT*1. U is the
space of input signals and an elsment u in U i3 an 1input
signal (one-dimensional).

Let A & onA.lx...xAT be a given subset of (:mm)T+1. A is
the parameter space and an element a in A is a parameter.
This means that every parameter in A is a m-dimensional
signal,

Let X & X xXyx...xXy be a given sudbset of ( R )q, 4« X, is
the state space at the moment t and an element <, in Xt is a
state at this moment. An element x in X is a state sequence
(a state sequence is a n-dimensioznal signal).

Let X be a stochastic state sequence which assumes values
in X, For every a in A and every u in U the state transitional
density of a stochastic system is a density function of Xg4q
t € /0,T-1/, with values f(xt+4|xt’“t’at+1)'

In contrast to deterministic systems, where we can use a
state transition equation which uniquely gives a value X4 41
when Xy o Uy and 84,9 are given, we can use only a transitional
density which uniquely gives a density function on Xt+1 when
Xy aUy and a;,q are given.

Let Y 2 YoxY1x...xYT be a given subset of :mT*1. Y is the
space of output signals and an element y in Y is an output
signal (one-dimensional).

The relation between state and output signal value in a
stochastid system is given by the observation density f(ytlxt)
for every t in T. If we know a manping G:Xt——Yt for every
t in T such that

f(ytlxt) L é(yt-6<xt)) R (1)
thenwe call the stochastic system exactly observable. If the

parameter a of a stochastic system is a Markov signal, then
we call the system a Markov system.

These notations give the following characterization of a
Markov system on the time interval Tr.
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L Markov system on the interval T is defined by:
1) The initiel state demsity f_,,(xolao) and
the initial parameter density f_q(ao).

2) The state transitional demnsity f(xt+1|xt,ut,at+1) and
the parameter transitional density f(°t+1lat)'

\N
v

The observation density f(ytlxt).

In the ckaracterization given sbove the initial conditions
usualy given for deterministic systems have been replaced by
initial censities.

The general difference between deterministic and stochastic
systems is hence that when we use v2lues of functioms in
deterministic systems we use density functions in stochestic
systems and these density functions are as unique as the
values of the functions in the deterministic cass.

2. Pormulation and solution of the problem

2.1. Formulation

Our problem is a tracking problem and hence our main interest
is concentrated on the density function of the Markov parameter
at every roment t = 0,1,...,T. Thig density is at every moment
conditional with respect to an input signal segment ut'1 and
an cutput signal segment yt. Formaly the problem can be
formulated:

Let a Markov system be defined by its state transitional
density, parameter transitional demnsity and observation
density. Let the initial state density and initial
parameter density be given. Let u be a given input signal
and y a given output signal.

Determine at every moment t € /0,T-1/ the conditiornal
density function

t’ytdﬂ) -

<3t+1lu = f‘{:+1(at+1). '(C)
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2.2. Solution

The preblem formulated on the preceding page is e typicel
bayesian problem and the solution can be obtained in tke
following way:
The following density furctions are given,

1) state transitional density f(xt+1!xt,ut,at+1),

2) initial state density §_1(xo|a°),

3) parameter transitional density ffat+1|at),

4) initial parameter density f_1(a°),
5) observation density f(yt|xt).

From 2) and 4) can be computed the initisl Joint density
T_4(x,,8,) = f_1(x°|a°)f_1(a°)- (3)

Let the first observed output signal value be Jor The Jjoint
conditional density of X508, is

£o(x,08,175) 3 £2(x 08,) = F_4(% 58)0(To X IN (7))
where No(yo) is the normalizing constant (for given Tod
defined by the condition

A -1 LL
No(¥) = UxxA.f-1(‘°’°°”(y°'x°)dx°da°] ’ (53
oo

From (4) one can immediately compute f&(ao) as

£i(a,) = j; £1(x518,)dx, - (6)
o

The following step is to predict the density function
of X448 for given u This predicted density function is
given by

o°

fo(xq.a1) -J f(x1Ixo.uo.aﬂ)f(aﬂ|a°)fé(x°,a°)dxoda°.
X _xA
0*%o (7)
After this the procedure outlined sbove can be continued
recursively for every t in M and the general algorithm at
a moment t is:
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1) Compute

PO )'£ a Fraalxeupiag 1) Cag g lap)fE (xg ap )dxday
XAt

2) measure J4,q and compute

$ t t+1
I ORI IR DR P TR IL R DLIC AL DL IC I A

where

-1

t _t+1

Nt+1(u v ) .[ft 1§xix2+1‘at+1)f(yt+1|xt+1)dxt+1dat+1]
+ +

3) compute

Ttarlag,q) '.J; TIC S RLITE DLW
t+1

This general bayesian algorithm is theoreticaly almost
trivial and annlogous to corresponding metods for state
estimation1, hut computationaly it is in general not easy
to realize.

Even in the linesar case with Gauzsian denszities it is
difficult to use this algorithm for other systems than
exactly observable ones where we can find an a posteriori
state mapping H:Xt_1xUt_1xY5—+Kt which gives the rule for
computing the value of the state vector at every moment t,
) The main difficulty is due to the fact that the output
signal values even in a linear system will be products of
parameter values and state values and if we are given only
density functions for parameter and state values we have to
conpute density functions of products of stochastic variables
and this is rarely an easy task.

2, The solution for exactly observahle linear systems

The necessary densits functions and marpings for exactly
cbaervable linear Gauss-larkov crystcms can be constructed:

p— BEpE e — —
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in the following way. !
Let m and n be positive integcers defining the order of

the system in such a way that the a postericri state mapping

can be constructed by using the rule that for every t in T

7
xg = [Ug Vgor ooe Upp Ty Tpq oor Tpo) (®

where uy and y4 are input and output signal values. All
signal values with negative time index are initial values
and can be included in an initial state vector x_,.

Because u, is included in Xy and because we can construct
X1 if we know Upiqs Tie1 and x, we can replace the state
transitional density f(xt+1|xt,ut.at+1) by the equaly
informative density f(yt*1|xt,at+1), and we assume that

T(Tg4q1%gr8g,q) = cexp- Blyy,q - xgay,9)%/2} 9

where ¢ is the normalizing constant (we will allways use ¢
as a symbol for this constant regnrdless of its real value,
because this valua is of no special interest).

We assume that the parameter transitional density is

f(‘t¢1'at) - cexp{- %(°c+1‘°t)TR(at+1'at)} (10)

where R is nonsingular, positive definite and symmetric.

A flow graph for the system is shown in Fig. 1. In the
figure n is a sequence of independent Gaussian variables with
zero mean and identical precision p.

It is rather unusual to add the disturbance before the
feedback because this will give correlated disturbances in
the output, but this is a possible way to construct an
exactly observable system because the state allways can be
obtained from measured inputs and outputs.

In this special case the solution will be rather trivial
and can be obtained by the recursive application of one
equation for the mean and one equation for the precision
matrix of the density function at every moment t.

The algorithm is given by the rule:
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It fé{a+) is given by
y T RN, ]
- f£3{a,) = cexp(- z(at-dt)rattat—ﬂt)J (11)
then
] / | 1 T .
£11(8g0) = coxpi= 3oy 4=y q) At’1(at+1-xt+1)§ (12)

where

=1\=1 T

-1 -
B4 = (At +R° ) + pxeX;

5
g1 =Ygt B(Tpan - xgxg)Bg,a%g

The procedure is structuraly equivalent to the Xalman
rilter2 and the recursive computation of the mean “t*1 o?
the density function can be done ny the system in Fig. 2.

Onie snould observe that one reason why the algorith is
so 3imple is the fact that the input signal value is ircluded
in the state vector. The computations are far more comélicated
if one has to compute the densities of a,, (the "gain" of the
system) and (a i Lgays A ) (the "time constant™ of the
system) separaigiy. éoﬁzgiiég this cannot be avoided, for
instance if our main interest is concentrated on the gain or
the time constant. In trhis case we denote (aat""’am+n+2 t)
by a, ard compute the density function f(bt#qlat+1)f(at+15
where b, , 2 LI
The aglzorithm is in this case:

Denzitv function at the moment ¢

2 4 $i 1 5
£ ikn mbp). - cexp%—g(at—mt) Gt(at'“t)'zlt(bt'Pt(at))2 (14)

Predicted density function at the moment t

£ 1 ' Iy
felag,10bg,q) = coxpl-alag, q-%t,0) Op q(8g 0=2t,q) -
1 21
-21{:*1 (bt*"-Pé+1(at+1)) J 15)

1.1
G s (G R
[ o1 = (g ) (168)
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and
r
Ky 8 Pugg/lg Tga
- (kL(6 ek, + 071 4 27HT (16b)

l%+1

| Preragan) = 2ele) - kg (BgsR) T Rlag, 4-xg)

where we have sssumed that the precilaion of <aﬂt""'am+n+2 t)
is a matrix with structure i

fn'o

Eoct.d
{O:R

wnich means that we assume that the transitional densities

cf a end b are independent.

Density function at the moment t+1

1 7
£,1(8g,1405,9) = c""Pz “2(8g 1= %541 G (8g,q=p ) -

A 2
-21t+1<bt+1-Pt+ﬂ(at+1)) } (17)
where

o2
Lesa = Liq + pug

=

T
Prar(apan) = Pilag) + Aue/le[TeamabXe P (2o, )

Pten # P1é+1/1t+1

=1
8 4 (G _+R)” Rk

O y1=Cha1+Ppan (Xg#igSgyn) (Xppigsyyg)T
L
dt+1 ~%ee1™
= GuTi +A (K )u ﬂG-1 (X, +2,.8,.4)
Piyt [Toar = @gXetLe(RedupfBE q (Xp+ueSe,q

These computations are not in prineciple more difficult to
do than the computations in (13) but they are of course more
time consuming. !

The marginal densities for a, and be ccn easily be obtained
from the eguaticns above at every momsut t.
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4. Nonlinesr timevarying systems

We start from the assumption that the state transitional
density of the nonlinear system is the density function (9)
if we assume that there exists an unknown function dt:X—--At
at every moment t such that in (9)

Bpa1 = Qpaa (<) (19)

which mneans that the value of the parameter is a time varying
nonlinear (or linear) function of past and current states.

If this function is completely known and easy to handle
we have no problem, but we assume that we have very little
information about how the values of the parameter depend on
the values of the state and hence we are forced to comnsider
the more general case where we do not make the assumption in
equation (19) but have to assume that the parameter

(85089000 e08p) = (8,(x°)ydq(x")y0reydn(x))

13\3 realization of a stochastic variable a.

This means that we have to use our information about the
effects of the input and the output on the parameter in some
other way.

If we know that the amplitudes of the input signal and
output signal vary rather slowly and that because of this
the values of the parameter vary slowly but perhaps rather
uapredictably, then we can assume that the parameter is a
realization of a Markov parameter with transitional density
function (10). The only thing to do after assuming the Markov
property is to make a clever guess concerning the optimal
value of the precision matrix R in (10). This is of cource
one bf the main difficulties in applying the tracking
algorithm to this type of nonlinear systems and it is a
problem which has to be solved (by trial and error) separately
in every aprlication. .

3 To test the behaviour of the method simulations were made
on two very simple nonlinear systems. The first system was
one with exponential nonlinearity and the difference equation
for the system ccn be written in the general form
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Ty = (ag+8,6733%6* ) u, 4 (by40,0™ 036" P800, , + 0, (20)

where o, is a value of a noise signal.
The second system was a saturating system and its
difference equation was

¥, = min(a,y,a5/up)ug + min(by,bs/uy_qJu, 4 + D0g . (21)

All simulations were made on the time interval /0,200/
and the input to both systems was

u, = 5(1+sin(0.015t)) + 0.5sin(0.5¢t). (22)

Results of typical simulations are shown in Fig. 3 and Fig. &.

Pig. 3 shows the result of a simulation of the system
with exponential nonlinearity when as parameter values were
chosen

aq =0 b, = 0.5
ay = 2 b2 = 2

az = 0.2 b3 = 0.15
a, = 0.9 b, = 0.7 .

The variance of the measurement error n, was in tbhis
simulation 1.5.
Pig. 4 shows the result of a simulation of the saturating
systenm when as parameter values were chosen
81‘2 b1-1
82-14 b2-7o5.

The variance of the measurement error n, was 0.9 in tnis
simulation. ¢

The tracking behaviour is quite acceptable although the
constart delay cannot be eliminated with a Markov-1 assumption
Ia Fig. 4 can be seen the effect of an incorrectly ckosen
precision matrix. The tracking of the parameter a becomes too
slow and the tracking of b too fast which causes overskooting
in the tracking of b. The effect of this can be seen in tke
computed output. In the interval /30,110/ the output is too
large and in the interval /140,200/ it is too small.

The correction needed in the value of the precisionaatrix
caa easily be done as long as the effect of the error can be
seen in the computed output and hence it would be an easy
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task to repeat the sirulation of the satureting system witk
better result than tie one shown in Fig. 4.

5. Conclusions

It iz obvicus that there is no sense in applying the
method to systems with known nonlinear characteristics because
it is easier and safer to compute =2ll pesrameter velues from
input ard output signal values if it is possible. The method
we have used is simple and efficient in problems where the
nonlinear characteristics of the system are unknown or very
difficult to use in computations.

Simulations have shown that the method gives satisfactory
results even when thé precision of the densities is approxima-
ted by a constant matrix. If the maximum value of the variance
of the solution has been tested by means of the input (for
instance using the method outlired in ref. 3) it is guite safe
to choose a suitable approximation for the precision.

The algorithm presented in this paper has in & modified
' form been applied to on-line calibration control of instruments
used for measuring process data in digital process control
systems, and work on this problem is still being done, dut the
preliminary vwesults which have been obtained are rather
satisfactory and indicate that the method can be used as a
means to overcome some of the difficulties caused by slowly
varying operating points in nonlinesr systems.,
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LHE APPRCXIMATION METHOD OF IDENTIFICATICN

H.Géreoki, Lepartment of Automatiocs and Indu-
strial Eleotronios, Academy of Xining and Me-.
tallurgy, Cracow, Poland

A.Turowioz, Institute of Mathematios, .Cracow
Branoh, Polish Academy of Sciences, Poland

Introduotion

For purposes statio and dynamic identifiocation an appro-
ximation method is proposed.

Iet us consider the case of statio oharacteristio’s ap-
proximation.

The problem is to f£ind a ourve representing the statie
charaoteristio.

As a rule we have to our disposal the results of the ex-
periments, grafiocally represented by the set of points-as in
fig.1, From the shape of this set we can forsee the shape of
the representing ourve. Usually in order to determine such a
ourve we must take in acoount many values of the input signal
in the interval [a.b] .

It leads to cumbersome ocaloulations, In the proposed me-
thod only a small aumber of determined values of the input is
sufficient for the ocnstruotion of the representing ourve,.

In the problem c¢f dynamio identifiocation the class of
the funotion to be taken as approximating funotion usually
is known. This oiroumstance makes easier applioation of our.-
method,

1. In 1928 H.Steinhaus has found the solution of the
following problem’ : .The oonvex funotion f£(x) is given in
the interval [a,d . We look for a linear funotion g(x)=umx+n,
such that the integral

I a Jblf(x> - g(x)'dx (1)
has the minimum value.

In other words we seek the secant of the aonvex aro such
that sum of areas lying between the arc and the secant be mi-
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nimum, The solution of H.Steinhaus is : The reguested secant
interseots the arc in the points  M|<3fR g(23% and
v[ 2422, £(2222) ] it means that 4U'= fAB , N'B= fAB /ses
fig.2/, where A,B are the end points of the interval, and
K‘,N° are projections of the points M,N on the x-axis.
This result appears rather surprising as the abscissas

of the intersection points don’t depend from the shape of the
ourve, provided that the ourve be convex /the direction of
the oonvexity is of no matter/.

2. It follows from the Steinhaus theorem that for £in-
ding the best approximation in the metric of the l-space we
need only to know the ordinates of the points M and N -
whose abscissas don’t depend from the shape of the aurve, the-
refore the knowledge of the ordinates of other poiats in the
interval [a.b] is superflous. Finally for the convax ourves
the problem of identification by the linear approximation re-
quires only the measurement of two values of the outpute.

The requires funotion is of the form

g(x) = £ (222), . 9:1}}2%;(2%2 (x— 3%") (2)

3o, We will consider now the identification using a pc-
lynomial-approximation,

From the Markof s theorem, see1 follows the gollo-
rary:

If the function f(x) is contiauous in the interval [a .b]
and if the polynom Pn(x)a o+ Claxten ot o(th:n has the proper-
ty tkhat the difference f(x)— n(x) changes its sign in the
points

ekl etz ()

and only in these points of the interval [:a.b:] then holds the
following inequality:

_{bl £(x) - u(J\:)l ax < _{bl f(x)—Qn(x)|dx (4)
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where Qn(x) is an arbitraly polynom of the at most n-degree,
Theequality in (4) takes place only for Q(x) = Py(x)
We remark that :

P (x) = f(xk) o Kk =1,00.,0¢1 (5)

so the polynom Pn(x) is determined, when we know the values
f(x,l) ,....:f(xm_1) .

In order that the polynom Pn(x) satisfying to (5) chan-
ges its sign in the points (3) and only in these points we
reve a sufficient but not necessary condition: The polynom
has the cerivative of order ( n+1) not vanishing in any point
¢l interval [a,b] ' gee' . Therefore if we know the ordinates
in points (3) and determine the interpolation-polynom Pn(x)
then we obtain the optimal approximation of the function f(x)
in the I-space metrio, provided that the assumptions of the
quoced theorem are fulfilled,

If not, we have an approximation, but we dont know wheth-
er it is optimal or not.

Lenoting

W) = (x=xg) (xp) o oo (x-2py4) (e)

we obtain form the Lagrange interpolation formula

Ba(0) = B eln) S (7)

We consider now partiocular case, see fig.>. Suppose we know
that the funotion f£(x) 4s convex and we want to approximate
it with the parabola of the second degree, If we kanow that
the sign of f‘i)(x) is constant in the interval [a,b], then
the interpolation polynom of the second degree whose interpo-
lation knotes are

a+b _ b-a V2 a+b a+db . b-a V2'
=52 -2 x= 5  xm R 22 YR
gives the best approximation.
If the assumptions are not satisfied there is no know -
ing whether the best approximation is given by a parabola in-
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tereesting the aro of the ourve in two, three or four points.
Polynom P;(x) has the form

P,(x) TJT)Z {[af(x.‘) -8£(x,) +ur(x3)] 2 -
- [£0x) (5 e#0) W2 (o-9)) -se(x,) (avt) +
+r(x5) (‘+ (a+v) -Vg.(b-a)) x+[t(x,1) ((a+b) 2, P.z_‘_‘ﬁ £
-2(x,) (a 2+6absb2 )+t (x}) ((a*b)a )]‘} (8)

Se If the funotion f£(x) 48 known in the waole inter-
val Ea b] then the following formula holds1:

lr(x)-P (x)ldx Iff asb ...1—ooatp) sgn[sin(ma)ladvl ()

Due this formula we oan oalculate the error of the optimal
approximation in the L-space metrio.

6, We consider now the oase of the convex surface

z = £(x,5) (10)

where the funotion f(x,y) is defined in a plane bounded amd
convex domain G . We may approximate the function (‘IO) by the
linear funotion

3 = g(x,7) = mx+noy+p (11)

suoh that the integral

.é” f(x.y)-s(x.y)l dx &y = F(a,n,p) (12)

attains its minimum value.

We denote by K the interseaction curve of the surface
(10) with the plane (11), and by L the projection of X on
the plane x,y , and finsally by H.1 the plane domain bound-
ed by L , see fig.4, and by Hz the part of domain G exts-
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rior to the ourve L .
Then we have

I= 1{1 [s(x'w) -f(x.y)] ax ay+ .g;[f(x-y)-s(x.yﬂ dx(‘rg)

Remark. The equality (1 3) holds when the comvexity of the
eurface is directed down. In the oase of the oppo-
site cireotion of the oonvexity we put in (13) (-I)
instead of I .

The sign of I is of no matter on the further oonsid-
eraticns. Suppose, that £(x,y) has oontinuous partial der-
ivatives. Then the ourve L has in every point a determined
normal, and the integral (13) has the partial derivatives
with respeot to parameters m,n,p . We caloulate these der-
ivetives according to Sobolev’s formulaz.

In the case of a double integral this formula takes a
form : If

Q-_-f[\oxytdxdy 14
G(t) ( L ') ( )
the

g% = If gy dx 4y + I‘P(x,y,t)vn(x,y) ds (15)

G(t) 0° L(t)

where we denote by G(t) and .L(t) the plane domain of in=-
tegration and its boudary depending on t , and by v, (x,3)
the velooity in the direotion of the exterior normal of the
ourve L(t) 4n the point (x,y) of this ourve, and finally

with ds element of the arc of the curve L(t), see fig., 5.
If ‘the equation of the ourve L(t) 4is:

h(x,y.t) = 0 66)
and the domain G(t) is defined by the inequality

n(x,3,8) > © (17)

then the gradient is direoted into the interior of the damain
G (t) o and



n(x'y) Y 2x &t Owv dﬁ (18)
/9 n)i (@g)z
\sx/ By
Differentiating (16) we ottain:
.h. dt 9 ohdy 2.2 a 0 (19)
ox dt ° y dt
hence _?rb
vn(x.y) = ] ~ (20)
\/( 22)2 2n\°
9x
Finally the formula (’IS) takes a form an

29, [[2¥ 8¢
Dt //'at ok /lp(x'y't) (3:;)2 ) (24
h(x.y,t)>o h(x,y,t) = O Ox )
Arplying Sobolev’s formule to the integral (13) we find
h

// ax dy +fE(x,y) —g(x,y)_-[ 3-— ds-

°’I

/x dx dy +/[(x.y) f(x,y)]

’a > 1
. EI-E e

.,é_.I_ = [y éx dy +J[(X.Y) -g(x,y)] Brmeee 0o

f/y a oy + o) Ll Gl AR
e T
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dxdy+jfx)’-sxy
ﬂ [()(ﬂ(a,)()

9

ff dx dy + j[g(x y) -£(x, y)] —3_
b(ax 3y (24)

Along the ocurve L hoids the equality

°’I
(=g

QJQ)'C’

dg-

(=3

2(x,3) = &(x) (25)

In consequence the all curvilinear integrals in formulas (22)
(3), (24) are equal zero.

kquating to zero the derivatives _3_; 11- gI we
obtain 8' P

ﬂ x dx dy ff x dx dy - (2¢)
B 5

J(f y dx dy

H,

ﬂ dx dy
H,

[ vexas =)
g
[ e ()
H2

Since

f’(xdxdyg fj x dx dy =fodxdy\
f, 2, G

[rooell saa [ saal e
Hy H, G

fdxdyd- I dx dy

Hy H,

=f ax dy
G J



83

we have from (26),(27) and (28)
ff coar ]
G

Y R S

'U xdxdyv
B,

j y dx dy
E

.
ﬂ ax ay = %ff ax day
K, G :

The fo::'mulas (50) express the fact that the area of the
domain M, ie equal to hslf of the area o. the domain G ,
and the oenter of gravity of the domain :l..l coincides with
the ocenter of gravity of the domain G . As the area of the
domain H’l and the ooordinastes of its center of gravity de-
pend upon the parameters m,n,p hence the ecuations (30)
oonstitute the system of three equations with tnree unknowns
m,n,p o From this system we determine the optimal approxi-
mating plane,

e Now we consider the general case of the functionm cf
. n-variables f(x,l,...,xn). We weant to approximate it with the
linear funotion g(ﬁ.....&): cg:k-rd in such a way taat
the integral

I:I'é' III(X'V'"'&I)_S(,H““"SK)Idx"""'d% (31)

yields the minimum,

We assume again that f(x,‘,...,xn) is a convex <funo-
tion in a bounded and oonvex Gomain G oontained : in the n=-
dimensional space.

Then, if ]a.,....,an) and (b‘,,....bn) are twopoints
of the domain G , and A satisfies to 0 & /\41 s We haw

f(a.]A +b1(1-N ,....anA+bn(‘l- /\)) <M(a1.....oq)+
+(=2) £(bg, 000y (32)

For further ounsideration it is of no matter if we replaoce

k=1
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the coavex funotion by a conoave one.
Sobolev’s formula for n-tuple integral is as follows.

Let
q:j([ £(xq vawsinXy s B 0Ky s i elX (33)
Gt
Then
g = eece 'u ,...,dx +
a% jG(t a‘u‘ #

= IL,(;,I £(Xqs0000Xp) e vy x..,,....xn) as (34)

wasre L(t) 1s the (n-1) dimensiornal hypersurface bound-
ing tehe domain G(t),v (x4ye..,X,) 18 the external normal
coaponent of the velooity of the displacexzent of the point
(xq....,xn) with the change of the parameter t . Finally
dS 13 the element of the surface on L(ﬂ .

By the analogous reasoning as 1a the case of two vari-
ables we obtain similar results.

The equation

£@yparertn), = g; o Xy + d (35)

c=fines the hypersu:faoe. L , bounding the domain Hq oon-
tainel ia the dozain G .

he hyperplan is optizal when the volume of domain E1
L, szual to the half of the volume G , and the centers of
sravity of these domains coincide,

Tusse requirezents give us (m+1) equations for detar-
m .1zion ¢f the coefficients 01,...,cn.d o

icferenges 3

sA:niljezer : lekoJl po tieorii approksimacii., Moskws

€5, Izd. "Nauxa®™, s. 101-102.

Sy L..ovclew 3 Urawnienijs matiematioczeskoj fiziki.
vzzksa 1950, Gosizdat Teor.Lit, s8.16-19,
:infzzs 3 Uter die Approximatioa konvexer mittels
iincarer Punkctionen, Zeitschrift fiir Angewandte
Usthezatix und Mechaanix, 8, 192E, s. 414415,
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Figete Approximation of the convex surface with a plane
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h(xy,t)=0
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Fig.5.

Tllustration to Sobolev’s formula
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